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Predictions of the possible model parameterization and of the

values of model characteristics such as R factors are important

for macromolecular refinement and validation protocols. One

of the key parameters defining these and other values is the

resolution of the experimentally measured diffraction data.

The higher the resolution, the larger the number of diffraction

data Nref, the larger its ratio to the number Nat of non-H

atoms, the more parameters per atom can be used for

modelling and the more precise and detailed a model can

be obtained. The ratio Nref/Nat was calculated for models

deposited in the Protein Data Bank as a function of the

resolution at which the structures were reported. The most

frequent values for this distribution depend essentially linearly

on resolution when the latter is expressed on a uniform

logarithmic scale. This defines simple analytic formulae for the

typical Matthews coefficient and for the typically allowed

number of parameters per atom for crystals diffracting to a

given resolution. This simple dependence makes it possible

in many cases to estimate the expected resolution of the

experimental data for a crystal with a given Matthews co-

efficient. When expressed using the same logarithmic scale,

the most frequent values for R and Rfree factors and for their

difference are also essentially linear across a large resolution

range. The minimal R-factor values are practically constant at

resolutions better than 3 Å, below which they begin to grow

sharply. This simple dependence on the resolution allows the

prediction of expected R-factor values for unknown structures

and may be used to guide model refinement and validation.
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1. Introduction

The maximum resolution of diffraction is an important char-

acteristic of experimental data sets and the resulting crystallo-

graphic Fourier synthesis maps. The number of structure

factors Nref for a given crystal depends on the resolution d as

NrefðdÞ ’ d�3: ð1Þ

Binning of diffraction data, e.g. for the reporting of statistics,

can be chosen to be uniform in Å, in sin(�)/�, in Å�1, Å�2, Å�3

etc. For example, if the resolution limits dk, k = 1, 2, . . . , are

chosen uniformly in Å�3,

��3d ¼ d�3
k � d�3

kþ1 ¼ constant; ð2Þ

moving from dk to dk+1 changes the number of reflections

approximately by the same amount for all k, i.e. equal volumes
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of reciprocal space are covered by each bin. Here, we analyze

the effects of partitioning dk uniformly using a logarithmic

scale,

� ln d ¼ lnðdkþ1Þ � lnðdkÞ ¼ constant: ð3Þ

In this case, moving from dk to dk+1 changes the number of

reflections by approximately the same factor. Using this

regime, we can perform analyses to establish whether selected

crystallographic characteristics have a simple dependence on

resolution on this logarithmic scale. One such characteristic is

the ratio of the number of diffraction data Nref to the number

Nat of atoms for structures solved at a given resolution. Ideally,

the total number of parameters of a model should not exceed

the number of independent observations (reflections) or the

model is considered to be overparametrized and inappropriate

for refinement. Therefore, the typical value of Nref/Nat at a

given resolution indicates the allowed number of parameters

per atom and therefore defines a ‘typical model’ at this reso-

lution. Knowledge of this ratio can also help to predict the

number of molecules per unit cell. Inversely, for a known

Matthews coefficient (Matthews, 1968),

VM ¼ VM�1
w N�1

sym; ð4Þ

it may help to estimate the expected high-resolution diffrac-

tion limit of the crystal as discussed below, thus completing

other indicators (see, for example, Arai et al., 2004, and

references therein), in particular the overall B value (Wilson,

1949). Here, V is the unit-cell volume, Nsym is the number of

crystallographic symmetry operations and Mw is the molecular

weight of the macromolecules in the asymmetric part of the

unit cell.

Expected ‘typical’ values of the crystallographic R factor,

of the Rfree value (Brünger, 1992) and of their difference are

often considered during structure solution. To our knowledge,

despite numerous studies (for example, Luzzati, 1952;

Cruickshank, 1996; Brünger, 1997; Tickle et al., 1998, 2000;

Read & Kleywegt, 2009; Urzhumtseva et al., 2009; Joosten et

al., 2009), a convenient and simple analytic expression for the

R factors typical at a given resolution is still not well defined.

We used a logarithmic scale to study these functions and also

the minimal values of the R factor. The latter can be consid-

ered as a goal that in most cases can be achieved at a given

resolution.

Summarizing, the goal of this study was to determine

whether an appropriate choice of resolution binning using

different scales highlights a simple analytic dependence of

macromolecular model characteristics. Knowledge of such a

dependence can help in structure solution and can be used as

an auxiliary validation criterion.

2. Test data and parameters

We selected models from the PDB (Bernstein et al., 1977;

Berman et al., 2000; selection in March 2009) for which the

database contained experimental data: 31 662 entries in total

(set 1). For these models we extracted the characteristics as

they were reported in the file headers. Two subsets (sets 2 and

3), with 29 484 and 710 entries, respectively, consisted of

models of proteins only and models that included nucleic

acids.

Independently, a number of crystallographic characteristics,

including R factors, were recalculated using the phenix.model_

vs_data (Afonine et al., in preparation) utility of PHENIX

(Adams et al., 2002). Set 4 consisted of 30 546 entries, which

were those of set 1 excluding obvious outliers as indicated by

R factor. Set 5 consisted of entries for which a test set was

available allowing the calculation of Rfree factors and con-

tained 22 504 entries in total. Details of these data sets are

given below.

