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Two developments in the process of automated protein model

building in the Buccaneer software are presented. A general-

purpose library for protein fragments of arbitrary size is

described, with a highly optimized search method allowing the

use of a larger database than in previous work. The problem of

assembling an autobuilt model into complete chains is

discussed. This involves the assembly of disconnected chain

fragments into complete molecules and the use of the database

of protein fragments in improving the model completeness.

Assembly of fragments into molecules is a standard step in

existing model-building software, but the methods have not

received detailed discussion in the literature.
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1. Background

This paper outlines two developments of relevance to the

problem of automated protein model building. The initial

application of these techniques in the Buccaneer model-

building software is presented. The developments are the

following.

(i) An efficiently searchable database of protein fragments

which may be used for diverse purposes including the con-

version of a C� trace to main-chain models, the building of

missing loops and termini, and the correction of residue

insertions and deletions. This library has been implemented

for loop building in the Coot software (Emsley et al., 2010), as

well as for applications in automated model building described

here.

(ii) The automated ‘tidying’ of a fragmentary autobuilt

protein model, with the aim of reducing the manual effort

required to complete the model. Automated model building

sometimes leads to models which may consist of multiple

disconnected fragments, especially at low resolution or when

disordered loop regions are not visible in the electron density.

These fragments must be assembled into one or more mole-

cules, which may involve the application of symmetry opera-

tors and cell translations to some of the fragments. In the case

of noncrystallographic symmetry (NCS) it is also necessary to

assign the fragments to different copies of the molecule.

1.1. Use of databases of protein fragments

The use of databases of protein fragments in the determi-

nation and validation of atomic models is well established in

both manual and automated model building.

Kleywegt & Jones (1996) described the use of pentapeptide

fragments in the program OOPS for the validation of the

protein backbone trace.

Jones & Thirup (1986) used a database of pentapeptides

in the reconstruction of a main-chain trace from C� positions
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alone, although Payne (1993) claimed better results using

force fields. Esnouf (1997) used a library of 16 533 hexapep-

tide fragments in the same way to obtain main-chain coordi-

nates which matched the refined X-ray structure to a high

precision.

Terwilliger (2003) employed a library of tripeptide frag-

ments to extend existing fragments of protein chain by adding

additional residues at the N- or C-terminus and Sheldrick

(2010) used tripeptides to find initial protein fragments.

Joosten et al. (2008) used a library of pentapeptide fragments

in a similar way to build missing loops in protein structures.

The development described here recognizes the success of

these methods and describes an efficient method for building

and searching a library of protein fragments of arbitrary

length (bounded by some chosen value). The database is

optimized for very fast homology searches, allowing the use of

a much larger database than in previous work. The use of a

much larger database also provides the potential to perform

searches restricted by residue-type filters without compro-

mising coverage beyond usefulness.

1.2. Tidying and completion of protein models

Automated model building typically produces as an inter-

mediate result a set of protein-chain fragments, some of which

may have been docked into the protein sequence. Ultimately,

these will need to be assembled into molecules. A problem

arises in determining how the fragments are connected to one

another. When protein molecules are tightly packed together

the molecule boundaries may not be obvious, and as a result

it is possible to link fragments which belong not to the same

chain but rather to symmetry-related chains. If the density for

the link is obvious, this step may be performed by automatic or

manual model completion; however, this is often not the case.

The problem becomes more complex in the case of non-

crystallographic symmetry (NCS). In this case, the fragments

must also be assigned to the correct NCS copy of the molecule,

as well as to the correct asymmetric unit. The problem may be

further complicated in the case of hetero-oligomers (protein

complexes consisting of heterogeneous sequences), although

this is mainly a bookkeeping problem.

Various approaches to model tidying are implemented in

the main automated model-building packages [for example,

ARP/wARP (Cohen et al., 2004) and RESOLVE (Terwilliger,

2003)], with the details varying according to the model-

building algorithm and the information available; however,

the details have not been widely discussed in the literature.

This paper presents the model-tidying steps implemented in

the Buccaneer software from v.1.5.

1.3. The Buccaneer software for automated model building

The Buccaneer software is used for automatic interpretation

of protein structures on the basis of the electron-density map

(Cowtan, 2006, 2008). The calculation is iterative, with

multiple cycles of model building interspersed with occasional

refinement steps using REFMAC (Murshudov et al., 2011) to

improve the current model and electron density. The steps

involved in a single cycle of model building are as follows.

(i) Finding C� atoms: candidate C� positions are located by

searching the electron density for likely features.

(ii) Growing fragments: the candidate C� atoms (or input

chains) are grown by adding residues at either end, guided by

the electron density and constrained by the allowed region of

the Ramachandran plot.

(iii) Joining fragments: overlapping fragments are joined to

make longer chains.

(iv) Linking fragments: nearby N- and C-termini are

examined to see if they can be linked by inserting one or two

additional residues.

(v) Assigning sequence: likelihood comparison between the

density of each residue in the work structure and the density

from residues of a reference structure is used to identify

the likelihood of each residue being of a particular type.

Comparison with the known sequence allows longer fragments

to be matched to the sequence.

(vi) Correcting sequence: insertions and deletions in the

model as identified in the sequence-assignment step are

corrected by rebuilding to add or delete a residue where

possible.

(vii) Filtering fragments in poor density: residues which

have not been docked into the sequence and are in poor

density are removed.

