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Developments in protein crystal structure determination

by experimental phasing are reviewed, emphasizing the

theoretical continuum between experimental phasing, density

modification, model building and refinement. Traditional

notions of the composition of the substructure and the best

coefficients for map generation are discussed. Pitfalls such as

determining the enantiomorph, identifying centrosymmetry

(or pseudo-symmetry) in the substructure and crystal twinning

are discussed in detail. An appendix introduces combined

real–imaginary log-likelihood gradient map coefficients for

SAD phasing and their use for substructure completion as

implemented in the software Phaser. Supplementary material

includes animated probabilistic Harker diagrams showing how

maximum-likelihood-based phasing methods can be used to

refine parameters in the case of SIR and MIR; it is hoped

that these will be useful for those teaching best practice in

experimental phasing methods.
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1. Introduction

Experimental phasing of protein structures is usually (although

not always) a more difficult and time-consuming process

than phasing a protein structure by molecular replacement.

Experimental phasing is required when there is no sufficiently

good template for molecular replacement, which is the case

when studying proteins with no (or low) sequence identity to

proteins for which the structure is known; that is, proteins with

new (or very different) folds. Since these structures tend to

provide a wealth of novel biological information, experimental

phasing remains a key tool in the crystallographer’s toolkit.

The theory and practice of experimental phasing is covered

in all protein crystallography text books (including Blundell &

Johnson, 1976; Drenth, 1994; Blow, 2002), in online resources

(including our website at http://www-structmed.cimr.cam.ac.uk/

Course) and in journal articles (including, in this issue, Taylor,

2010). This paper assumes a basic understanding of experi-

mental phasing and aims to point out the state-of-the-art

methodologies and shed light on some of the more tricky

aspects of the process.

2. Substructures

The phasing process starts with finding a few atoms (or even a

single atom) in the asymmetric unit of one of the crystals from

which data have been collected. The initial set of atoms is

found using Patterson, direct methods or dual-space methods

[implemented in software such as HySS (Grosse-Kunstleve &

Adams, 2003a), Shake-and-Bake (SnB; Miller et al., 1994) and
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SHELXD (Sheldrick, 2008)]. The set of atoms is called a

‘substructure’, simply because it is a subset of the atoms in the

full structure. The substructure is usually thought of as all the

atoms in the molecule that are not carbon, nitrogen, oxygen or

sulfur (or phosphate for nucleic acids), such as anomalously

scattering or heavy atoms deliberately added to the crystals or

fortuitous intrinsic metal ions. However, this concept of the

substructure does not reflect current phasing practice. Any set

of atoms, up to and including the full structure, can be con-

sidered a ‘substructure’. In particular, for a single-wavelength

anomalous dispersion (SAD) experiment the substructure

need not only include atoms that have significant anomalous

scattering and for a single-wavelength anomalous dispersion

(SIR) experiment the substructure need not only include

atoms that are heavy; in both cases C, N and O atoms can also

be part of a substructure. Thus, a partial molecular-replace-

ment solution is also a valid initial substructure. Inclusion of

minor sites improves the phases because the more complete

the substructure, the better the phases; in the limit, the best

phases are calculated from the complete structure. Including

‘minor’ sites in the phasing is important because what they

lack in individual scattering they can make up for in total

scattering as a group. Experimental phasing can be considered

as a process of bootstrapping from a tiny substructure to an

almost complete substructure (raising the question: is the

model ever complete?).

Substructure atoms found independently in different deri-

vatives need not have the same hand or be on the same

origin for the space group. If multiple-wavelength isomor-

phous replacement (MIR) or MIR with anomalous scattering

(MIRAS) phasing is undertaken with the sites in different

derivatives having different hands (see section x6 below) or on

different origins then the phasing will fail. To make sure that

the hands and origins of all the sites in all the derivatives are

consistent, one derivative is chosen as the reference (usually

the first derivative for which a substructure has been deter-

mined, unless this derivative has centrosymmetry; see x7

below) and difference Fourier maps (Stryer et al., 1964;

chapter 14 of Blundell & Johnson, 1976)

or log-likelihood gradient maps (Von-

rhein et al., 2007; Appendix A) are used

to find a substructure for the other

derivatives. Indeed, this is usually the

fastest way of finding a substructure for

the other derivatives, especially if the

anomalous or isomorphous signal in the

other derivatives is not as good as for

the reference derivative.

3. Phasing

There is a phase ambiguity in SIR and

SAD which is clearly shown on a

Harker diagram (Figs. 1a and 1b and

Supplementary Figs. S1a and S1b1). The

correct set of phases gives the true

electron-density map and the incorrect

set gives noise (Wang et al., 2007). It is not possible to generate

and inspect maps for all possible combinations of phases to

resolve the phase ambiguity; the number of combinations is a

‘lifetime-of-the-universe’ size problem. Instead, maps are

calculated with the average of the two possible phases for each

structure factor (Blow & Rossmann, 1961). This is a good

approximation to the correct phase when the two phase

possibilities are close together and becomes poorer as the two

phase possibilities move to being 180� apart. The map calcu-

lated with the average of the two phases is the true electron

density plus noise, i.e. the superposition of the map calculated

with the true phases and the map calculated with the wrong

phases.

The noise can be removed from the map (or at least

reduced) with density-modification methods. Density modifi-

cation has the effect of selecting the correct phase from the

two phase possibilities. Thus, in the case of SAD and SIR the

improvements in the map can be very dramatic. Traditional

density-modification methods include solvent flattening

(Wang, 1985) or flipping (Abrahams & Leslie, 1996), histo-

gram matching (Zhang & Main, 1990) and noncrystallographic

symmetry averaging (Rossmann & Blow, 1963, 1964). More

recently, and, in particular, since the development of auto-

mated model-building algorithms, model building has become

part of the density-modification process; model building can

be thought of as the most drastic type of density modification.

