
Appendix A: Data completeness

The fraction of relps in a given constant-resolution sphere that are lost in the blind 

region lie in two polar caps intersecting the rotation axis (z).  That is, all points in 

reciprocal space that share a common d-spacing form a sphere, and as this constant-

resolution sphere is “spun” about the z-axis, most points will cross the Ewald sphere 

twice, some not at all (near the axis), and a few will intersect it only once.  These single-

hit relps “graze” the Ewald sphere, and form the border between the two-hit and zero-hit 

regions.  The “grazing relp” border is a circle, and it is illustrative to consider moving the 

relp circle in Fig. 1 up the z axis until it intersects the Ewald sphere at just one point.  At 

this grazing point, Bragg’s Law:

(A1) θd λ sin2=

is satisfied, and so the height (h) of this circle above the z = 0 plane must be the radius of 

the Ewald sphere λ* times the sin of the take-off angle of the spot (2θ):

(A2) h = λ*sin 2θ

Now, the area in either of the blind regions is a section of the surface of a sphere that is 

cut off by a plane at z = ±h.  This shape is known as a spherical cap, and the area of a 

spherical cap from a sphere of radius r that was cut at height h is given by:

(A3) Acap = 2π r (r-h)

There are two such caps, and we are interested in the area left over after they are cut off 

(observable relps) relative to the original area of the sphere:
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Since a sphere of relps with constant d-spacing “d” has radius 1/d = d*, we may 

substitute r = d* and Equation (A2) into Equation (A4):
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Substituting in Equation (A1) for λ:
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Appendix B: Average Lorentz-polarization factor

Taking the product of Equations (2a) and (3) from the text and, for the moment, 

simplifying Equation (3) by considering the case of an unpolarized beam (  = 0), we 

have:
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Assuming the X-ray beam is perpendicular to the rotation axis, the polar coordinate ζ is 

simply the height of the relp circle pictured in Fig. 1 above the z = 0 plane if the length of 

the relp vector is normalized to unit wavelength.  That is, if we define the angle κ 

between the relp vector and the z = 0 plane, we have:
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d
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  The angle κ is 0° when the relp circle lies exactly in the z = 0 plane, and it is 90° when 

the relp lies perfectly along the z-axis and the relp circle has vanished.  Note that 

Equation (B1) is undefined at this position, and so care must be taken when approaching 
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this singularity.  The value of ζ for which the relp circle just grazes the Ewald sphere at 

one point is when the denominator of (B1) becomes zero, or:

(B3) κθ  ζθ sinsin22sin ==   or  θκ cossin =

Since we wish to avoid the singularity here, we shall set our limit of integration at a small 

value short of it and use the symbol η because it is reminiscent of mosaic spread.

(B4) ( ) ηθκ −= cosarcsinmax

Substituting B2 into B1 we obtain:
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 Computing the average value of LP for all spots at a fixed resolution is 

equivalent to integrating LP over the accessible surface of the constant-resolution sphere, 

and then dividing by the accessible surface area:
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The denominator of (B6) was solved as Equation (A6), and is simply half of the 

accessible surface area of the constant-resolution sphere, which has radius λ/d or 2sinθ, 

and accessible fraction fobs = cosθ:
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equator

cossin22 2=∫

Now, all the points that lie on or very near the relp circle pictured in Fig. 1 will have the 

same L and P factors, so we must “weight” the LP of each contact point on the Ewald 

sphere surface by the circumference of the relp circle.  That is, we define the area element 
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in Equation (B6) with a re-casting of Equation (A3) where we can compute the area of 

the constant-resolution sphere above the relp circle in Fig. 1 by substituting the radius of 

this sphere (λ/d = 2sinθ) for “r” and ζ from Equation (B2) for “h”:

(B8) ( ) ( ) κθθκθθθπAcap sinsin8sin8sinsin2sin2sin22 22 π−π=−=  

Differentiating with respect to κ, we obtain the area element:

(B9) dκκθdA  cos sin8- 2π=

Substituting (B5), (B7) and (B9) into (B6) we have:
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We now employ the indefinite integral:
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And substitute this into the definite integral: 
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Clearly, as we approach the limit:
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Substituting this back into Equation (B10b) we obtain the average LP factor:
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Multiplying 〈LP〉  by fobs = cosθ, we obtain:
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This result was validated numerically by calculating discrete spot positions, L and P for 

hypothetical data sets using randomized wavelengths, unit cells and crystal orientations 

and then dividing the predictions into resolution bins and averaging the value of the 

product LP and the fraction of all possible relps that appeared in the bin (not shown). 

These simulations were repeated using the full expression for the polarization factor with 

different values for the degree of polarization ( ), but the numerical results were 

identical to  = 0 (not shown), and we saw no need to repeat the derivation using the full 

polarization factor expression.

