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This paper presents an overview of how to run the CCP4

programs for data reduction (SCALA, POINTLESS and

CTRUNCATE) through the CCP4 graphical interface ccp4i

and points out some issues that need to be considered,

together with a few examples. It covers determination of

the point-group symmetry of the diffraction data (the Laue

group), which is required for the subsequent scaling step,

examination of systematic absences, which in many cases will

allow inference of the space group, putting multiple data sets

on a common indexing system when there are alternatives, the

scaling step itself, which produces a large set of data-quality

indicators, estimation of |F | from intensity and finally

examination of intensity statistics to detect crystal pathologies

such as twinning. An appendix outlines the scoring schemes

used by the program POINTLESS to assign probabilities to

possible Laue and space groups.
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1. Introduction

Estimates of integrated intensities from X-ray diffraction

images are not generally suitable for immediate use in struc-

ture determination. Theoretically, the measured intensity Ih of

a reflection h is proportional to the square of the underlying

structure factor |Fh|2, which is the quantity that we want, with

an associated measurement error, but systematic effects of

the diffraction experiment break this proportionality. Such

systematic effects include changes in the beam intensity,

changes in the exposed volume of the crystal, radiation

damage, bad areas of the detector and physical obstruction of

the detector (e.g. by the backstop or cryostream). If data from

different crystals (or different sweeps of the same crystal) are

being merged, corrections must also be applied for changes in

exposure time and rotation rate. In order to infer |Fh|2 from Ih,

we need to put the measured intensities on the same scale

by modelling the experiment and inverting its effects. This is

generally performed in a scaling process that makes the data

internally consistent by adjusting the scaling model to mini-

mize the difference between symmetry-related observations.

This process requires us to know the point-group symmetry of

the diffraction pattern, so we need to determine this symmetry

prior to scaling. The scaling process produces an estimate of

the intensity of each unique reflection by averaging over all of

the corrected intensities, together with an estimate of its error

�(Ih). The final stage in data reduction is estimation of the

structure amplitude |Fh| from the intensity, which is approxi-

mately Ih
1/2 (but with a skewing factor for intensities that are

below or close to background noise, e.g. ‘negative’ intensities);

at the same time, the intensity statistics can be examined to

detect pathologies such as twinning.
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This paper presents a brief overview of how to run CCP4

programs for data reduction through the CCP4 graphical

interface ccp4i and points out some issues that need to be

considered. No attempt is made to be comprehensive nor to

provide full references for everything. Automated pipelines

such as xia2 (Winter, 2010) are often useful and generally

work well, but sometimes in difficult cases finer control is

needed. In the current version of ccp4i (CCP4 release 6.1.3)

the ‘Data Reduction’ module contains two major relevant

tasks: ‘Find or Match Laue Group’, which determines the

crystal symmetry, and ‘Scale and Merge Intensities’, which

outputs a file containing averaged structure amplitudes.

Future GUI versions may combine these steps into a simpli-

fied interface. Much of the advice given here is also present in

the CCP4 wiki (http://www.ccp4wiki.org/).

2. Space-group determination

The true space group is only a hypothesis until the structure

has been solved, since it can be hard to distinguish between

exact crystallographic symmetry and approximate noncrys-

tallographic symmetry. However, it is useful to find the likely

symmetry early on in the structure-determination pipeline,

since it is required for scaling and indeed may affect the data-

collection strategy. The program POINTLESS (Evans, 2006)

examines the symmetry of the diffraction pattern and scores

the possible crystallographic symmetry. Indexing in the inte-

gration program (e.g. MOSFLM) only indicates the lattice

symmetry, i.e. the geometry of the lattice giving constraints on

the cell dimensions (e.g. � = � = � = 90� for an orthorhombic

lattice), but such relationships can arise accidentally and

may not reflect the true symmetry. For example, a primitive

hexagonal lattice may belong to point groups 3, 321, 312, 6, 622

or indeed lower symmetry (C222, 2 or 1). A rotational axis of

symmetry produces identical true intensities for reflections

related by that axis, so examination of the observed symmetry

in the diffraction pattern allows us to determine the likely

point group and hence the Laue group (a point group with

added Friedel symmetry) and the Patterson group (with any

lattice centring): note that the Patterson group is labelled

‘Laue group’ in the output from POINTLESS. Translational

symmetry operators that define the space group (e.g. the

distinction between a pure dyad and a screw dyad) are only

visible in the observed diffraction pattern as systematic

absences, along the principal axes for screws, and these are less

reliable indicators since there are relatively few axial reflec-

tions in a full three-dimensional data set and some of these

may be unrecorded.

The protocol for determination of space group in POINT-

LESS is as follows.

(i) From the unit-cell dimensions and lattice centring, find

the highest compatible lattice symmetry within some toler-

ance, ignoring any input symmetry information.

(ii) Score each potential rotational symmetry element

belonging to the lattice symmetry using all pairs of observa-

tions related by that element.

(iii) Score combinations of symmetry elements for all

possible subgroups of the lattice-symmetry group (Laue or

Patterson groups).

(iv) Score possible space groups from axial systematic

absences (the space group is not needed for scaling but is

required later for structure solution).

(v) Scores for rotational symmetry operations are based on

correlation coefficients rather than R factors, since they are

less dependent on the unknown scales. A probability is esti-

mated from the correlation coefficient, using equivalent-size

samples of unrelated observations to estimate the width of the

probability distribution (see Appendix A).