A second experimental source of phase information also

breaks the phase ambiguity inherent in SAD and SIR

(Blundell & Johnson, 1976, p. 160, p. 180 and references

therein). In a purely isomorphous replacement phasing

experiment (MIR) the minimal requirement for a unique

phase determination is two derivatives (and a native). In

a purely anomalous scattering experiment (multiwavelength

anomalous dispersion; MAD) the minimal requirement is data
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Figure 1
Harker diagrams. (a) SIR Harker diagram where H1 is the calculated substructure structure factor
for the single derivative. The black and red circles have radii given by the observed structure-factor
amplitudes for the native and the derivative, respectively. (b) SAD Harker diagram where H+ and
H� are the calculated substructure structure factors and H+

�H�* is the expected vector difference
between the true structure factors F+ and F�*. (c) MIR Harker diagram where H1 and H2 are the
calculated substructure structure factors for the first and second derivatives, respectively. The black,
red and blue circles have radii given by the observed structure-factor amplitude for the native, the
first derivative and the second derivative, respectively. In the absence of measurement errors and
errors in the substructure, the red and blue circles would intersect at one point on the black circle.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: BA5142). Services for accessing this material are described at the
back of the journal.



that have been collected at two different

wavelengths. Isomorphous replacement

and anomalous scattering can also

be combined in SIR with anomalous

scattering (SIRAS) or MIRAS experi-

ments to give a unique phase.

Some real Harker diagrams from the

phasing of haemoglobin with six deri-

vatives [Cullis et al., 1961; reproduced

on p. 367 of Blundell & Johnson (1976)

and in Fig. 7.22 of Blow (2002)] show

that despite extremely well determined

data the phase circles in these examples

do not cross exactly. Unfortunately,

these sorts of Harker diagrams are not

exceptional and the true phase is often

only poorly indicated even with the

addition of more derivative data.

The problem of non-overlapping

Harker circles in MIR (Fig. 1c and

Supplementary Fig. S1c) was initially

approached by using a parameter for

the geometrical lack of closure of the

phase triangle (Blow & Crick, 1959; see

Blundell & Johnson, 1976, p. 366). A

better approach is to use the probabil-

istic Harker construction and maximum

likelihood to find the phase (for a

review, see McCoy, 2004). Instead of a

single circle for each structure factor

there is a circular probability distribu-

tion obtained by ‘smearing out’ the

Harker circles with a Gaussian distri-

bution. The product (multiplication) of

the individual probability density func-

tions for each data set gives a combined

probability density function (PDF) for

the true structure factor (Figs. 2, 3 and

4).

In the probabilistic approach it is

possible to optimize (refine) the

substructure parameters, which are not

well determined by the initial substruc-

ture-location programs. Although the

positions of the substructure atoms are

relatively well determined, the occu-

pancies are only poorly estimated from

the relative Patterson peak heights

(some algorithms do not even attempt

to make an estimate but simply output

an equal occupancy of 1 for each of the

sites they find). Individual atomic B

factors cannot be estimated, so all B

factors are either set to an arbitrary

constant value (e.g. 20 Å2) or to the

Wilson B factor of the data. The scat-

tering factors f 0 and f 00 can be estimated
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Figure 2
SIR probabilistic Harker diagram (notation as in Fig. 1). (a) Contour plot showing components of
the PDF. The component arising from the native is shown in black contours and the component
arising from the derivative is shown in red contours centred on H1 (the point at the base of the red
arrow). The dashed black and red circles indicate the measured values of the observed structure-
factor amplitudes for the native and the derivative, respectively. (b) The PDF [the product of the
two components in (a)] is shown in dark red contours. The ‘best F’ FB is shown as a black arrow. (c)
Three-dimensional plot of the value of the PDF. The likelihood is the volume under the PDF
surface. (d) Plot of the likelihood as a function of the occupancy of the substructure (increasing
amplitude of H1). The maximum likelihood is marked with a dot. All other panels in this figure show
the values of the parameters at the point of maximum likelihood. (e) The PDF for the phases of the
true structure factor F is shown in red and the PDF reconstructed from the four Hendrickson–
Lattman (Hendrickson & Lattman, 1970) coefficients (HL) is shown as a black curve. (f) Bar chart
showing the relative values of the four HL coefficients A, B, C and D.

Figure 3
SAD probabilistic Harker diagram (adapted from McCoy, 2004 with notation as in Fig. 1). (a)
Contour plot showing components of the PDF. The component P(F�*|H�*) is shown in blue
contours centred on H�* (blue arrow) and the anomalous component P(F +

obs|F
�*, H+, H�*) is

shown in red contours centred on H+
� H�*, the expected vector difference between F+ and F�*.

The black and red circles indicate the observed structure-factor amplitudes for F� and F+,
respectively. (b) The product of the two components in (a) is shown in magenta contours. (c) Three-
dimensional plot of the value of the PDF under the black circle in (b). The likelihood is given as the
integral of the height of the surface under the black circle. (d) Plot of the likelihood as a function of
the occupancy of the substructure (increasing value of |H�*| and |H+

� H�*|). The maximum
likelihood is marked with a dot. All other panels in this figure show the values of the parameters at
the point of maximum likelihood. (e) The PDF for the phases of F�* is shown in magenta and the
PDF reconstructed from the four HL coefficients is shown as a black curve. (f) Bar chart showing
the relative values of the four HL coefficients A, B, C and D.



from the values given in the Sasaki tables (Sasaki, 1989), which

tabulate f 0 and f 00 values for the elements against wavelength.

These values are only good for initial estimates because they

are calculated assuming ‘free’ atoms, while the anomalous

scatterers in the crystal are in chemical bonds which alter the

resonances. Alternatively, f 0 and f 00 can be determined

experimentally by carrying out a fluorescence scan (Evans &

Pettifer, 2001). There is also another important class of

parameters to refine: the estimates of the errors of the para-

meters (variances) of the PDF. To refine the parameters

(position, occupancy, B factor, scattering factors and

variances), the area under the PDF curve (the integral of the

PDF) is optimized (Figs. 2, 3 and 4, and Supplementary Figs.