For our uniform logarithmic grid we needed to define its

step and origin. We chose the step � lnd such that from one

resolution limit to another the number of reflections changed

by a factor of 1.5. [It follows from equations 1 and 3 that

� lnd = 1
3 ln(1.5) ’ 0.135.] Also, for convenience of presenta-

tion we chose the origin d1 = 2
3Å such that the resolution

d = 1.0 Å (lnd = 0.0) falls exactly at a grid node.

3. Number of data per atom

3.1. Preliminary analysis for selected data sets

As mentioned above, the ratio Nref/Nat, the ratio of the

number of independent reflections Nref to the number Nat of

independent macromolecular non-H atoms in the unit cell, is

important in helping to define the possible parameterizations

of an atomic model when working with diffraction data at a

given resolution. The total number of reflections at a given

resolution d can be expressed through the volumes V and V*

of the unit cell in direct or reciprocal space, respectively, as

Nfull
ref ’

4�
3 d�3ðV�Þ

�1
’ 4�

3 d�3V: ð5Þ

When the structure factors obey Friedel’s law, for a given

crystal the dependence on resolution is

Nref=Nat ’ ð
1
2N

full
ref N�1

symÞN
�1
at ’

2�
3 d�3VMMwN�1

at ’ �d�3VM

ð6Þ

(otherwise the coefficient 1
2 would be absent). For protein

structures, the mean ratio MwNat
�1 can be approximately

estimated from the molecular weight and atom content

of different residues, resulting in the coefficient � =

(2�/3)MwNat
�1
’ 27.

We calculated the ratio Nref/Nat for all models of set 1. Here,

Nat is the number of non-H atoms in the PDB model and Nref

is equal to the number of reflections in the deposited file;

anomalous pairs of reflections, which are highly correlated,

were considered as a single reflection when presented (in 1051

data sets). In our study, we characterize the structure by the

resolution dPDB at which the deposited structure has been

reported. Obviously, this characteristic depends on a number

of subjective factors such as the accepted completeness of the

highest resolution zone, particular experimental conditions

and restrictions etc. However, the large number of structures

available from the current PDB for our analysis minimizes any
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systematic bias arising from these factors. Our first goal was to

determine whether the dependence of the calculated Nref/Nat

and reported dPDB reflects relation (6). Fig. 1(a) shows the

distribution of lnNref/Nat versus resolution dPDB on a uniform

logarithmic scale for a subset of models with data complete-

ness above 99% and a Matthews coefficient of 2.35 < VM <

2.45 Å3 Da�1, close to the typical value for VM of 2.4 Å3 Da�1.

VM was taken from the PDB headers; the selection gave 313

models. The points fitted well to a straight line. Two obvious

outliers correspond to the models 2v5k and 1yqn, for which

the deposited atoms correspond to one half and one third of

the whole cell content, respectively, owing to corresponding

local (noncrystallographic) symmetries. When these symme-

tries were taken into account, the points fitted closely to the

line (see, for example, the case of 1yqn indicated by an arrow

in Fig. 1a).

The slope of the straight line differs slightly from �3 as

expected from (6). We supposed that some differences might

be found in the reported VM values. For example, at high

resolution some authors may include H atoms, differently

from at lower resolutions; conversely, at low resolutions one

might miss the contribution of disordered parts or side chains

that are invisible in maps and absent from the model. To study

this issue, we recalculated the VM value for all reported

structures considering the full macromolecular content of the

cell according to the deposited sequence. Obviously, this

recalculation modified the set of selected models (291 models

with 2.35 < VM-calc < 2.45 Å3 Da�1).

When the PDB-reported VM values were substituted by the

recalculated values, the plot of lnNref/Nat had the expected

slope (Fig. 1b). This observation also gave us confidence that

there was no significant discrepancy between the resolution

limits dPDB in the PDB-reported structures and that further

analysis could be based on these values.

A similar lnNref/Nat versus dPDB distribution for all models

with 2.35 < VM-calc < 2.45 Å3 Da�1 (Fig. 1c; 2754 models)

contains several points that are below this line owing to in-

complete data sets. The data completeness ‘compl’ was then

taken into account so that in further calculations Nref corre-

sponded to a complete set of data as measured at a reported

resolution dPDB, N ref
full = Nref compl�1. This new distribution

(Fig. 1d) has the same features as that in Fig. 1(b) but is more

significant statistically. In general, correcting for completeness

instead of rejecting models with incomplete data sets makes

the set of models much more representative. In particular,

crystals with strongly anisotropic diffraction patterns can be

studied together with isotropically diffracting structures with

no need for the introduction of artificial selections.