2.1. A simple example

POINTLESS may be run from the ‘Data Reduction’

module of ccp4i with the task ‘Find or Match Laue Group’ or

from the ‘QuickSymm’ option of the iMOSFLM interface

(Battye et al., 2011). Unless the space group is known from

previous crystals, the appropriate major option is ‘Determine

Laue group’. To use this, fill in the boxes for the title, the input

and output file names and the project, crystal and data-set

names (if not already set in MOSFLM). Table 1 shows the
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Figure 1
Plots from POINTLESS of axial reflections for the P212121 example shown in Table 1: (a) h00, (b) 0k0, (c) 00l. In each case I/�(I) alternates between
weak and strong for odd and even indices, respectively, indicating a 21 screw axis in each direction. With only three observations along the h00 axis,
assignment of a screw along a is far less certain than along b and c (see Table 1c). The plot of I0/�(I) (almost the same in this case) uses a modified value of
I, subtracting 2% of the neighbouring axial reflection to allow for possible contamination of weak reflections by a strong neighbour. All panels in Figs. 1–
5 are monochrome versions of plots from LOGGRAPH essentially as they appear from ccp4i.



results for a straightforward example in

space group P212121. Table 1(a) shows

the scores for the three possible dyad

axes in the orthorhombic lattice, all of

which are clearly present. Combining

these (Table 1b) shows that the Laue

group is mmm with a primitive lattice,

Patterson group Pmmm. Fourier

analysis of systematic absences along

the three principal axes shows that all

three have alternating strong (even) and

weak (odd) intensities (Fig. 1 and Table

1c), so are likely to be screw axes,

implying that the space group is P212121.

However, there are only three h00

reflections recorded along the a* axis, so

confidence in the space-group assign-

ment is not as high as the confidence in

the Laue-group assignment (Table 1d).

With so few observations along this axis,

it is impossible to be confident that

P212121 is the true space group rather

than P22121.

2.2. A pseudo-cubic example

Table 2 shows the scores for indivi-

dual symmetry elements for a pseudo-

cubic case with a ’ b ’ c. It is clear that

only the orthorhombic symmetry

elements are present: these are the high-

scoring elements marked ‘***’. Neither

the fourfolds characteristic of tetragonal

groups nor the body-diagonal threefolds

(along 111 etc.) characteristic of cubic

groups are present. The joint prob-

ability score for the Laue group Pmmm

is 0.989. The suggested solution (not

shown) interchanges k and l to make

a < b < c, which is the IUCr standard

convention for a primitive ortho-

rhombic cell (Mighell, 2002). Scoring

the possible symmetry elements sepa-

rately may allow the program and the

user to distinguish between true

crystallographic symmetry and pseudo-

symmetry (i.e. a noncrystallographic

rotation close to a potential crystal-

lographic rotation), although either the

program or the user may be fooled

by twinning or if the pseudo-symmetry

is very close to crystallographic. If

the data were integrated with cell

constraints from a higher symmetry

than is present, integration should be

repeated with the looser cell constraints

for the correct symmetry class.
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Table 1
Tables output by POINTLESS for a simple example in space group P212121.

(a) Scores for each symmetry element. Rmeas =
P

hkl½N=ðN � 1Þ�1=2 P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ;

CC is the linear correlation coefficient between normalized intensities E2; Z-CC = CC/�(CC), where
�(CC) is estimated from random uncorrelated observations.

Likelihood Z-CC CC No. Rmeas Symmetry Operator

0.948 9.54 0.95 12122 0.097 Identity
0.942 9.44 0.94 18346 0.121 *** Twofold l (001) {�h �k +l}
0.949 9.58 0.96 30259 0.097 *** Twofold h (100) {+h �k �l}
0.912 9.15 0.92 17427 0.120 *** Twofold k (010) {�h +k �l}

(b) Scores for possible subgroups of the lattice group Pmmm, giving a clear indication that Pmmm is the
correct Laue symmetry. CC� is the correlation coefficient for all lattice symmetry elements not present in
the Laue group; Zcc� = CC�/�(CC�); NetZcc = Zcc+� Zcc�; Likelihood is a probability estimate based
on CC and CC� (see Appendix A); Delta is the angular deviation between the test lattice symmetry and
the lattice symmetry implied by the Laue group.

Laue group Likelihood NetZcc Zcc+ Zcc� CC CC� Rmeas R� Delta Reindex

Pmmm 0.985*** 9.35 9.35 0.00 0.94 0.00 0.11 0.00 0.0 [h, k, l]
P12/m1 0.006 0.38 9.56 9.18 0.96 0.92 0.10 0.12 0.0 [�k, �h, �l]
P12/m1 0.005 �0.01 9.38 9.39 0.94 0.94 0.11 0.11 0.0 [�h, �l, �k]
P12/m1 0.003 �0.13 9.31 9.44 0.93 0.94 0.11 0.11 0.0 [h, k, l]
P�1 0.000 0.22 9.54 9.32 0.95 0.93 0.10 0.11 0.0 [h, k, l]

(c) Fourier analysis of axial reflections for systematic absences, indicating the presence of 21 screws along
each principal axis. Peak height is the value at 1/2 the cell in Fourier space relative to the origin.

Axis No. Peak height SD Probability Condition

Screw axis 21 [a] 3 1.000 0.296 0.889** h00: h = 2n
Screw axis 21 [b] 26 1.000 0.142 0.971*** 0k0: k = 2n
Screw axis 21 [c] 46 0.997 0.097 0.986*** 00l: l = 2n

(d) Summary of the best solution. The ‘confidence’ scores are derived from the total probability of the best
solution pbest and that for the next best solution pnext: confidence = [pbest(pbest � pnext)]1/2.

Best solution Space group P212121

Reindex operator [h, k, l]
Laue-group probability 0.985
Systematic absence probability 0.851
Total probability 0.838
Space-group confidence 0.784
Laue-group confidence 0.982

Table 2
Scores for potential individual symmetry operators for a pseudo-cubic example.

Items are as in Table 1. The unit-cell parameters are a = 79.15, b = 81.33, c = 81.15 Å, � = � = � = 90�, i.e.
a’ b’ c. Only the orthorhombic symmetry operators are present (marked ***) and the true space group
is P212121.