S2, S3 and S4).

Likelihood methods are good for refining the substructure

because they account for errors in the model and the data.

However, this is only true when the errors are not systematic

errors, i.e. when the error model used in the derivation of the

likelihood function correctly models the sources of error in

the experiment. Errors that derive from, for example, non-

isomorphism and radiation damage are not part of the error

model and will degrade the quality of the phases. Where non-

isomorphism and/or radiation damage is present it is impor-

tant to optimize the set of data sets used in phasing and/or

to exclude data at high resolution (where the errors will be

greatest). An example of this was presented at the 2003 CCP4

Study Weekend on the topic of Experimental Phasing (Evans,

2003).

4. Calculating electron density

Electron density is calculated using the electron-density

equation, which is the Fourier transform of the structure

factors,

�x ¼
1

V

P
h

jFhj½cosð’h � 2�h � xÞ þ i sinð’h � 2�h � xÞ�; ð1Þ

where � is the electron density, x represents the spatial co-

ordinates (x, y, z), V is the volume of the unit cell, h represents

the reciprocal-space indices (h, k, l), |Fh| is the amplitude of

the structure factor and ’h is the phase of the structure factor

Fh. Note that if Friedel’s law applies and |Fh| = |F�h| and

’h = �’h (i.e. the diffraction pattern has a centre of inversion

at the origin) then the sine terms for h and �h cancel and the

imaginary component is zero everywhere; the electron density

is real. If Friedel’s law does not apply then the imaginary term

is not zero. The imaginary component can be represented as a

second real electron-density map. The peaks in this second

map are the positions of the anomalously scattering atoms that

cause Friedel’s law to break down.

What structure factor should be used in the electron-density

equation in the probabilistic approach? We have to pick one

phase and amplitude for substitution

into the electron-density equation. The

best structure factor will usually be the

one that gives the lowest root-mean-

square deviation between the calculated

electron density and the true electron

density. (If there are sources of model

bias, for instance the real scattering

contribution from the anomalous scat-

terers in SAD phasing, then it may be

preferable to include a bias correction).

Parseval’s theorem (of Fourier trans-

forms) relates the root-mean-square

error in real space to the root-mean-

square error in reciprocal space and vice

versa. Using this theorem, it can be

shown that the best structure factor

(Fbest) is the ‘centroid’ structure factor

(the probability-weighted average of all

the structure factors); it is not the ‘most

probable’ structure factor (Fig. 5). The

amplitude of Fbest is always less than

Fobs (always inside the circle of the

Harker diagram; Figs. 2, 3 and 4, and

Supplementary Figs. S2, S3 and S4). The

reduction in Fobs to give |Fbest| is

expressed as the figure of merit

(m, where 0 � m � 1; m = 1 implies

perfect phases and m = 0 implies no

phase information). The probabilistic

approach puts the approximation of
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Figure 4
MIR probabilistic Harker diagram (notation as in Fig. 1). (a) Contour plot showing components of
the PDF. The component arising from the native is shown in black contours, the component arising
from the first derivative is shown in red contours centred on H1 (the point at the base of the red
arrow) and the component arising from the second derivative is shown in blue contours centred on
H2 (the point at the tip of the blue arrow). The dashed black, red and blue circles indicate the
measured values of the observed structure-factor amplitudes for the native, first and second
derivatives, respectively. (b) The PDF [the product of the three components in (a)] is shown in dark
magenta contours. The ‘best F’ FB is shown as a black arrow. (c) Three-dimensional plot of the value
of the PDF. The likelihood is given as the volume under the surface. (d) Plot of the likelihood as a
function of the occupancy of the substructure for the second derivative (increasing amplitude of
H2). The maximum likelihood is marked with a dot. All other panels in this figure show the values of
the parameters at the point of maximum likelihood. (e) The PDF for the phases of the true structure
factor F is shown in dark magenta and the PDF reconstructed from the four HL coefficients is shown
as a black curve. (f) Bar chart showing the relative values of the four Hendrickson–Lattmanm
coefficients A, B, C and D.



taking the average of the two phases for map calculation in the

case of SAD and SIR onto a firm theoretical footing. It has the

added advantage of showing how to up-weight the structure

factors (high figure of merit) when the two possible phases are

close together and down-weight the structure factors (low

figure of merit) when the phases are further apart.

The probabilistic approach thus shows that maps with co-

efficients mFobs have the lowest noise. When the model is

‘nearly complete’, that is, the calculated structure factors are

good approximations to the true structure factors and the

phase error is low, then the map with coefficients mFobs shows

electron-density features that are present in the true structure

but missing from the model at half-weight. To boost the peaks

of the electron density at the places where the model is

incomplete, crystallographers and model-building algorithms

usually look at maps with coefficients 2mFobs � DFcalc (where

D is a value between 0 and 1; Read, 1986) during refinement.

These coefficients double the mFobs map (thus bringing the

unmodelled features up to full weight) and subtract one copy

of the model, but at the expense of doubling the noise. In cases

where the real scattering of the substructure is a significant

fraction of the true structure factor, 2mFobs�DFcalc maps may

also be useful in experimental phasing before model building

starts.

5. Handedness

Compounds such as proteins that are not superimposable on

their mirror images are chiral compounds. The chiral

arrangement of atoms is also known as the ‘absolute config-

uration’, the ‘enantiomer’ and, more colloquially, the ‘hand’ of

the compound. Naturally occurring proteins consist of l-

amino acids (i.e. left-handed amino acids) and right-handed �-

helices, but a small number of proteins consisting of d-amino

acids and left-handed �-helices have successfully been

synthesized and their structures solved (Pentelute et al., 2008).

The handedness of amino acids can be remembered using the

‘CORN law’ (Blundell & Johnson, 1976, pp. 18–19). The

amino acid can be thought of as a tetrahedron placed on a

horizontal surface with the C� atom at the body centre and its

H atom pointing upwards. Then, for l-amino acids the �-

carbonyl CO group, the side chain R group and the �-amino N

group are located clockwise around the base of the tetra-

hedron; for d-amino acids the CO-R-N groups are located

anticlockwise.