When we analyze the distribution of lnNref/Nat for all PDB

entries with compl > 99% we observe that the corresponding

cloud of points is larger but still essentially linear (Fig. 1e; 4020

models). However, the slope of the principal axis is now

significantly lower than previously calculated. Kantardjieff &

Rupp (2003) studied the dependence of VM on different

factors and in particular showed that the mean VM increases

with resolution; according to (6) this explains the lower slope
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Figure 1
Distribution of the ln (Nref/Nat) value versus resolution dPDB on a uniform logarithmic scale. (a) Structures with Matthews coefficient 2.35 < VM <
2.45 Å3 Da�1. VM is taken from the file headers and data completeness is above 99%. The broken arrow shows the change in the ratio after a correct
assignment of Nat for 1yqn. (b) The same as (a) but with VM recalculated. (c) The same as (b) but without selection of entries by data completeness. (d)
The same as (c) but with correction for data completeness. (e) All models with data completeness above 99%. (f) Random selection from the whole PDB
with correction for data completeness. The orange line corresponds to theoretical values for crystals with VM = 2.4 Å3 Da�1. The green, blue and yellow
lines show the linear approximations for (a), (e) and (f), respectively. See text for details.



we observed. An alternative calculation without selection by

compl > 99% but using the completeness-corrected number of

reflections N ref
full as above showed a similar distribution (Fig. 1f;

for illustration purposes we selected randomly 250 models per

resolution shell; shells with less than 200

models were excluded; 2489 models in

total).

3.2. Maximum–mean–minimum
analysis

To analyze the features of the distri-

butions obtained in x3.1, we studied

them in more detail as described below.

Our goal was to find a simple depen-

dence of the principal statistical char-

acteristics of Nref/Nat as a function of

resolution. Following Kantardjieff &

Rupp (2003), in order to work with a

more homogenous set of models we

excluded all entries containing nucleic

acids. This left us with 29 486 entries (set

2; Table 1). In order to have a sample

size that was as large as possible we did

not reject incomplete data sets but, in

accordance with preliminary analysis,

used the completeness-corrected values

of Nref as above.

Table 2 shows the average and

maximal values of the ratio Nref/Nat in

different resolution shells. In a number

of shells the maximal value exceeds the

average values more than the variation

of the Matthews coefficient would allow

according to (6). This happens often for

crystals with a high local symmetry, in

particular for crystals of viruses. One

reason is the presence of coordinates for

only one molecule of several linked by a

local symmetry, similar to the 2v5k and

1yqn cases (see x3.1). Another reason is

missed atoms in disordered parts or

domains. We choose not to eliminate or

correct these structures as to do so

could involve multiple subjective

choices.

The logarithm of the minimal ratio

Nref/Nat for resolutions up to 2.5 Å

closely follows the line with slope equal

to �3 (Fig. 2). Corresponding crystals

have a VM (2) close to 1.5 Å3 Da�1. For

comparison, Fig. 2 also shows the

straight line for crystals with VM =

2.4 Å3 Da�1, as in Fig. 1.

Fig. 2 also shows that at resolutions

greater than 2.5 Å the logarithm of the

average value hNref/Nati is a quasi-linear

function of the logarithm of the resolution, lndPDB. As

expected from Fig. 1, the slope of this line differs from those of

the lines corresponding to the VM constant. This agrees with

the previous demonstration by Kantardjieff & Rupp (2003)
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Table 1
Number of models in different sets used for statistics.

Columns 3 and 4 show the median of the intervals in angstroms and on a logarithmic scale. See text for
descriptions of the data sets.

N

Resolution
shell (d1–d2)
(Å)

Median
(d1d2)1/2

(Å)
ln-median
1
2ln(d1d2)

Set 1
(with Fobs)

Set 2
(no nucleic
acids)

Set 3
(nucleic
acids)

Set 4
(17.0 > RPDB

> 0.06)

Set 5
(with test
data set)

1 <0.67 3 3 0 3 0
2 0.67–0.76 0.71 �0.338 8 7 1 7 3
3 0.76–0.87 0.82 �0.206 42 41 1 38 12
4 0.87–1.00 0.93 �0.070 196 178 16 177 76
5 1.00–1.14 1.07 0.066 336 312 22 319 167
6 1.14–1.31 1.22 0.201 729 687 34 687 432
7 1.31–1.50 1.40 0.338 1878 1794 67 1807 1230
8 1.50–1.72 1.61 0.474 3639 3459 119 3470 2592
9 1.72–1.97 1.84 0.610 6574 6329 90 6248 4676
10 1.97–2.25 2.11 0.744 7169 6790 132 6916 5211
11 2.25–2.58 2.41 0.879 5385 4992 103 5256 4001
12 2.58–2.95 2.76 1.015 3821 3355 84 3767 2823
13 2.95–3.37 3.15 1.148 1451 1222 37 1428 1039
14 3.37–3.86 3.61 1.283 310 232 4 308 190
15 3.86–4.42 4.13 1.418 82 64 0 78 44
16 4.42–5.06 4.73 1.554 16 9 0 15 3
17 5.06–5.80 5.42 1.690 6 3 0 5 1
18 5.80–6.63 6.20 1.825 5 1 0 5 1
19 6.63–7.59 7.09 1.959 6 5 0 6 1
20 7.59–8.69 8.12 2.095 1 1 0 1 1
21 8.69–9.95 9.30 2.230 5 2 0 5 1

Total 31662 29486 710 30546 22504

Table 2
Statistical information for Nref/Nat in the resolution shells chosen uniformly on a logarithmic scale.