Likelihood Z-CC CC No. Rmeas Symmetry Operator

0.952 9.68 0.97 14733 0.074 Identity
0.943 9.50 0.95 12928 0.163 *** Twofold l (0 0 1) {�h, �k, l}
0.948 9.59 0.96 12542 0.098 *** Twofold k (0 1 0) {�h, k, �l}
0.944 9.52 0.95 17039 0.140 *** Twofold h (1 0 0) {h, �k, �l}
0.051 0.55 0.05 13921 0.689 Twofold (1 �1 0) {�k, �h, �l}
0.057 0.12 0.01 16647 0.734 Twofold (0 1 �1) {�h, �l, �k}
0.069 2.87 0.29 10540 0.470 Twofold (1 0 �1) {�l, �k, �h}
0.051 0.62 0.06 12229 0.690 Twofold (1 1 0) {k, h, �l}
0.065 2.68 0.27 12829 0.484 Twofold (1 0 1) {l, �k, h}
0.058 0.10 0.01 17477 0.736 Twofold (0 1 1) {�h, l, k}
0.059 0.06 0.01 24869 0.824 Threefold (1 �1 �1) {�k, l, �h} {�l, �h, k}
0.059 0.04 0.00 27024 0.814 Threefold (1 1 �1) {�l, h, �k} {k, �l, �h}
0.058 0.08 0.01 22508 0.782 Threefold (1 �1 1) {l, �h, �k} {�k, �l, h}
0.060 0.02 0.00 23818 0.824 Threefold (1 1 1) {k, l, h} {l, h, k}
0.051 0.58 0.06 25338 0.635 Fourfold l (0 0 1) {�k, h, l} {k, �h, l}
0.062 2.49 0.25 23516 0.476 Fourfold k (0 1 0) {l, k, �h} {�l, k, h}
0.065 �0.15 �0.02 26383 0.739 Fourfold h (1 0 0) {h, l, �k} {h, �l, k}



2.3. Alternative indexing

If the true point group is lower symmetry than the lattice

group, alternative valid but non-equivalent indexing schemes

are possible related by symmetry operators that are present in

the lattice group but not in the point group (note that these

are also the cases in which merohedral twinning is possible).

For example, in space group P3 (or P31) there are four

different schemes: (h, k, l), (�h, �k, l), (k, h, �l) or

(�k, �h, �l). Alternate indexing ambiguities may also arise

from special relationships between unit-cell parameters (e.g.

a = b in an orthorhombic system). For the first crystal (or part

data set) any indexing scheme may be chosen, but for subse-

quent ones autoindexing will randomly pick one setting which

may be inconsistent with the original choice. POINTLESS

can compare a new test data set with a previously processed

reference data set (from a merged or unmerged file) and

choose the most consistent option (option ‘Match index to

reference’ in ccp4i). In this option, the space group in the

reference file is assumed to be correct.

2.4. Combining multiple files and multiple wavelengths

Multiple files, e.g. from multiple runs of MOSFLM, can be

combined in POINTLESS using the ‘Add file’ button in ccp4i.

They may be combined into a single data set with the same

Project, Crystal and Dataset names (button ‘Assign to the

same data set as the previous file’) or assigned to different

data sets in the case of multiple-wavelength data. Note that

the data-set name is used in downstream programs to label

columns in the MTZ file, so should be short. Batch numbers

are automatically incremented by a multiple of 1000 if

necessary to make them unique across all files. If alternative

indexing schemes are possible in the lattice group determined

from the cell dimensions, then second and subsequent files

are compared with the previous ones in the same way as if

a reference file were given. Note that if the Laue group

symmetry of the first file is wrong this may lead to wrong

answers in some cases, so there is an option to determine the

Laue symmetry of the first file before reading the rest.

3. Scaling

Scaling tries to make symmetry-related and duplicate

measurements of a reflection equal by modelling the diffrac-

tion experiment, principally as a function of the incident and

diffracted beam directions in the crystal (Hamilton et al., 1965;

Fox & Holmes, 1966; Kabsch, 1988, 2010; Otwinowski et al.,

2003; Evans, 2006). This makes the data internally consistent,

assuming that the correct Laue group has been determined.

After scaling, the remaining differences between observations

can be analysed to give an indication of data quality, though

not necessarily of its absolute correctness. In the ccp4i inter-

face, the task ‘Scale and Merge Intensities’ runs SCALA to

scale and merge the multiple observations of the same unique

reflection, followed by CTRUNCATE to infer |F | from the

intensity I and optionally generate or copy a test set of

reflections for Rfree. The input file may be the output of

POINTLESS. The ccp4i task presents a large number of

options, but in most cases the defaults are suitable. If you

know that you have a significant anomalous scatterer in the

crystal, the the option to ‘Separate anomalous pairs for

merging statistics’ should be selected, since this allows for real

differences between Bijvoet-related reflections hkl and�h�k

�l (very small anomalous differences are probably treated

better without this option). Other useful options, after the first

run, include setting the high-resolution limit (after deciding on

the ‘true’ resolution, see below) and excluding some batches

or batch ranges (in the ‘Excluded Data’ tab).

3.1. Measures of internal consistency

The traditional measure of internal consistency is Rmerge

(also known as Rsym), which is defined as

Rmerge ¼
P

h

P
l

jIhl � hIhij
�P

h

P
l

hIhi ð1Þ

(i.e. summed over all observations l of reflection h), but this

has the disadvantage that it increases with the data multi-

plicity, even though the merged data are improved by aver-

aging more observations. An improvement is the multiplicity-

weighted Rmeas or Rr.i.m. (Diederichs & Karplus, 1997; Weiss &

Hilgenfeld, 1997; Weiss, 2001), which is defined as

Rmeas ¼ Rr:i:m: ¼
P

h

P
l

nh

nh � 1

� �1=2

jIhl � hIhij
�P

h

P
l

hIhi;

ð2Þ

where nh is the number of observations of reflection h [note

that in Evans (2006) the square-root was incorrectly omitted].