The handedness of the protein can be determined from the

diffraction pattern when there is significant anomalous scat-

tering and thus Friedel’s law is broken (Bijvoet, 1949, 1954). If

there is only normal scattering and the intensity of reflection

(h, k, l) is equal to the intensity of reflection (�h,�k,�l) then

the diffraction cannot show the hand: a structure and its

mirror image fit the data identically.

Tracking the hand of the protein through the diffraction

experiment is nontrivial. The diffraction from either hand can

be worked out from first principles using the Laue equations

and the 90� phase lag of the anomalous scattering with respect

to the incoming wave (Blundell & Johnson, 1976, p. 167;

James, 1957, pp. 35–36). This anomalous scattering is thus 90�

phase-advanced with respect to the normally scattered wave
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Figure 5
The difference between the ‘centroid’ and ‘most probable’ structure
factors. (a) Cut the centre out of a paper plate. (b) Balance the disc on a
pen. The centre of mass is at the centre. (c) Now clip two unequal weights
to the edge of the plate. (d) The balancing point is between the two
weights (analogous to the ‘centroid’ structure factor) and not on the
heaviest weight (analogous to the ‘most probable’ structure factor).

Figure 6
Phasing in both hands. The anomalous scattering component is always
advanced. For example, data collected at a wavelength of 1.7 Å from an
iron-containing protein will have a significant anomalous signal from both
the Fe atoms and the S atoms in methionine and cysteine. Non-anomalous
contributions to the scattering come from C, N and O atoms. The total
structure factor has an anomalous component that is not perpendicular to
the normal scattering component, leading to an anomalous difference in
the structure factors for F+ and F�. Only in one hand will the observed
direction of the anomalous difference match the calculated direction of
the difference (|F+| > |F�|).



(which is 180� out of phase with the incoming wave); the

anomalous structure factor is thus drawn 90� anticlockwise (i.e

advanced) from the normally scattering component on a

Harker diagram (Fig. 6). The coordinate system for the atoms

(x, y, z) and the coordinate system for the reciprocal lattice

(h, k, l) are both conventionally right-handed. There is a tricky

step at the stage of the Fourier transform used to generate the

electron density. Crystallographers use the forward Fourier

transform to calculate structure factors and the inverse

Fourier transform to calculate electron density. The inverse

Fourier transform uses (�x, �y, �z), which is a change-of-

hand operation. If all these operations are kept track of

correctly, then the Friedel differences will show l-amino acids

for naturally occurring proteins.

Unfortunately, the Friedel diffraction information that can

determine the hand is lost when initially determining the

substructure by Patterson methods or so-called ‘direct

methods’. These methods only use the magnitude of the

anomalous difference |F +
� F –|. As we shall see, it is the

direction of the anomalous difference that is important in

determining the hand, i.e. whether F + > F� or vice versa. In

addition, initial substructures found by substructure-location

programs contain only one type of atom and so the calculated

structure factors do not have a Friedel difference (see

discussion below). Therefore, the hand of the initial

substructure is arbitrary; both sets of sites satisfy the anom-

alous differences (whether through Patterson or ‘direct

methods’) equally well. Part of the process of the diffraction

experiment is to find which hand of the substructure is correct,

i.e. is consistent with l-amino acids. (Note that if a partial

molecular-replacement solution is used as the initial

substructure then the hand is correct by virtue of the mole-

cular-replacement model having the correct hand.)

For nonchiral space groups (except for I41, I4122 and I4132),

the substructure is converted to its other hand by the inversion

operation through the origin (x, y, z)!(�x, �y, �z). For

chiral space groups, in addition to inverting the coordinates of

the substructure through the origin, the space group must also

be changed to its chiral partner (Table 1). For the three non-

chiral space groups I41, I4122 and I4132 the other hand of sites

is not obtained using simple inversion through the origin.

These space groups are exceptions because they ‘should’ have

chiral pairs (I43, I4322 and I4332, respectively); however, the

crystallographic symmetry of these space groups (in particular,

the body centring) generates a 43 screw from the 41 screw

operation (and vice versa). Thus, the chiral partners for these

three space groups that ‘should’ exist are not distinct space

groups. By convention (International Tables for Crystallo-

graphy, 2002), the space groups are defined with a 41 screw

axis and so only space groups I41, I4122 and I4132 ‘exist’.

Because of this convention, inverting the substructure requires

the inversion operation through the origin (x, y, z)!(�x, �y,

�z) followed by shifting the sites in the unit cell to position

them around the alternate screw symmetry axis. Alternatively,

in these three space groups the change-of-hand operation can

be considered to be an inversion through a point that is not the

origin.

The inverse hand of the substructure gives different Harker

diagrams for SAD and SIR phasing (see Figs. 2 and 4 in Wang

et al., 2007) and electron density with different features. For

SIR, the other hand gives a Harker diagram reflected through

the real axis of the Argand diagram. The other phase gives the

mirror-image density. Density-modification methods that do

not involve model building give equally good statistics in both

hands; only by model building can the correct hand be iden-

tified. For SAD, the other hand gives a Harker diagram

reflected through the imaginary axis of the Argand diagram. If

the contribution from the real scattering from the substructure

is neglected, the other phase gives the mirror-image density in

negative (peaks become holes). Density modification is better

in the correct hand and the hand can be determined before

model building from the density-modification statistics.