Columns 2 and 3 give the PDB codes for the protein structures with the minimal and maximal value of the
ratio. Columns 7 and 8 show the values of the linear interpolations in the resolution interval (0.76, 2.58 Å)
(see Table 3). The last column gives the difference of the modes calculated for sets 1 and 2 of the models.

PDB code Nref/Nat Linear interpolation

Resolution
shell (Å)

Min.
Nref/Nat

Max.
Nref/Nat Min. Max. Mean Mean Mode

Mode difference
set 1/set 2

<0.67 2vb1 1ucs 124.8 178.4 152.9 149.0 130.7
0.67–0.76 1r6j 1yk4 88.1 253.0 133.5 109.1 96.8
0.76–0.87 1m40 1n55 50.6 180.7 81.7 79.8 71.7 �0.01
0.87–1.00 2gkg 2rbk 39.0 106.1 57.0 58.4 53.1 0.06
1.00–1.14 2ofm 1rqw 26.2 113.1 45.2 42.8 39.3 �0.16
1.14–1.31 2qj7 2dlb 18.9 90.7 31.9 31.3 29.1 0.00
1.31–1.50 1o6v 2ew0 12.8 54.3 21.8 22.9 21.5 0.00
1.50–1.72 2omq 2dga 8.1 56.6 15.8 16.8 15.9 0.00
1.72–1.97 3ins 2egx 5.6 40.5 11.8 12.3 11.8 �0.02
1.97–2.25 1e0p 1zba 3.8 292.5 9.1 9.0 8.7 0.00
2.25–2.58 2ins 2izw 2.8 565.7 7.0 6.6 6.5 0.00
2.58–2.95 2p3c 1ng0 2.4 465.2 6.1 4.8 4.8 �0.02
2.95–3.37 2vdt 1dwn 1.8 694.6 7.4 3.5 3.5 0.00
3.37–3.86 2dc3 1c8h 1.5 293.1 8.7 2.6 2.6 0.00
3.86–4.42 2gsz 1x35 1.1 73.0 3.9 1.9 1.9 0.01
4.42–5.06 1ye1 2g34 0.9 89.5 12.7 1.4 1.4
5.06–5.80 3b5x 2gp1 8.1 32.2 16.2 1.0 1.1
5.80–6.63 2zqp 2zqp 0.8 0.8 0.8 0.7 0.8
6.63–7.59 3c4y 1yv0 0.3 0.6 0.5 0.5 0.6
7.59–8.69 2dh1 2dh1 2.6 2.6 2.6 0.4 0.4
8.69–9.95 1vcr 2qzv 3.2 14.1 8.6 0.3 0.3



that on average the lower the resolution of the crystals, the

larger the Matthews coefficient [these authors also made a

linear regression analysis for VM(dPDB) using an intuitive

resolution scale]. Table 3 gives the coefficients of the corre-

sponding linear approximation performed in the interval

(0.8 Å, 2.6 Å) and the r.m.s.d. (root-mean-square deviation)

from it. One can observe that for a few structures reported

with an upper diffraction limit of between 5.8 and 7.6 Å the

points for their hNref/Nati also fall on this line.

3.3. Studies of the mode

Outliers with a very large Nref/Nat may influence the hNref/

Nati values. For example, hNref/Nati significantly fluctuates at

low resolution (see discussion above). At the same time, the

other characteristics of a distribution such as the values of the

most frequent Nref/Nat for a given

resolution, the mode �(Nref/Nat), are

much less sensitive to outliers.

For resolution shells better than 0.8 Å

or worse than 4.4 Å the number of

available structures is low and thus the

statistics are relatively poor. For other

shells the distribution of Nref/Nat is

essentially unimodal, with a relatively

symmetric peak for the most frequent

values (Fig. 3; see also the relevant Fig. 3

in Kantardjieff & Rupp, 2003). In the

resolution shells between approxi-

mately 0.9 and 2.5 Å the mode �(Nref/

Nat) essentially coincides with hNref/Nati

(Fig. 2). For lower resolutions of up to

4.4 Å hNref/Nati deviates from the

straight line while the mode �(Nref/Nat)

continues following it. In fact, even in

the intervals with relatively poor statis-

tics, 4.4–5.1 and 0.67–0.76 Å, the most

frequent values of Nref/Nat also follow

this straight line (Fig. 3, Table 3).

The corresponding linear interpolation (Table 3) allows the

‘most typical Nref/Nat value at a given resolution’ to be esti-

mated analytically as

�protðNref=NatÞ ’ 45:1d�2:25
PDB : ð7Þ

Table 2 shows interpolated and extrapolated values together

with experimentally obtained values.

For crystals of nucleic acids without proteins the behaviour

is quite similar (details not shown) even though the statistics

are much poorer owing to the small sample size (set 3; Table

1). The linear approximation of the mode �nucl(Nref/Nat),

�nuclðNref=NatÞ ’ 39:6d�2:10
PDB ð8Þ

differs only slightly from that obtained for proteins (Table 3).