A related measure is the precision-indicating R factor, which

estimates the data quality after merging,

Rp:i:m: ¼
P

h

P
l

1

nh � 1

� �1=2

jIhl � hIhij
�P

h

P
l

hIhi: ð3Þ

After scaling, SCALA outputs a large number of statistics,

mostly presented as graphs, and a final summary table which

contains most of the data required for the traditional ‘Table 1’

(or perhaps Table S1) in a structural paper. Analyses against

‘batch number’, i.e. image number or time, are useful to check

for the effects of radiation damage and for bad batches (e.g.

blank images) or bad regions (Fig. 2). Individual blank or bad

images can be rejected in SCALA (see Figs. 2g and 2h), but if

there are bad regions it may be best to check the integration

process carefully. Decisions on where to cut back data to a

point where radiation damage is tolerable, or how best to

combine data from different crystals or sweeps, are more

complicated and tools to explore the best compromise

between damage and completeness are not yet well devel-

oped, although the program CHEF (Winter, 2009) used in xia2

provides a guide.

Analyses against resolution suggest whether a resolution

cutoff should be applied. The decision on the ‘real’ resolution

is not easy: ideally, we would determine the point at which

adding the next shell of data is not adding any statistically

significant information. The best cutoff point may depend on
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what the data are to be used for: experimental phasing tech-

niques work on amplitude differences, which are less accurate

than the amplitudes themselves. Useful guidelines are the

point at which hhIhi/�(hIhi)i [after merging and adjusting the

�(I) estimates] falls below about 2, where hIhl /�(Ihl)i (before

merging) falls below about 1, where the correlation coefficient

between random half-data-set estimates of hIhi falls below

about 0.5 or where hIi flattens out with respect to resolution;

Rmerge is not a very useful criterion. Fig. 3 shows an example in

which the cutoff was set to 3.2 Å using a combination of these

criteria. If the data are severely aniso-

tropic then these limits may be relaxed

to keep useful data in the best direction.

Analyses of consistency against

intensity are not generally useful, since

the statistics will always be worse for

weak data; however, Rmerge in the top

intensity bin should be small. Analysis

against intensity is useful in improving

estimates of �(I); see Appendix B.

3.2. Completeness

Data completeness is important,

preferably in all resolution shells,

although it may be less important at the

outer edge. James Holton (Advanced

Light Source, Lawrence Berkeley

National Laboratory, Berkeley,

California, USA) has produced a

series of instructive movies (http://

ucxray.berkeley.edu/~jamesh/movies/)

showing the degradation of map quality

with systematic incompleteness, such

as missing a wedge of data from an

incomplete rotation range or losing the

strongest reflections as detector over-

loads: random incompleteness (e.g.

from omitting an Rfree test set), on the

other hand, has little effect on maps.

The data-collection strategy should

always aim to collect a complete set of

data. Plots against resolution from

SCALA may show incompleteness at

low resolution owing to detector over-

loads (Fig. 4a), at high resolution owing

to integrating into the corners of a

square detector (Fig. 4b) or incomple-

teness of the anomalous data (Fig. 4c)

which will limit the quality of experi-

mental phasing. Fig. 4(d) shows a plot of

cumulative completeness against batch

number in an 84� sweep: note that 100%

completeness is not reached until the

end and that the anomalous complete-

ness lags behind the total completeness

by an amount that depends on the

symmetry. This plot is not yet imple-

mented in SCALA, but when it is it may

help in judging the trade-off between

completeness and radiation damage.
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Figure 2
Plots from SCALA against ‘batch’ (image) number (a–c) for a good case with little radiation
damage (see text) and (d–f) for a case with two crystals both suffering radiation damage. (a, d)
Mean scale [Mn(k)] and scale at � = 0� (0k); these diverge if the relative B factor is large. (b, e)
Relative B factor in the scaling; a large and declining negative value (e) indicates progressive
radiation damage. (c, f) Rmerge is roughly constant in the good case (c) but increases with radiation
damage (f). (g) A plot of Rmerge against batch shows a single outlier arising from a weak or blank
image: omitting this batch (h) removes this problem.



3.3. Outliers

Most data sets contain a small

proportion of measurements that are

just ‘wrong’ (from which no useful

information about the true intensity can

be extracted). These arise from various

causes, notably diffraction from ice

crystals or superfluous protein crystal

lattices (crystal clusters) that super-

imposes on a few (or, in bad cases,

many) of the reflections from the crystal

of interest. Detection of these intensity

outliers is reasonably reliable if the

multiplicity is high, but is not possible if

there are only one or two observations

(if two disagree, which one is correct?).

This is a good reason for collecting high-

multiplicity data. If SCALA is told that

there are anomalous differences then

the outlier check for discrepancies

between Bijvoet-related reflections I+

and I� uses a larger tolerance than that

used within the I+ or I� sets, depending

(rather crudely) on the average size of

the anomalous differences. The outlier-

rejection algorithm assumes that the

majority of symmetry-related observa-

tions of a reflection are correct: this may

fail for reflections behind the backstop,

so it is important that the backstop

shadow should be identified properly in

MOSFLM. SCALA produces a plot of

outliers in their position on the detector

(ROGUEPLOT file), which may show

outliers clustered around the ice rings or

around the backstop, in which case

these regions of the detector should be

masked out in MOSFLM. There is also

a list of outliers in the ROGUES file

which may be useful to understand the

rejects. The rejection limits are set as

multiples of the standard deviations and

can be altered by the user. When trying to use a weak

anomalous signal it may be useful to reduce the limits and

eliminate more outliers.