Under certain circumstances (that is, if the substructure has

special properties) the hand can be found with anomalous

differences even without density modification. To understand

this, consider the case at the end of refinement when there is a

good model for the structure (the ‘substructure’ is almost the

‘true’ structure). If there are anomalous differences, then

there are anomalously scattering atoms in the model and the

calculated structure factors have a Friedel difference between

F +
calc and F�calc, i.e. F +

calc 6¼ F�calc (Fig. 6). For example, in a case

with a perfect model and perfect data, if hand A has F +
calc = 42

and F�calc = 39 so that F +
calc > F�calc, then hand B will have F +

calc =

39 and F�calc = 42 so that F +
calc < F�calc. Only in one hand will

F +
calc and F�calc match the observed values, e.g. if F +

obs = 42 and

F�obs = 39 then hand A would be correct. In the ideal case, the

matching of the Friedel difference would be true for all

reflections. With imperfect data and an imperfect model, one

hand will be more successful in predicting the direction of the

observed anomalous difference (F +
obs > F�obs or vice versa) over
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Table 1
Changing the hand of substructure sites.

For nonchiral space groups the other hand of the heavy-atom sites is found by
the operation (x, y, z)!(�x,�y,�z), except for three space groups (I41, I4122
and I4132) where there is also a change of origin. For the chiral space
groups the change of hand of the heavy-atom sites with the operation
(x, y, z)!(�x, �y, �z) is accompanied by a change of space group to the
other chiral form.

System Chiral Nonchiral

Triclinic P1
Monoclinic P2, P21, C2
Orthorhombic P222, P2221, P21212, P2122, C222,

C2221, I222, I212121, F222
Tetragonal P41:P43 P4, P41, I4, I41†

P4122:P4322 P422, P4212, P422, P4212, I422,
I4122‡

Trigonal P31:P32 P3, R3
P3112:P3212 P312, P321, R32
P3122:P3222

Hexagonal P61:P65 P6, P63

P62:P64

P6122:P6522 P622, P6322
P6222:P6422

Cubic P23, F23, I23, P213, I213
P4132:P4332 P432, P4232, F432, I432, I4132§

† For I41 the origin is shifted to (1
2, 0, 0). ‡ For I4122 the origin is shifted to

(1
2, 0, 1

4). § For I4132 the origin is shifted to (1
4,

1
4,

1
4).



all the reflections and this statistical bias will indicate the

correct hand. Therefore, it is possible to discover the hand

from the anomalous differences alone (i.e. without inspecting

the electron density) whenever the structure factors calculated

from the substructure have Friedel differences. Unfortunately,

this is not the case if the substructure consists of only one type

of anomalous scatterer. For example, if the substructure

consists of only the selenium sites of a selenomethionine

protein then the substructure cannot predict the hand. (As an

aside, a real crystal consisting of a single type of anomalous

scatterer also has no Friedel difference; diffraction from

crystals of mineral selenium does not have a Friedel differ-

ence.) For the calculated structure factors to have a Friedel

difference, the substructure must have more than one scat-

tering type, at least one of which must be a significant

anomalous scatterer (Fig. 6). (More exactly, the ratio of the

normal and the anomalous components of all the structure

factors of the atoms in the substructure must not all be the

same, so that the anomalous component of the calculated

structure factor is not perpendicular to the normal scattering.)

Thus, with SIR and MIR, and any number of scatterers, the

parameters of the model need only be refined with the sub-

structure in one hand; the other hand can be phased using the

refined parameters. The correct hand is found by inspecting

the density (i.e. by model building, finding which hand of

the peptide or nucleotide fits the electron density). For any

experimental phasing method that includes an anomalous

difference (e.g. SAD, SIRAS, MAD and MIRAS), if there

is only one type of (anomalous) scatterer in the substructure

then only one hand need be refined (however, if both hands

are refined it is unlikely that the phasing statistics will be

identical, simply because of different rounding errors in the

computations). The other hand can be phased from the refined

parameters from the first hand and density-modification

statistics can be used to determine the correct hand. If there

are two or more types of scatterer (one of which must have

significant anomalous scattering) in the substructure then the

substructure parameters must be refined in both hands. The

correct hand can be determined from the phasing statistics,

since one hand will fit the observed direction of the anomalous

differences in the data better than the other hand.

Other methods have been used for determining the hand.

Blundell & Johnson (1976) suggest two ways of obtaining the

hand by SIRAS. The first method (p. 181) is to calculate the

imaginary part of the anomalous difference Fourier for phases

obtained using the isomorphous information only (i.e. SIR). If

the hand is incorrect then ‘the Fourier gives rise to negative

holes at loci which are related by inversion through the origin

to the anomalous scatterer.’ This is equivalent to looking at

the SIRAS-phased electron density and finding mirror-image

density in negative electron density, but is easier to identify by

eye (the only method available in 1976) as the imaginary map

is less noisy than the real map. The second SIRAS method

(p. 182) involves calculating the phases twice ‘by combining

isomorphous and anomalous scattering data once for each

heavy-atom configuration’ and then inspecting the density for

‘recognisable features’. If more than one isomorphous deri-

vative is available then Blundell & Johnson (1976) suggest

(p. 182 and 375; see also x9.4 of Drenth, 1994) that the hand is

distinguished by using the two phase sets in isomorphous

difference Fourier syntheses to find the location of the heavy

atoms in the second derivative. The correct hand then ‘should

give phases leading to the largest peak’ in the difference

Fourier because the density at the heavy-atom locations ‘will

be reinforced when the anomalous scattering information is

included with the correct hand and diminished when the hand

is wrong’. These two methods are equivalent to using density-

modification statistics, as they involve inspecting electron

density to find the better of the two maps.

6. Centrosymmetric sites

Occasionally (but more often than one would like) the

distribution of anomalous or heavy atoms in the substructure

is centrosymmetric. If the space group is P1, then a sub-

structure of one or two identical atoms will always be centro-

symmetric. Atoms on special positions are often centrosym-

metric (for example, the two Zn atoms in 2Zn insulin on the

threefold axis of space group R3; Blundell et al., 1972). Other

unfortunate distributions of atoms in combination with the

space-group symmetry may also be centrosymmetric. When

the sites are centrosymmetric, structure solution is more

difficult.