3.4. Possible applications

This simple behaviour of typical Nref/Nat values over a wide

resolution range may be helpful for existing tools, for example

Matthews Probability Calculator (Kantardjieff & Rupp, 2003)

or phenix.xtriage (Zwart et al., 2005), especially at extreme

resolutions. Combining (6) and (7) gives a simple analytic

estimation

VM ¼
1

�
45:1d 0:75

PDB ’ 1:67d 0:75
PDB: ð9Þ

Inverting (9), one can estimate the limit

dPDB ’ ð0:60VMÞ
1:33
’ 0:506V1:33

M ð10Þ

to which a crystal with a given VM is expected to diffract. This

information could be taken into account when considering

how much effort should be applied to obtaining improved

diffraction data from a given crystal form of a specific protein.

Obviously, (10) only provides a typical limit, while better

results may be obtained for a particular crystal. As an
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Table 3
Coefficients of the linear approximations.

Each function f(d) is presented as a linear function of the resolution logarithm, f(d) = a ln d + b. Data sets
(column 2) are defined in the text. Column 3 shows the resolution interval used to calculate the linear
interpolation. Columns 6 and 8 show the root-mean-square-deviation values for the interpolation and
extrapolation intervals.

Function f(d)
Data
set

Interpolation
interval a b

R.m.s.d.
interpolation

Extrapolation
interval

R.m.s.d.
extrapolation

ln(hNref/Nati) 2 0.76–2.58 �2.31 3.91 0.0413 0.76–4.42 0.4503
ln[�(Nref/Nat)] 2 0.76–2.58 �2.23 3.85 0.0490 0.76–4.42 0.0884
ln[�(Nref/Nat)] 2 0.76–2.58 �2.23 3.85 0.0490 0.76–5.06 0.1031
ln[�(Nref/Nat)] 2 0.76–4.42 �2.25 3.83 0.0701 0.76–5.06 0.0732
ln[�(Nref/Nat)] 2 0.76–4.42 �2.25 3.83 0.0701 0.76–2.58 0.0580
ln[�(Nref/Nat)] 3 0.87–3.37 �2.10 3.68 0.0910

hRPDBi 4 0.87–3.86 0.0874 0.1386 0.0065 0.76–5.06 0.0125
hRPDBi 4 0.76–5.06 0.0992 0.1339 0.0102 0.60–10.0 0.0249
�(RPDB) 4 0.87–3.86 0.0912 0.1343 0.0098 0.76–5.06 0.0109
�(RPDB) 4 0.76–5.06 0.0943 0.1306 0.0107
�(R) 1 0.87–3.86 0.0716 0.1560 0.0076 0.76–5.06 0.0088
�(R) 1 0.76–5.06 0.0695 0.1599 0.0085
�(R) 5 0.87–3.86 0.0804 0.1470 0.0070
�(Rfree) 5 0.87–3.86 0.1050 0.1672 0.0069
�(Rfree � R) 5 0.87–2.95 0.0238 0.0201 0.0022
�(RPDBmin) 4 0.60–2.95 0.0163 0.0884 0.0089
�(RPDBmin) 4 2.95–6.63 0.2859 �0.2006 0.0118

Figure 2
Logarithm ln(Nref/Nat) as a function of resolution dPDB on a uniform
logarithmic scale. The curves show the minimal (blue), maximal (violet),
average (green) and mode (red) values for the protein structures
reported in the PDB (set 2). The mode line is shown as the interval in
which this value was calculated. The straight line in orange is the same as
in Fig. 1 showing the ratio for crystals with VM = 2.4 Å3 Da�1. The black
line shows the linear interpolation to the mode.



example, human aldose reductase crystals have a VM of

2.10 Å3 Da�1, giving an estimated dPDB of �1.35 Å. This

confirms that the value of 1.7 Å initially reported at a home

source (Lamour et al., 1999) was below what might be

obtained. At the same time, (10) does not predict that some

aldose reductase crystals can diffract to 0.66 Å resolution

(Howard et al., 2004). Nevertheless, the possibility of similarly

high-resolution data can be predicted for other crystals. An

example is the polypeptide YGG crystal (Pichon-Pesme et al.,

2000; VM = 1.12 Å3 Da�1) for which (10) gives dPDB ’ 0.60 Å.

Indeed, for this crystal the 50% completeness data set was

measured at 0.59 Å resolution (the highest resolution reflec-

tion measured was at 0.44 Å resolution).

The predictability of the typical Nref/Nat values suggests the

definition of the maximal number of parameters per atom that

are ‘usual at a given resolution’, avoiding overparametrization

(Table 2). In other words, this defines the number of atomic

parameters that can typically be used at a given resolution.