4. Detecting anomalous signals

A data set contains measurements of reflections from both

Bijvoet pairs I+(h k l) and I�(�h �k �l), which will be

systematically different if there is anomalous scattering. Fig. 5

shows some statistics from SCALA for a case with a very

strong anomalous signal and for one with a weak but still

useful signal. Figs. 5(a) and 5(e) show normal probability plots

(Howell & Smith, 1992) of �Ianom/�(�Ianom), where �Ianom =

I+
� I� is the Bijvoet difference: the central slope of this plot

will be >1 if the anomalous differences are on average greater

than their error. Another way of detecting a significant

anomalous signal is to compare the two estimates of �Ianom

from random half data sets, �I1 and �I2 (provided there are at

least two measurements of each, i.e. a multiplicity of roughly

4). Figs. 5(b) and 5(f) show the correlation coefficient between

�I1 and �I2 as a function of resolution: Fig. 5(f) shows little

statistically significance beyond about 4.5 Å resolution.

Figs. 5(c) and 5(g) show scatter plots of �I1 against �I2: this

plot is elongated along the diagonal if there is a large anom-

alous signal and this can be quantitated as the ‘r.m.s. corre-

lation ratio’, which is defined as (root-mean-square deviation

along the diagonal)/(root-mean-square deviation perpendi-

cular to the diagonal) and is shown as a function of resolution
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Figure 3
Plots from SCALA against resolution. A suitable resolution cutoff may be estimated from a plot of
hhIi/�(I)i, i.e. after averaging, where it falls below �2 or flattens out [top line in (a)] or from the
correlation coefficient between hIi for random halves of the observations.

Figure 4
Plots of data completeness against resolution and batch. (a) Incompleteness at low resolution owing
to detector overloads. (b) Incompleteness at high resolution owing to integrating into the corners of
a square detector. (c) Incompleteness of anomalous data. (d) Cumulative completeness against
batch (plot not yet available in SCALA).



in Figs. 5(d) and 5(h). The plots against resolution give a

suggestion of where the data might be cut for substructure

determination, but it is important to note that useful albeit

weak phase information extends well beyond the point at

which these statistics show a significant signal.

5. Estimation of amplitude |F| from intensity I

If we knew the true intensity J we could just take the square

root, |F| = J1/2. However, measured intensities have an error,

so a weak intensity may well be measured as negative (i.e.

below background); indeed, multiple measurements of a true

intensity of zero should be equally positive and negative. This

is one reason why when possible it is better to use I rather than

|F| in structure determination and refinement. The ‘best’ (most

likely) estimate of |F| is larger than I1/2 for weak intensities,

since we know |F| > 0, but |F| = I1/2 is a good estimate for

stronger intensities, roughly those with I > 3�(I). The

programs TRUNCATE and its newer version CTRUNCATE

estimate |F| from I and �(I) as

E½F; I; �ðIÞ� ¼
R1
0

J1=2p½I; J; �ðIÞ�pðJÞ dJ; ð4Þ

where the prior probability of the true intensity p(J) is esti-

mated from the average intensity in the same resolution range

(French & Wilson, 1978).

6. Intensity statistics and crystal pathologies

At the end stage of data reduction, after scaling and merging,

the distribution of intensities and its variation with resolution

can indicate problems with the data, notably twinning (see, for

example, Lebedev et al., 2006; Zwart et al., 2008). The simplest

expected intensity statistics as a function of resolution

s = sin�/� arise from assuming that atoms are randomly placed

in the unit cell, in which case hIi(s) = hFF*i(s) =
P

jg(j, s)2,

where g(j, s) is the scattering from the jth atom at resolution s.

This average intensity falls off with resolution mainly because

of atomic motions (B factors). If all atoms were equal and had

equal B factors, then hIi(s) = Cexp(�2Bs2) and the ‘Wilson

plot’ of log[hIi(s)] against s2 would be a straight line of slope

�2B. The Wilson plot for proteins shows peaks at �10 and

4 Å and a dip at �6 Å arising from the distribution of inter-

atomic spacings in polypeptides (fewer atoms 6 Å apart than

4 Å apart), but the slope at higher resolution does give

an indication of the average B factor and an unusual shape can

indicate a problem (e.g. hIi increasing at the outer limit,

spuriously large hIi owing to ice rings etc.). For detection of

crystal pathologies we are not so interested in resolution

dependence, so we can use normalized intensities Z = I/hIi(s)

’ |E|2 which are independent of resolution and should

ideally be corrected for anisotropy (as is performed in

CTRUNCATE). Two useful statistics on Z are plotted by

CTRUNCATE: the moments of Z as a function of resolution

and its cumulative distribution. While hZi(s) = 1.0 by defini-

tion, its second moment hZ2
i(s) (equivalent to the fourth

moment of E) is >1.0 and is larger if the distribution of Z is

wider. The ideal value of hE4
i is 2.0, but it will be smaller for

the narrower intensity distribution from a merohedral twin

(too few weak reflections), equal to 1.5 for a perfect twin and

larger if there are too many weak reflections, e.g. from a

noncrystallographic translation which leads to a whole class of

reflections being weak. The cumulative distribution plot of

N(z), the fraction of reflections with Z < z, against z will show

a characteristic sigmoidal shape if there are too few weak

reflections in the case of twinning. The most reliable test for

twinning seems to be the L test (Padilla & Yeates, 2003),

examining N(|L|), the cumulative value of |L|, where L = [I(h1)

� I(h2)]/[I(h1) + I(h2)] for pairs of reflections h1 and h2 close in

reciprocal space and unrelated by crystal symmetry. For

untwinned data N(|L|) = |L|, giving a diagonal plot, while for

twinned data N(|L|) > |L| and N(|L|) = |L|(3 � L2)/2 for a

perfect twin. This test seems to be largely unaffected

by anisotropy or translational noncrystallographic symmetry

which may affect tests on Z. The calculation of Z = I/hIi(s)

depends on using a suitable value for I/hIi(s) and noncrys-

tallographic translations or uncorrected anisotropy lead to the

use of an inappropriate value for hIi(s). These statistical tests

are all unweighted, so it may be better to exclude weak high-

resolution data or to examine the resolution dependence of,

for example, the moments of Z (or possibly L). It is also worth

noting that fewer weak reflections than expected may arise

from unresolved closely spaced spots along a long real-space

axis, so that weak reflections are contaminated by neigh-

bouring strong reflections, thus mimicking the effect of

twinning.