Appendix C: Spot-fading integral

Here we assume that the average spot intensity (photons/spot) at a given resolution fades 

exponentially, but begin with a slightly different representation of Equation (13) than in 

the text:
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where:

〈i〉 (t) - average intensity rate (photons/spot/s) at time t (after absorbing a dose DR·t)

〈i〉 (0) - average intensity rate (photons/spot/s) from an undamaged crystal

ln(2) - natural log of two (~0.7)

DR - dose deposited per unit time (Dreso/t) or dose rate (MGy/s)

H - Howells et al. (2009) criterion (10 MGy/Å)

d - d-spacing (Å)

t - accumulated exposure time (seconds)

Note the use of angle brackets 〈 〉  to denote the average in a given resolution bin, 

and that here we use the term “intensity rate” to refer to a spot intensity (photons/spot) 

divided by the exposure time used to record it (seconds).  This is because accurate spot 

fading experiments must record the decay curve by sampling the same spots over and 

over again using per-observation exposure times that are short relative to the damage 

limit (TDL).  That is, when sampling a changing signal, the sampling time must be short 

enough so that the signal does not decay appreciably during a given sample.  This is 

equivalent to requiring that the photons/spot per unit time (intensity rate) is constant for a 

given exposure.  So, effectively, spot fading experiments measure changes in intensity 

rate.  Here we use a lower case “i” to differentiate an intensity rate (photons/spot/s) from 

an integrated spot intensity (photons/spot), which we will continue to denote with a 

capital “I”, and also replace the dose Dreso with DR× t so that DR represents the time-

invariant factors of dose in Equation (11). Since DR, d, H, and 〈i〉 (0) do not change with 

time, the integral of Equation (C1) is simply the integral of an exponential decay:
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Where:

〈I〉 DL - accumulated spot intensity at the damage limit (photons/spot)

TDL - accumulated exposure time at the damage limit (seconds)

DR - dose rate (MGy/s)

H - Howells et al. (2009) criterion (10 MGy/Å)

d - d-spacing in Å

Since we are not considering the accumulation of background counts, TDL could be 

chosen to be infinity and 〈I〉 DL would then truly account for every last photon that will 

fall into a spot before it fades away completely, but in practice the damage limit is 

usually declared at a point where 〈i〉 (TDL) is not zero, as discussed in §2.11.  To account 

for potentially variable damage limit criteria, we define the “decay fraction” at the end of 

data collection as:
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Since TDL is now defined in terms of fdecayed, substituting Equation (C3) into Equation (C2) 

simplifies it to the expression:

(C4) ( )
 DR

dH
iI decayedDL )2ln(
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where:

〈I〉 DL - average accumulated spot intensity (photons/spot) at the damage limit

〈i〉 (0) - average intensity rate (photons/spot/s) from an undamaged crystal

DR - dose rate (MGy/s)
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H - Howells et al. (2009) criterion (10 MGy/Å)

d - d-spacing in Å

Although it may appear that 〈I〉 DL (photons/spot) depends on the dose rate (DR), the time 

component of DR (MGy/s) is actually cancelled by the time component of the initial 

intensity rate 〈i〉 (0) (photons/spot/s).  Consider a hypothetical data collection strategy 

where a very large number of observations are made of each spot, and the whole data set 

is actually a series of “mini” data sets with exposure time tDS.  As long as tDS is very small 

when compared to the damage limit (TDL), the spot intensities (photons/spot) in the first 

“mini” data set (IND) will be “undamaged” and given by Darwin’s formula (Equation (1)). 

The exact IND measured will be proportional to tDS, as can easily be seen by substituting 

ωeff from Equation (10) into Equation (1):
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where:

IND - spot intensity (photons/spot) from the first “mini” data set measured quickly 

enough to have suffered no radiation damage effects.

It is readily apparent that the quotient IND/tDS (photons/spot/s) is an intensity rate, as is the 

average value 〈I〉 ND/tDS.  Formally, the right hand side of Equation (C5) is independent 

of time, but as the reality of radiation damage progresses the same tDS will record spot 

intensities that fade (on average) according to the exponential decay of Equation (C1). 

Therefore, the starting value of this decay curve is 〈I〉 ND/tDS, and we may substitute this 

intensity rate for 〈i〉 (0) in the above Equations:
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  Now the sum of all the equivalent observations in all the mini data sets up to a given 

accumulated exposure time is given by Equation (C2), and even if a single data set were 

collected with total exposure time TDL, the average number of photons that eventually 

contribute to a spot (〈I〉 DL) is simply the integral of the decay over time (Equation (C4)).

We now substitute 〈I〉 ND/tDS for 〈i〉 (0) in Equation (C4), as well as Den/t from 

Equation (11) for the dose rate (DR), convert the photon energy into wavelength (qeEph = 

hc/λ = J/photon), apply the Nave-Hill fraction fNH from Equation (12) and scale to 

convenient units.  We arrive at Equation (14) from the main text:
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Where:

〈I〉 DL - maximum average spot intensity due to radiation damage limits (photons/spot)

〈I〉 ND - average spot intensity (photons/spot) observed using an undamaged crystal and a 

very short exposure: tDS

H - Howells’s criterion (10 MGy/Å)

0.1 - converting λ from Å to m, ρ from g/cm3 to kg/m3 and MGy to Gy

λ - X-ray wavelength (Å)

h - Planck’s constant (6.626 x 10-34 J∙s)

c - speed of light (299792458 m/s)

R - radius of the spherical crystal (m)

ρ - density of crystal (~1.2 g/cm3)

Ibeam - incident beam intensity (photons/s/m2)

μen - mass energy-absorption coefficient of sphere material (m-1)

fNH - the Nave-Hill fraction
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