Centrosymmetric substructures in SAD and SIR result in

electron-density maps with very different properties to those

calculated with noncentrosymmetric substructures. Recall that

SAD and SIR give a phase ambiguity and that an electron-

density map calculated with the average of the two possible

phases is the superposition of the true electron density and

‘noise’. In SIR the ‘noise’ is the mirror image of the true

electron density convoluted with the Fourier transform of

exp(2i’sub), where ’sub are the phases of the substructure. This

map looks random for a noncentrosymmetric substructure. In

SAD the ‘noise’ is the negative inverse of the true electron

density convoluted with the Fourier transform of exp(2i’sub),

which also looks random for a noncentrosymmetric sub-

structure. However, if the substructure is centrosymmetric

then all the substructure phases are either 0 or � and thus

exp(2i’sub) = 1 and the ‘noise’ map does not look random. The

SIR map becomes a superposition of the true electron density

with its mirror-image density and the SAD map becomes the

superposition of the true electron density with its mirror-

image density in negative. Note that these maps have the same

form as the maps calculated using the two hands of the sub-

structure (as expected, since the centrosymmetric substructure

can be thought of as having ‘both hands at the same time’).

Interpreting the maps thus becomes much more difficult as

there are features above the noise level that are not attribu-

table to the true electron density.

It is often not immediately obvious that a substructure is

centrosymmetric. A simple geometrical approach to the

problem (i.e. inspecting the coordinates) will find atoms that

are related by inversion through the origin. For exact centro-

symmetry, all atoms must have a centrosymmetric partner.
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Since it is the scattering from the atoms that is the issue,

another condition of exact centrosymmetry is that the B

factors and occupancies of the atoms at positions inverted

through the origin must be identical. However, it is highly

unlikely that all the atomic parameters will be exactly centro-

symmetric and the more the centrosymmetry is broken the less

difficult structure solution will be. The disadvantage of the

simple geometric approach is that it is unable to quantify how

difficult a pseudo-centrosymmetric arrangement will make

structure solution or how difficult structure solution will be

when only a subset of the sites is centrosymmetric. The phase-

o-phrenia algorithm (Grosse-Kunstleve & Adams, 2003b) goes

to the heart of the problem and in effect looks at how closely

the substructure phases are clustered around 0 and �. In order

to avoid problems with the three space groups in which the

centre of inversion is not at the origin (in which case the

phases are � apart but not 0 and �) the algorithm actually

looks at how closely the Fourier transform of exp(2i’sub)

resembles a delta function (since the Fourier transform of a

constant value is a delta function). The phase-o-phrenia plot

for one randomly placed atom in P1 generates a ‘�-function’

plot clearly showing the centrosymmetry of this substructure.

Conversely, four randomly placed atoms in P31 generate a

‘flat’ plot and therefore are not centrosymmetric. The phase-o-

phrenia algorithm also shows that some maps will be more

difficult to interpret than others even if the substructure is not

centrosymmetric. For example, one randomly placed atom in

P3 gives a phase-o-phrenia plot that is close to that of a

�-function, because the substructure has P�66 symmetry with a

mirror plane passing through the atom.

If the substructure for the reference structure has centro-

symmetry (or pseudosymmetry) then difference Fourier maps

for other derivatives will also have this higher symmetry, since

the centrosymmetry (or pseudosymmetry) is encoded in the

phases. Difference Fourier maps calculated with these phases

will show fallacious high peaks which can be mistaken for real

atoms. To avoid this problem, only one peak should be

selected from the difference Fourier in the first instance and

the computation of the phases should be repeated with the

additional site. In this way, new sites will be consistent with

one choice of hand. However, in our experience it can be very

difficult to break the centrosymmetry by only adding one site

in a new derivative at a time and it can be better to find the

sites in the new derivative independently and then use this

derivative as the reference for locating the substructure in

other derivatives.

7. Twinning

Twinning (of the merohedral or pseudo-merohedral type;

Parsons, 2003) makes experimental phasing particularly diffi-

cult. The problems lie both in finding an initial substructure

and interpreting the (twinned) electron density. Those crystals

where structure solution has been successful were phased by

either ignoring the twinning entirely (if the twin fraction � was

very low) or using the technique of ‘detwinning’ the data

(i.e. estimating the untwinned intensities from the observed

structure-factor intensities). Twinned protein structures have

been solved using a range of experimental phasing methods:

SIR (Declercq & Evrard, 2001), MIR (Terwisscha van Schel-

tinga et al., 2001), MIRAS (Ban et al., 2000) and MAD

(Rudolph et al., 2003; Dauter, 2003). Structure solution by

experimental phasing is possible even when there are more

than two components of the twinning (Barends et al., 2005).

Unfortunately, the detwinning method is only applicable when

the twin fraction is not too close to 0.5, because as the twin

fraction increases errors in the estimation of the detwinned

intensities rise dramatically [the variances are proportional to

the term (1 � 2�)�2]. Because of the errors introduced by the

detwinning, successful phasing requires that errors from other

sources be reduced as much as possible; success generally

requires better measured data with stronger anomalous and/or

isomorphous signals than would be required for untwinned

crystals. To minimize the errors from the detwinning, structure

determination invariably involves screening many native and

derivative crystals in order to find those with the lowest twin

fractions.

A theoretical framework which does not rely on detwinning

the intensities has been described for MIR phasing of (two-

component) twinned data in the general case, including

perfectly twinned data (Yeates & Rees, 1987). This method

can be visualized as extending the two-dimensional Harker

diagram into four dimensions, with the Harker circles

becoming four-dimensional hyper-spheres. Four derivatives

are necessary to uniquely determine the phase rather than two

for conventional MIR.

In our experience with the Phaser software (McCoy et al.,

2007), it is common to solve structures of high or perfect twins

by molecular replacement (although the template structure

needs to represent the target structure more accurately than

for nontwinned crystals) and so an alternative approach could

be to solve (or find in the database) the structure of a related

protein for use as a template for molecular-replacement trials.

Once there is a molecular-replacement solution, even if it is

not good enough to enable model building and refinement, we

have found that log-likelihood gradient map completion (see

Appendix A) can succeed in finding the anomalous scatterers

from twinned SAD data, which can then be used to improve

the phases.