7. Summary: questions and decisions

In the process of data reduction, a number of decisions need to

be taken either by the programs or by the user. The main

questions and considerations are as follows.

(i) What is the point group or Laue group? This is usually

unambiguous, but pseudosymmetry may confuse the programs

and the user. Close examination of the scores for individual

symmetry elements from POINTLESS may suggest lower

symmetry groups to try.

(ii) What is the space group? Distinction between screw

axes and pure rotations from axial systematic absences is often

unreliable and it is generally a good idea to try all the likely

space groups (consistent with the Laue group) in the key

structure-solution step: either molecular-replacement searches

or substructure searches in experimental phasing. For

example, in a primitive orthorhombic system the eight possible

groups P2x2x2x should be tried. This has the added advantage

of providing some negative controls on the success of the

structure solution.

(iii) Is there radiation damage: should data collected after

the crystal has had a high dose of radiation be ignored

(possibly at the expense of resolution)? Cutting back data

from the end may reduce completeness and the optimum

trade-off is hard to choose.
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(iv) What is the best resolution

cutoff? An appropriate choice of

resolution cutoff is difficult and

sometimes seems to be performed

mainly to satisfy referees. On the

one hand, cutting back too far

risks excluding data that do

contain some useful information.

On the other hand, extending

the resolution further makes all

statistics look worse and may in

the end degrade maps. The choice

is perhaps not as important as is

sometimes thought: maps calcu-

lated with slightly different

resolution cutoffs are almost

indistinguishable.

(v) Is there an anomalous

signal detectable in the intensity

statistics? Note that a weak

anomalous signal may still be

useful even if it is not detectable

in the statistics. The statistics do

give a good guide to a suitable

resolution limit for location of the

substructure, but the whole reso-

lution range should be used in

phasing.

(vi) Are the data twinned?

Highly twinned data sets can be

solved by molecular replacement

and refined, but probably not

solved, by experimental phasing

methods. Partially twinned data

sets can often be solved by

ignoring the twinning and then

refined as a twin.

(vii) Is this data set better or

worse than those previously

collected? One of the best things

to do with a bad data set is to throw

it away in favour of a better one.

With modern synchrotrons, data
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Figure 5
Detection of anomalous signal. (a–d)
An example with a very strong anom-
alous signal, shown by (a) a large slope
of the normal probability plot of �I/
�(�I) values, (b) a large correlation
coefficient between two �I estimates
from random half-data sets, (c) a scatter
plot relating two half-data-set values of
�I/�(�I) and (d) the r.m.s. correlation
ratio derived from the scatter plot. (e–
h) The same plots for an example with a
weak but still useful anomalous signal.



collection is so fast that we usually have the freedom to collect

data from several equivalent crystals and choose the best.

In most cases the data-reduction process is straightforward,

but in difficult cases critical examination of the results may

make the difference between solving and not solving the

structure.

APPENDIX A
Scoring schemes for the program POINTLESS

POINTLESS is a program for scoring the consistency of a set

of unmerged diffraction intensities against the possible space

groups, given the unit cell and cell centring, in order to identify

the most probable space group. It will optionally handle

nonchiral space groups, but by default restricts its choices to

chiral groups. The scoring schemes used in POINTLESS for

determination of likely Laue groups and space groups have

changed somewhat from those described in Evans (2006). This

appendix outlines the main scoring algorithms used in the

current version (1.5.7 at the time of writing). Scoring uses the

correlation coefficient CC between normalized intensities Eh
2.

Normalization makes hEh
2
i = 1 over all resolution ranges. The

correlation coefficient is less sensitive to the fact that the

observations are not on a common scale than are ‘difference’

scores (i.e. those involving difference terms, such as Rmerge);

putting the observations on a common scale would require us

to know the symmetry that we are trying to determine. The

only correction to the intensities applied prior to scoring is

a simple linear time-dependent B factor, which is used as a

crude radiation-damage correction. It would be an improve-

ment to first perform some rough scaling in Laue group P1 to

remove gross scaling errors before symmetry determination

and this may be performed in the future.

The correlations are used to generate probabilities for the

presence and absence of each possible symmetry operation

and then combined to give the likelihood of each space group.

The space group with the maximum likelihood can then be

selected for data merging and structure solution.

A1. Scoring individual symmetry elements

The first stage of the algorithm implemented in POINT-

LESS is the identification of the highest lattice symmetry

compatible with the unit-cell parameters taken from the input

file or files, within a tolerance (the current default is 2� on unit-

cell angles and an equivalent tolerance on unit-cell lengths).

The symmetry information in the file is ignored, except for

lattice centring. A list of all rotational symmetry elements is

generated for this lattice and they are first scored individually

from the correlation coefficient CC on E2 between all pairs of

observations related by each putative symmetry operator S.

The likelihood of this crystallographic symmetry element

being present is then estimated. To do this, we want to take

into account (i) errors in CC, notably that arising from a small

number of observation pairs, and (ii) that the expected value

of CC if the symmetry element is not present E(CC; !S) may

be greater than 0, and possibly much greater, if pseudo-

symmetry is present: for example, CC = 0.6 probably does not

indicate that crystallographic symmetry is present.

A1.1. Estimation of r(CC) as a function of sample size. The

error in the correlation coefficient CC will be greater if there

are only a few pairs of observations. We can estimate the error

�(CC) using reflection pairs h1 and h2, choosing pairs which

are not related by potential symmetry but are at similar

resolutions. From a list of these pairs we can select a number

of groups of size N for values of N of 3 and upwards: typically a

large number of these pairs is available, so we have a large

number of such groups, and we use N up to a maximum of 200

[beyond this point �(CC) is small and may be set to a suitable

minimum value]. For each N we calculate the average and

r.m.s. CC over all groups hCCi and �(CC) = r.m.s(CC).