While for a particular model the number Nref/Nat can be

calculated precisely at any given resolution, knowledge of

typical values is crucial for software and methods developers,

allowing them to automate model-refinement protocols. In

particular, the ratios of 4 and 10 at resolutions of approxi-

mately 3 and 2 Å, respectively, give the minimal theoretical

limits at which individual isotropic or anisotropic displace-

ment parameters can be used (with four or ten parameters per

atom, respectively). Obviously, in these cases the ratio

Nref/Nat ’ 1 and therefore in practice higher resolution limits

are recommended even when various restraints are intro-

duced. The possibility of unrestrained refinement is not

surprising at 1 Å or higher, where there are four reflections

per parameter even for an anisotropic model. A very high

ratio of above 80 at resolutions better than 0.8 Å leads one to

believe that the diffraction data will contain a lot of additional

information (as confirmed by residual maps) and that a more

detailed model is required. At the low-resolution end, the

typical ratio prescribes the size of rigid groups that can

realistically be introduced.

4. R factors on a logarithmic scale

4.1. PDB-reported R factors

While Nref/Nat characterizes the amount of ‘diffraction

information’ at a given resolution and defines the type of

model, the crystallographic R factor is a conventional measure

research papers

1288 Urzhumtsev et al. � Logarithmic scales in diffraction data analysis Acta Cryst. (2009). D65, 1283–1291

Figure 4
R factors as a function of resolution dPDB on a logarithmic scale. The
curves show the minimal (blue), average (green), maximal (violet) and
mode (red) values; the mode is calculated in the intervals containing a
high enough number of models. The thin lines show the corridors around
the mode. Each corridor contains 40% (black), 60% (brown) and 80%
(dark green) of the structures, respectively, in the corresponding
resolution shell, half above and half below the mode. (a) R factors
reported in the PDB; set 4 of models. (b) R factors recalculated with
phenix. model_vs_data; set 5 of models.

Figure 3
(a) The mode �(Nref/Nat) as a function of the resolution dPDB on a
uniform logarithmic scale. The thick red curve shows the mode values as a
function of resolution on a uniform logarithmic scale for the protein
structures reported in the PDB (set 2). The thin lines show, as corridors,
the distribution of the models around the mode. Each corridor contains
40% (black), 60% (brown) and 80% (dark green), respectively, of the
structures in the corresponding resolution shell, half above and half
below the mode. The corridors are shown at a resolution interval with a
high enough number of models to calculate these values; the mode was
formally calculated and is also shown for one higher resolution interval
and one lower resolution interval even when the statistics there were
poor. The blue line shows the minimal values for comparison (Table 1).
Coloured arrows correspond to the distributions shown in (b). (b)
Distribution of Nref/Nat for several selected resolutions as indicated by
coloured arrows in (a).



of the diffraction quality of these models, although it is not

fully reliable as indicated in a series of papers starting with

Brändén & Jones (1990). There are anecdotal ‘rules of thumb’

for acceptable values. We searched for a simple dependence of

R factors on the resolution, substituting the usual uniform

resolution scale by a uniform logarithmic scale.

For our analysis we took the same full set of 31 662 models

(set 1) as above. We excluded 1088 entries with an incorrectly

reported value of the R factor (RPDB). We also removed 15

structures with RPDB > 17.0 (probably reported as a percen-

tage and not as a fraction) and 11 models for which the

reported RPDB represented values other

than the conventional R factor (for all

these entries the value was below 0.06).

For other entries, excluding a nonma-

cromolecular model of actinomycin

(PDB code 1a7y; Schäfer et al., 1998;

RPDB = 0.058), the reported value RPDB

varied between 0.072 and 0.615.

Exluding actinomycin, we arrived at a

total of 30 546 models (set 4; Table 1).

The same resolution intervals with an

equal length on the logarithmic scale

were used as defined in x2. Resolution

shells at very high and low resolutions

had poor statistics. In each of the other

resolution shells the distribution of R

factors was unimodal, with a clear value

for the mode �(RPDB). In all shells up to

the resolution shell 3.0–3.5 Å the peaks

were more or less symmetric and quite

narrow. The intervals [�(RPDB) � �,
�(RPDB) + �] contained nearly 40, 60 or

80% of the structures reported at this

resolution dPDB when � = 0.01, 0.02 or

0.03, respectively (Fig. 4a). Where

calculated, �(RPDB) is close to the

average value hRPDBi.

It is has previously been observed that hRPDBi increases

with resolution and that this growth is nonlinear on a uniform

scale in angstroms (see, for example, Read & Kleywegt, 2009;

Joosten et al., 2009). However, it is practically linear up to

3.5 Å when the resolution is expressed on the logarithmic

scale, as is �(RPDB) (Fig. 5). Table 3 gives the coefficients of

the corresponding linear interpolations (Table 4). The r.m.s.d.

of the interpolation

�ðRPDBÞ ’ 0:091 ln dPDB þ 0:134 ð11Þ

in the interval (0.87, 3.86) does not change on including

�(RPDB) values for lower and higher resolution intervals with

poorer statistics.

Interestingly, the minimal values RPDBmin are practically

constant at around 0.10 in all resolution shells up to 2.6 Å

(Fig. 4a). In other words, at all these resolutions it is possible

to obtain a conventional atomic model reproducing the

experimental diffraction data with a similar and sufficiently

small relative error (R factor). The approach of �(RPDB) and

hRPDBi to 0.10 at near-atomic resolutions of �1 Å and the

statistically significant number of reported models means that

here most of the models achieve this high quality. The increase

in �(RPDB) with resolution from 1 to 3 Å indicates that while it

is still possible to obtain a high-quality model, this requires

more and more high-quality data, particular effort and luck.