8. Conclusion

The development of automated pipelines (Adams et al., 2002,

2004; Brunzelle et al., 2003; Lamzin & Perrakis, 2000; Lamzin

et al., 2000; Panjikar et al., 2005; Pape & Schneider, 2004; Snell

et al., 2004, Vonrhein et al., 2007) means that, at least in

straightforward cases, it is possible to build an atomic model of

a protein structure using experimental phasing without the

need for manual intervention. In these pipelines, problems

such as hand determination are carried out silently without the

need for users to even know that the problem exists. However,

pathologies such as centrosymmetry and twinning will require

manual intervention for the foreseeable future and in these

cases it is vitally important to be aware of the potential pitfalls,
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since the outcome of even a simple misstep can be catastrophic

(Chang et al., 2006).

APPENDIX A
Combined real–imaginary SAD LLG maps

Crystallographers have long appreciated the relationship

between the derivative of the target function (generally least-

squares in the early days) and the coefficients for a map

showing how to improve the model (e.g. weighted difference

maps, as discussed by Cochran, 1948). With the replacement of

least-squares targets by more powerful likelihood functions,

the associated log-likelihood gradient (LLG) maps have

proven to be more effective than traditional difference maps

in highlighting areas for improvement in the model, such as

adding new sites for experimental phasing (de La Fortelle &

Bricogne, 1997).

When anomalous scattering is present, Friedel’s law breaks

down for the observed and calculated structure factors and

thus also for the derivatives with respect to the calculated

structure factors. As a result, an LLG map computed from the

derivatives of the log-likelihood target with respect to the

calculated structure factors will be a complex-valued function,

showing where both real and imaginary scattering should be

added to the model to improve the agreement with the data.

The real and imaginary components can be inspected as

separate residual maps to detect new sites (de La Fortelle &

Bricogne, 1997).

However, we wished to compute maps that identify new

sites for particular anomalous scatterers, taking into account

the identity of the anomalous scatterer and its characteristic

ratio of real and imaginary scattering contributions. We felt

that such a map would have two advantages. Firstly, it would

integrate the information from both the real and imaginary

components and thus reduce the effects of noise. Secondly,

it would allow us to distinguish between different types of

anomalous scatterer when there is more than one type present

in a crystal.

The SAD likelihood target is expressed in terms of H+ and

H�*, where H�* is the complex conjugate of the structure

factor for the minus hand. If U is a structure factor repre-

senting the Fourier transform of the occupancies of a parti-

cular anomalous scatterer with the real contribution to its

scattering factor given by f = f0 + f 0 and the imaginary

contribution given by f 00, then the change in H+ and H�*

introduced by a change in U can be expressed as

@Hþ ¼ ðf þ if 00Þ@U

@H�� ¼ ðf � if 00Þ@U: ð2Þ

We can express these structure factors in terms of their real

(A) and imaginary (B) parts,

Hþ ¼ AþH þ iBþH

H� ¼ A�H þ iB�H

U ¼ AU þ iBU ð3Þ

and then define the changes in the real and imaginary parts of

the calculated structure factors as

@AþH ¼ f@AU � f 00@BU

@A�H ¼ f@AU þ f 00@BU

@BþH ¼ f 00@AU þ f@BU

@B�H ¼ �f 00@AU þ f 00@BU : ð4Þ

If the log-likelihood function is denoted by L, an LLG map

showing the location of anomalous scatterers can be computed

using the coefficients

@L
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þ i
@L
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: ð5Þ
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The combined real and imaginary SAD LLG maps rely

on good estimates of f 00, which in Phaser are obtained by

refinement.

Note that a map computed using f = 1 and f 00 = 0 will

correspond to the real part of a complex-valued LLG map

computed from the derivatives with respect to the calculated

structure factors and that an LLG map computed using f = 0

and f 00 = 1 will correspond to the imaginary part of that map. It

can be seen from this that the SAD LLG map computed by

Phaser (McCoy et al., 2007) gives an appropriately weighted

combination of those two components of the complex-valued

map. Another way to think of the SAD LLG map is that it is

a complex correlation function correlating the complex LLG

map with the complex density of a particular anomalous

scatterer as a function of translation.

The SAD LLG map will show peaks that are smeared out

by the atomic displacements, so we have tested the effect of

sharpening, in which the average displacements given by the

Wilson B factor are removed. In a variety of tests, sharpening

sometimes improved the ability of the maps to detect minor

sites and never degraded the results. The use of sharpening is

the default in Phaser.

A1. Iterative completion

SAD LLG maps show where the likelihood function would

like to see changes in the anomalous or heavy-atom model but

cannot do anything about changing the model in the current

substructure-refinement cycle because there is not (yet) an

atom (or other amenable scattering parameter) available for

which the scattering can be changed. Adding scattering at

peak locations in the SAD LLG maps (and removing scat-

tering from holes) increases the log-likelihood of the model.
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SAD LLG maps can thus be used to build up (‘complete’) the

phasing substructure before beginning any model building

that uses stereochemical restraints. This usually requires

several iterations, because improvements in the substructure

model enhance the sensitivity of the SAD LLG maps to

finding minor sites. The algorithm that is iterated until the

substructure is stable (converges) in Phaser is detailed below.

A1.1. Analysis of SAD LLG maps. For each scattering type

(and corresponding refined f 00) a combined real–imaginary

SAD LLG map is calculated as follows.

(i) Selection. Peaks and holes with a Z score greater than 6

(default) in the SAD LLG map are selected. To account for

particularly noisy maps, peaks with a Z score less than that

of the deepest hole are also excluded. (Peaks with Z scores

greater than 6 but less than the Z score of the deepest hole

may indeed represent true features, but if this is the case the

peaks will appear in SAD LLG maps in subsequent cycles of

the iterative structure completion and exclusion of a peak by

this criterion will only result in an increase in the number of

cycles to convergence.)