Empirically, �(CC) is well approximated as linearly propor-

tional to 1/N1/2, i.e. �(CC) = CCsigFac/N1/2, where the constant

CCsigFac is obtained from a linear fit of �(CC) to 1/N1/2.

A1.2. Estimation of E(CC; S). Because of errors in the data,

the expected value of CC if the symmetry element is present

E(CC; S) will be less than the ideal value of 1.0. We have two

ways of estimating E(CC; S).

(i) Given the list of all Eh
2 and �(Eh

2), it follows from the

definitions of CC and variance that E(CC; S) = var(Eh
2)/

{var(Eh
2) + var[�2(Eh

2)]} = ECCtrue [this expression can be

derived by propagating data pairs with errors (x + �x, y + �y)

through the expression for the correlation coefficient].

(ii) Most data sets contain some observation pairs related

by Friedel symmetry (�h, �k, �l) or sometimes the identity

operator (if more than 180� of data were collected) and

CCidentity for these also estimates E(CC; S).

An average of these estimates is used, with somewhat

arbitrary weights depending on the number of observation

pairs in CCidentity,

CCtrue ¼ ðw1ECCtrue þ w2CCidentityÞ=ðw1 þ w2Þ;

w1 ¼ 1=�2
1; �1 ¼ maxð0:05;CCsigFac=2001=2Þ;

w2 ¼ 1=�2
2; �2 ¼ maxð0:05;CCsigFac=N

1=2
identityÞ: ð5Þ

Here, the limits � � 0.05 and N = 200 (which is unrelated to

the previous N = 200 in xA1.1) are used to avoid extreme

weights.

A1.3. Estimation of likelihood of each symmetry element.
For each symmetry element k, we have CCk calculated from

Nk pairs, with an estimated error �(CCk) = min(0.1, CCsigFac/

Nk
1/2): here, � � 0.1 avoids very small values which would arise

from large Nk. We then want to estimate the likelihood of this

symmetry element being present, p(Sk; CCk) = p(CCk; Sk)/

[p(CCk; Sk) + p(CCk; !Sk)]. The denominator here is a

normalization factor to ensure that the probabilities sum to 1,

since the individual estimates are unnormalized. In modelling

these probabilities p(CC), Cauchy–Lorentz distributions are

used truncated at �1 and +1, since they seem to fit real data

better than Gaussian distributions owing to the larger tails of

the Lorentzian distribution (Fig. 6a). The distribution of CC if

the symmetry is present p(CC; S) can be modelled as a trun-

cated Lorentzian centred on CCtrue with a width parameter

� = �(CCk). Modelling the distribution of CC if the symmetry
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is not present p(CC; !S) is more complicated, as we need to

consider the possibility that the ‘true’ expected CC is >0 owing

to noncrystallographic pseudo-symmetry. We can model the

unknown expected CC = 	 with a probability distribution

p(	) which will decline from a high value when CC = 0 to zero

when CC = 1. We can then integrate over possible values of 	
from 0 to 1 (to integrate out the unknown variable 	),

pðCC; !SÞ ¼
R1
0

pðCC;	Þpð	Þ d	=
R1
0

pð	Þ d	; ð6Þ

where p(CC; 	) is centred on 	 with a width parameter

� = �(CCk). Various model distributions for p(	) were tried

on a number of examples and p(	) = (1� 	2)1/2 seems to work

well, even though this implies that there is a high probability

of obtaining CC > 0 in the absence of symmetry. The effect of

including the p(	) term on p(Sk; CCk) is to raise the value of

CC required to conclude that an individual symmetry

element is more likely present than not (Fig. 6b), i.e. where

p(S; CC) > 0.5.

A2. Scoring Laue groups

All possible point groups compatible with the lattice group

(subgroups) can be generated from pairs of lattice group

symmetry operators and completing the group (including the

identity operator). Each subgroup is characterized by a list of

symmetry elements k which are either present or absent. For

each symmetry element we have p(CCk; Sk) and p(CCk; !Sk)

calculated as above. We can then calculate for each Laue

group (point group) Lj a likelihood p(Lj) =
Q

k pðCCk; ejkÞ,

where ejk is either Sk or !Sk as appropriate, normalizing the

likelihood such that
P

j pðLjÞ = 1, assuming that the Lj are

independent.

A3. Scoring systematic absences

To detect screw axes (and glide

planes in nonchiral space groups),

reflections in relevant zones (axes or

planes) are analysed for systematic

absences. This is performed by one-

dimensional Fourier analysis of I0/�(I)

along the axes of interest, where I0 is

corrected approximately for contam-

ination by neighbouring strong reflec-

tions by subtracting a small fraction (by

default 0.02) of the neighbours (for axial

reflections). Then, for example, a 21

screw axis along c should give zero

intensities for the 00l reflections with

odd l, so the one-dimensional Fourier

transform of I0/�(I) should have a peak

at x = 1/2 in Fourier space the same

height as the peak at the origin. This

characteristic of screw axes arises from

Fourier theory, where it can be shown

that the Fourier transform along c*

arising from the whole three-dimensional structure is

equivalent to the Fourier transform of the one-dimensional

projection of the structure onto the c axis in real space; thus,

when a screw axis is present the projection effectively halves

the repeat distance (cell dimension) in real space, which

corresponds to a doubling of the spacing of reflections in

reciprocal space. Often, there are only a few measurements

along an axis, so an estimate of the error in the Fourier value

v(x), �(v), is estimated from the distribution of a series of

‘control’ Fourier transforms using the same axial indices as the

observed data but with their I0/�(I) values replaced by values

from non-axial reflections at similar resolution. We can denote

a general rotation or screw axis as Mq, where q = 0 for a pure

rotation and q < M. In the case of a twofold axis, for example,

we need to consider 20 and 21 (i.e. M = 2, q = 0 or 1). We

estimate the probability of Mq using a Lorentzian distribution

in a similar way to that used above (xA1.3): the ideal value of

v(x) is eq (where the origin peak has been normalized to 1).