Below 2.6 Å resolution RPDBmin starts to grow sharply. At a

similar resolution, the minimal Matthews coefficient of known

macromolecular crystals also starts growing as indicated by

changing the slope of the curve min ln(Nref/Nat) (Fig. 2).
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Figure 5
Linear approximation to the R factors. The red and blue curves show the
mode and minimal values for the R values extracted from the PDB
headers. The curves in magenta and in green show the mode value for the
Rfree factor and for the difference factor �R = Rfree � R recalculated for
set 5 of models. The straight lines in brown, black, violet and dark green
illustrate the corresponding linear approximations (Table 3). The line in
light blue shows the mode for the R factor recalculated for the largest
possible set of models (set 4). The curves are shown for resolution shells
containing a high enough number of models to calculate the values.

Table 4
Statistical information for the R factors in resolution shells chosen uniformly on the logarithmic
scale.

Columns 2, 3 and 4 give the PDB codes for the models with the minimal R-factor values reported in the
PDB headers and recalculated by phenix.model_vs_data (mvd). Linear interpolations are given for the
mode of corresponding values calculated for sets 4 (column 5) and set 5 (columns 6–8).

PDB code Linear interpolation

Resolution
shell (Å)

Min. R
(PDB)

Min. R
(mvd, set 4)

Min. R
(mvd, set 5) �(RPDB) �(R) �(Rfree) �(Rfree � R)

<0.67 2vb1 2vb1 — 0.0911 0.1090 0.1175 0.0089
0.67–0.76 1yk4 1r6j 2pve 0.1035 0.1199 0.1317 0.0121
0.76–0.87 2ol9 2h5c 2h5c 0.1158 0.1307 0.1459 0.0153
0.87–1.00 1ob7 1rb9 1ixb 0.1281 0.1416 0.1601 0.0185
1.00–1.14 1iro 1iro 1z3n 0.1405 0.1525 0.1742 0.0217
1.14–1.31 2v9l 1n0q 2v9l 0.1528 0.1634 0.1884 0.0250
1.31–1.50 1hbz 2plz 1hbz 0.1651 0.1743 0.2026 0.0282
1.50–1.72 2ah2 6rxn 2pfg 0.1775 0.1851 0.2168 0.0314
1.72–1.97 1amk 2dya 2dya 0.1898 0.1960 0.2310 0.0346
1.97–2.25 2oh5 2oh5 2oh5 0.2021 0.2069 0.2452 0.0378
2.25–2.58 2oh7 1uvw 1uvw 0.2145 0.2178 0.2594 0.0410
2.58–2.95 5bna 1tre 1f4h 0.2268 0.2286 0.2736 0.0443
2.95–3.37 1bgj 1sv2 1ydz 0.2391 0.2395 0.2878 0.0475
3.37–3.86 2d3b 1gn3 2q3n 0.2515 0.2504 0.3020 0.0507
3.86–4.42 1aos 1veq 1veq 0.2638 0.2613 0.3162 0.0539
4.42–5.06 2rkj 1pgf 2rkj 0.2761 0.2721 0.3304 0.0571
5.06–5.80 3b5w 2b66 3b5x 0.2885 0.2830 0.3445 0.0603
5.80–6.63 2b9n 2b9n 3e3j 0.3008 0.2939 0.3587 0.0635
6.63–7.59 3c4y 3c4y 1yv0 0.3131 0.3048 0.3729 0.0668
7.59–8.69 2dh1 2dh1 2dh1 0.3255 0.3157 0.3871 0.0700
8.69–9.95 1vcr 1zbb 1vcr 0.3378 0.3265 0.4013 0.0732



In x5 we speculate about the possible meaning of the

intersection of the straight lines for hRPDBi and �(RPDB) with

the curve for RPDBmin at resolutions of �0.7–0.8 Å and �6 Å.

4.2. Recalculated R factors

In order to remove errors and inconsistencies in RPDB other

than those indicated above in x4.1, we recalculated the

R-factor value for all 32 662 structures using the phenix.

model_vs_data tool of PHENIX. Extremely high or unrea-

sonably low values of the calculated R factor indicated some

inconsistency between the reported models or data. In spite of

these obvious outliers, the general behaviour of the R factor

was similar to that for RPDB [details not shown; see Fig. 5 for

the mode �(R) values]. For some models the obtained R

values were slightly higher than RPDB, while for others they

were lower. The details of this comparison will be reported

elsewhere. In general, the average difference is within

reasonable limits. It is slightly positive at higher resolutions

(dPDB < 1.2 Å), where for a number of models it was impos-

sible to reproduce accurately the authors’ calculations.

We chose not to remove outliers using � or outlier cutoff

levels, the choice of which is subjective. Instead, we repeated

the calculations with a subset containing the entries for which

the test data sets were available and the Rfree value could be

calculated (set 5; 22 504 models). Here, all models had 0.082 �

R � 0.626, with a single exception (R = 0.715); thus, outliers

did not strongly influence the average and especially the mode

values (Fig. 4b).