(ii) Clustering. Peaks and holes are clustered within the

separation distance. By default, the separation distance is the

maximum of a short bonding distance (1 Å) and the optical

resolution of the data (which is equivalent to 71.5% of the

high-resolution limit of the data), although the value can also

be input by the user. Clustering ensures that atoms will be

added with some stereochemical plausibility (in the absence of

true bonding criteria).

(iii) B swapping. Peaks or holes that are close to atoms of

the current substructure with isotropic B factors are used to

flag these atoms for anisotropic B-factor refinement.

(iv) Resurrection. Peaks that are close to atoms of the

current substructure that have been rejected in previous cycles

(see xA1.2 below) are used to resurrect the previously rejected

atoms.

(v) Potential new sites. Peaks that are not used for either B

swapping or resurrection are stored for use in defining new

atomic sites in site editing (see xA1.2). The Z score of the peak

is also stored.

These five steps are repeated for each scattering type (atom

type, f 00) to be considered for substructure completion. Many

peaks will be common to all of the SAD LLG maps; however,

their relative weights (Z scores) will differ. In order to avoid

adding the same site more than once and to select the most

probable scattering type, the peaks representing potential new

sites from all the SAD LLG maps are clustered (within the

separation distance). The peak with the highest Z score within

each cluster is added as a new site (i.e. the position and the

scattering type of the peak with the highest Z score is used).

The scattering type may be altered in a later iteration. Initial

values of the occupancy and isotropic B factor are taken from

their average values for that scattering type already present in

the substructure, if applicable; otherwise, the occupancy is set

to the expected occupancy and the B factor is set to the Wilson

B factor. The expected occupancy is 0.9, since there is often

incomplete incorporation of anomalous scatterers (the data

are on an approximate absolute scale).

A1.2. Site editing. Independent of the SAD LLG map

calculation, the refined substructure (i.e. excluding unrefined

newly added sites from analysis of the SAD LLG map) is also

edited as follows.

(i) Rejection. The current substructure is searched to find

atoms that have refined to very low occupancy. The low-

occupancy atoms are flagged as ‘rejected’ (but not deleted). If

there is a peak near a rejected atom in subsequent cycles then

the atom can be resurrected (see xA1.1). An atom that has

been rejected and subsequently resurrected cannot be rejected

for a second time: this prevents cycling (infinite loops) of the

structure-completion algorithm.

(ii) Change scattering type. The current substructure is also

searched to find atoms that have refined to occupancies that

deviate greatly from the expected occupancy. These atoms are

likely to have been assigned the wrong scattering type, since

occupancy and scattering type are highly correlated in SAD

refinement. The scattering type is changed to the one that

brings the occupancy closest to the expected value. Only those

atoms that have been added in previous cycles of structure

completion (and not those of the original input substructure)

may have their scattering type altered.

A2. Tests

In tests on structures with more than one type of anomalous

scatterer (e.g. proteins with iron–sulfur clusters, heavy-atom

derivatives with a significant anomalous contribution from

intrinsic S atoms, metalloproteins with different metal sites),

the SAD LLG maps are considerably better than random at

distinguishing between the different types of sites, i.e. the map

computed for the correct anomalous scatterer tends to give a

higher peak (measured by root-mean-square deviations above

the mean) than the maps for other anomalous scatterers and

the assignment of atom type is usually reliable. When the

distinction between atom types is weak, either because of

noise in the data or because the ratios of real to imaginary

scattering are similar, errors in identifying the correct atom

type have little impact on phase quality. Although the

distinction between scattering types in the SAD LLG maps

(where more than one anomalous scatterer is present) has

only a small impact on the overall phase quality, the ability to

reliably distinguish the atom types makes it possible to iden-

tify the correct hand from the phasing statistics (without the

need for density modification) and is very helpful when

substructure sites are used as chemical markers in model

building.

A3. Example

The properties of the SAD LLG maps can be illustrated

with a test case from a protein containing more than one type

of anomalous scatterer. The structure of Escherichia coli

nitrate reductase A was solved using a combination of Fe-

MAD and isomorphous replacement (Bertero et al., 2003).

This protein, which has a molecular weight of about 220 kDa,

contains 19 Fe atoms in five Fe–S clusters, two Fe atoms in
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haem groups, an Mo atom, 118 S atoms (from the Fe–S clusters

as well as from cysteine and methionine residues) and five P

atoms. We carried out tests using only the peak Fe data, which

were collected at a wavelength of 1.7325 Å to a resolution of

2.5 Å. The program HySS (Grosse-Kunstleve & Adams,

2003a) finds a solution with 11 Fe sites; several of these are

actually superatoms representing an entire Fe–S cluster and

three are false sites.

When LLG completion is carried out, looking for three

atom types (Fe, Mo and S; P was considered to be indis-

tinguishable from S at this wavelength), the final substructure

model contains 57 atoms. Of the 49 atoms added to the model

in five cycles of completion, 33 are correctly identified from

their relative peak heights in the LLG maps, while 16 are

misidentified. The reassignment algorithm, which changes the

identity of atoms that refine to unusually low or high occu-

pancies, reduces the number of wrongly identified atoms in the

final substructure model to six. In the course of refinement and

completion all of the superatoms are resolved into individual

atomic sites.

Because Friedel’s law is not obeyed for the substructure

structure factors when there is a mixture of types of anom-

alous scatterers, refinement and completion can distinguish

between the two possible choices of hand. With the incorrect

choice of hand a substructure of only 43 atoms is found and

the log-likelihood score is significantly lower than for the

correct hand.

The electron-density map obtained with phases from the

substructure after completion is of sufficient quality that ARP/

wARP (Cohen et al., 2004) and phenix.autobuild (Terwilliger

et al., 2008) can each trace about 70% of the chain. If the

protein model from ARP/wARP is used as a ‘substructure’ to

re-initiate the determination of the anomalous scatterers, the

substructure-completion algorithm now finds 105 sites, of

which 92 are correctly identified. Such an iterative procedure

enhances the phase information and the eventual complete-

ness of the model.
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