For example, for a 21 screw axis eq = 1 and for 20 eq = 0. We can

write the deviation of the observed value v from the ideal eq as

d = |v � eq|. p[q; d, �(v)] is then given by a Lorentzian centred

on eq (= 1.0), width parameter � = �(v), and truncated at 0 and

+1. For the probability of a pure twofold rotation, q = 0, eq = 0,

d = v, we want as before to allow for the possibility that the

‘ideal’ value of v(1/2) is greater than 0 owing to pseudo-

symmetry, i.e.

pðq; dÞ ¼
R1
0

pðq; dÞpðdÞ dd=
R1
0

pðdÞ dd; ð7Þ

where p(d) is currently modelled as (1 � d)2 and p(q; d) is a

Lorentzian as above centred on 0. This analysis works for

twofolds and threfolds; for fourfolds and sixfolds the analysis

is more complicated since we need to consider several non-

independent Fourier points at 1/4 and 1/2 for a fourfold and at

research papers

Acta Cryst. (2011). D67, 282–292 Evans � Data reduction 291

Figure 6
Probability functions for correlation coefficients. (a) Comparison of Gaussian (dashed line) and
Cauchy–Lorentzian (solid line) distributions with mean 1.0 and width parameter (� or �) = 0.2; the
Lorentzian distribution has more extensive tails. (b) The effect on the modelled distribution p(CC)
of �(CC) and including p(	) = (1 � 	2)1/2 (dotted line). A larger value of �(CC) broadens the
distribution (thin lines, � = 0.5; thick lines, � = 0.1). The effect of including the p(	) term (solid lines)
is to shift the point at which p(CC) rises above 0.5 to a larger value of CC than without it (dashed
lines).



1/6, 1/3 and 1/2 for a sixfold. In these cases we can replace the

‘ideal’ values eq by a vector of ideals eq and compare this with

the observed vector of values v, calculating a probability based

on the ‘distance’ between these vectors d = |v� eq|, integrating

and truncating at dmax instead of +1 as above. Finally, we need

to normalize the probabilities such that
P

q piðq; vÞ = 1 for the

ith axis or zone. For glide planes, which may be present in

nonchiral space groups, the procedure is similar, with a Fourier

analysis along the glide direction.

A4. Combining the scores

For the most likely Laue group or groups, all space groups

in that Laue group are considered for their compatibility with

the possible systematic absences. For example, in the primitive

orthorhombic system we have three axes which may be 2q

axes, q = 0 or 1, with eight possible space groups P2q12q22q3.

The systematic absence probability of each space group is

given by multiplying the probabilities for the three axesQ
i piðqiÞ, i = 1, 2, 3. This is then combined with the probability

of the Laue group from xA2 to give a total probability for the

space group. In some cases there may be no unique solution:

(i) there may be missing data, as it is common to miss a whole

axis if it is aligned along the rotation spindle, and (ii) some

pairs of space groups cannot be distinguished by systematic

absences, including enantiomorphic pairs (e.g. P31 and P32)

and the pairs I222/I212121 and I23/I213 (further ambiguities

are possible in nonchiral space groups). If data for an axis are

missing then the space group cannot be determined, so only

the Laue group is accepted. For indistinguishable pairs the

accepted space group is set to one of them; in future versions

the ‘status’ of the space-group information will be stored in

the MTZ file, i.e. whether just the Laue group is known or the

full space group or an enantiomorphic pair. A ‘confidence’

score is calculated from the top two distinguishable possibi-

lities as [pbest(pbest � pnext)]1/2 both for the Laue-group score

and the total space-group score.

APPENDIX B
Adjustment of r(I) estimates in SCALA

Integration programs such as MOSFLM provide an estimate

of the error in the intensity �(I) calculated from a combination

of several factors including photon counting statistics (Poisson

statistics). This is almost always an underestimate of the real

error, so after scaling SCALA (like other programs) inflates

the �(I) estimates so that on average they explain the residual

differences between symmetry-related observations. This

‘correction’ is a function of intensity and uses three para-

meters with different values for fully recorded and summed

partial observations and for each ‘run’ of contiguous batch

numbers,

�0ðIhlÞ ¼ Sdfac½�2
ðIhlÞ þ SdB � hIhi þ ðSdadd � hIhiÞ

2
�
1=2: ð8Þ:

The overall multiplier Sdfac at least in part compensates for

the error in the ‘gain’ relating detector pixel values to photon

counts and the Sdadd term allows for various instrument

instabilities which lead to an error proportional to intensity.

The SdB term has no obvious physical meaning, but its

inclusion seems to improve the fit to real data. If the standard

deviations �(Ihl) were correct, then the normalized deviations

�hl = (Ihl � hI
0
hi)/[�2(Ihl) � �

2I0hi]
1/2 (sometimes denoted 
hl),

where hI0hi is the mean of all observations of reflection h except

Ihl, should have a mean of 0.0 and a standard deviation of 1.0.

SCALA adjusts the parameters to try to make r.m.s.(�) = 1.0

in all intensity bins by minimizing the residualP
j wj½1� r:m:s:ð�Þ�2 summed over all intensity bins j using a

simplex minimization. The optimum weighting scheme for this

residual is not clear; at present the weight used is Nj
1/2, where

Nj is the number of observations in the jth intensity bin. An

initial Sdfac value is estimated by normal probability analysis

as described in xA3 of Evans (2006). Following this correction

the plot of r.m.s.(�) against hIi output by SCALA should be

flat and �1.

I thank Graeme Winter, Harry Powell and especially Airlie

McCoy for helpful comments.
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