Qualitatively, the behaviour of the R factor for both sets of

models (sets 4 and 5) is similar to that of RPDB. For the

recalculated R factors, which are unbiased by the diversity of

protocols and software, the mode �(R) is a quasi-linear

function of lndPDB in the whole resolution range in which it

was calculated (up to 4.4 Å). For the reasons mentioned above

this line has a slope that is slightly lower (Table 3) than that for

�(RPDB).

4.3. Rfree and difference Rfree � R

In general, the Rfree calculated for set 5 of the PDB entries

behaved similarly to R. On the logarithmic scale hRfreei is

quasi-linear up to a resolution of 4 Å. The same was observed

for �(Rfree) in all intervals in which it was possible to calculate

it (Fig. 5). Table 3 gives the coefficients of the corresponding

linear approximation (Table 4).

The difference �R = Rfree � R, which is useful for model

validation, is on average positive as expected (Brünger, 1992).

All resolution shells contained obvious outliers with �R close

to 0 or even negative. The mode values �(�R) are indepen-

dent of these outliers and therefore we did not exclude them

by subjective cutoffs. These characteristics are practically

linear at resolutions higher than 3 Å (Fig. 5). This makes it

possible to suggest a simple formula for the �R typical at a

given resolution dPDB (Table 3),

�ð�RÞ ’ 0:024 ln dPDB þ 0:020: ð12Þ

At resolutions below 3 Å the difference �(�R) is lower than

that predicted by (12). On one hand, there is no proof that (12)

should be applicable at all resolutions. On the other, there are

a number of hypothetical reasons that could decrease the

reliability of Rfree statistics for low resolutions. For example, a

smaller number of reflections may make test sets and corre-

sponding statistics poorer, reflections from the test sets may be

indirectly related to those from the work sets for structures

with local symmetries (Fabiola et al., 2006; as discussed in x3.2,

such structures are more frequent at lower resolutions) etc.

5. Discussion

A nonlinear rescaling of a function or its argument(s) modifies

the shape of its plot and a judicious choice of scale may help to

clarify the dependence. Obviously, the simplest dependence is

a linear dependence, which can even be identified visually. In

crystallography, many characteristics are functions of resolu-

tion. The resolution scale is usually linear, quadratic or cubic,

either in direct or in reciprocal space, or chosen in some other

intuitive way. The logarithmic scale we have described natu-

rally increases the number of reflections by a given factor from

one resolution limit to another when the limits are chosen

uniformly. In our study we have analyzed several crystallo-

graphic characteristics as a function of the resolution dPDB at

which structures have been reported. In contrast to traditional

studies of the mean values of functions, we analyzed their

modes � (most frequent values), which are less sensitive to

outliers, although in many cases the conclusions are also

applicable to the mean values.

The ratio Nref/Nat of the number of independent reflections

to the number of independent macromolecular non-H atoms

in the unit cell is an important characteristic of structural

projects. It is an appropriate candidate for study using a

logarithmic scale because of the cubic dependence of Nref/Nat

on dPDB for crystals with the same Matthews coefficient. A

derived dependence of �(Nref/Nat) on dPDB with a power close

to �2.2 was easily observed when using the logarithmic scale

and is difficult to deduce otherwise. This dependence can be

used to help define the upper limits on the parameterization of

macromolecule models possible at a given resolution. It may

also be used to help to predict the number of molecules in the

unit cell or to estimate the expected diffraction limit of a

crystal.

Using a logarithmic scale to study R factors is less intuitive.

However, in contrast to previous studies using traditional

scales, here quasi-linear behaviour was observed for the mode

of R factors both reported in the PDB and recalculated from

the models and data. Similarly, the mode for Rfree and the

difference between R factors are linear at resolutions better

than 3 Å. Corresponding linear approximations can be used to

help to guide refinement and validation of atomic models.

Interestingly, the two points of the intersection of the

straight line for �(R) with the curve for Rmin have common

features. They both mark limits where correcting terms to the

structure factors of a conventional independent-atoms model

(FIAM),
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Fmodel ¼ FIAM þ FIAS þ Fbulk-solvent; ð13Þ

become crucial: a bulk-solvent contribution Fbulk-solvent (see,

for example, Jiang & Brünger, 1994) below the low-resolution

limit of �6 Å and density-deformation structure factors FIAS

(for example, using interatomic scatterers; Afonine et al.,

2004) at ultrahigh resolution, i.e. higher than approximately

0.7 Å. Efficient bulk-solvent (Afonine et al., 2005) and IAS

corrections (Afonine et al., 2007) are available in PHENIX.

We conclude that these resolution extremes mark points at

which features of the electron density are not well modelled by

single isotropic or anisotropic scatterers centred on the atomic

positions.

We postulate that other crystallographic phenomena can be

uncovered using a uniform logarithmic scale. For example, the

peak distribution in the averaged and individual |E(d)| profiles

(Morris & Bricogne, 2003; Morris et al., 2004) is more or less

uniform when using a logarithmic scale. However, at present

we cannot determine whether this is purely coincidental or the

result of some underlying physical meaning.
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