(viii) Building NCS: any NCS relationships found in the

model are used to extend existing chains by combining all of

the NCS-related chains.

(ix) Pruning fragments: fragments which provide incon-

sistent interpretations of the same electron density are

examined. The poorer fragment is removed.

(x) Rebuilding: side-chain atoms and carbonyl O atoms are

added to the model.

This process is repeated over several cycles. In subsequent

cycles, the finding step is modified to preferentially find C�

positions which are in regions where no model is present.

2. A library of protein fragments

A library of real protein fragments of arbitrary length is

employed to interpret electron density and correct existing

models. In order to support both interactive graphical model

building (where users demand immediate feedback) and

automated model building (where many possible model

fragments may need to be tested to match a particular

feature), it must be possible to perform a very rapid search for

fragments containing some atoms matching a desired confor-

mation.

For example, to fit the main-chain atoms to a C� trace

the database will be searched for all six-peptide fragments

matching the C� atoms surrounding a particular peptide bond

and the peptide atoms from the middle peptide of the best-

fitting fragment will be used to provide the main-chain atoms

for that peptide group. Similarly, to build a missing loop in a

protein structure a search will be performed for all fragments

for which the initial and final pairs of C� atoms in the fragment
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may be superimposed on the last two C� atoms before the

break and the first two C� atoms after the break.

A library has therefore been constructed using the 500 well

refined protein structures of the Richardsons’ ‘Top 50’ data-

base (Lovell et al., 2003), excluding residues for which the

temperature factors of the C� atoms exceed 40 Å2. This

provides a database of 106 295 amino acids in 1327 continuous

fragments. For each amino acid, the residue type and the

coordinates of the N, C� and C atoms are stored (in turn

providing sufficient information to locate the C� and O

atoms). The entire database is stored as a single list of amino-

acid records.

The most frequent type of search which will be performed

on the database is to find all fragments for which some

(possibly discontinuous) set of C� atoms superpose well on the

C� atoms of some search fragment. The search fragment is in

turn provided as a list of amino-acid records, with null records

inserted as placeholders to represent residues for which the

location is unknown. Thus, to search for a missing loop of four

residues, an eight-residue search fragment is constructed from

the two residues before the missing loop, four null residues

and the two residues after the missing loop.

Performing a least-squares superposition for every frag-

ment in the database would be computationally demanding, so

an initial pre-selection phase is performed to produce a subset

of fragments which may be good matches to the search frag-

ment. This pre-selection involves a computationally cheaper

distance-matrix score.

In order to minimize the computational overhead, distance

matrices for the search fragment and for the database are

precalculated. For the search fragment, a triangular matrix is

calculated with the first row giving the distances from the first

C� to the remaining n � 1, the second row the distances from

the second C� to the remaining n � 2 and so on. The columns

of this matrix correspond to the diagonals of the upper

triangle of a conventional distance matrix (illustrated in Fig. 1).

If an atom is missing, the distance is set to a negative flag

value.

For the database of ndb residues, an ndb � 20 rectangular

‘running distance matrix’ is pre-calculated, with each row

giving distances from the first C� to the following 20, thus

representing fragments of up to 21 residues. This is illustrated

in Fig. 2 for a reduced width of six residues. Any distances

which span chain boundaries are set to the flag value.

In order to identify a set of possibly matching fragments, all

that needs to be done is to compare the non-missing values in

the fragment distance matrix to the corresponding values

obtained by starting from each row of the database distance

matrix in turn. A sum of squared differences is used to identify

likely matches.

To further optimize the calculation, the sum-of-squares

calculation may be terminated early as soon as the sum

exceeds a threshold value. The threshold value is controlled by

a parameter which determines how many matches will be

returned and is updated regularly by sorting the current list of

matches, truncating to the desired number and setting the

threshold to the value of the worst remaining match.

The limitation of the distance-matrix score is that the

distance matrix of a set of coordinates is invariant under

inversion of these coordinates through a centre of symmetry,

and so the initial search also returns fragments which are the

inverse of the search fragment. The resulting list of candidate

fragments must therefore be re-scored using a full least-

squares superposition and r.m.s. difference calculation. The

resulting list is resorted according to the r.m.s. difference.

For some purposes it may be desirable to restrict the search

to fragments for which the sequence obeys some criterion, for

example to take into account the different main-chain

conformations which can occur around Gly or Pro. This is
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Figure 1
Running distance-matrix representation of a single fragment, where Dij is
the distance between the ith and jth C� atoms. The shaded cells are those
available for loop fitting using only two C� atoms at each end of the
fragment.

Figure 2
Running distance-matrix representation of the protein-chain database,
where Di,j is the distance between the ith and jth C� atoms. The shaded
cells are those which would be used to score the fit of a search fragment
against a particular range in the database.



achieved by allowing a mask of 20 binary digits to be set for

each position in the search fragment, indicating which of the

20 amino-acid types are allowed to appear at that position in

the fragment. This provides an additional restriction on the

search results which may be evaluated by simple logical

operations.

3. Automated model tidying

The steps employed in the completion of the atomic model in

the current version of Buccaneer are as follows.

(i) The various fragments built by the chain-tracing and

sequence-docking algorithms are grouped into discontinuous

chains using a scoring function that rewards compactness and

penalizes sequence duplication. This removes a tedious

manual step of assigning chain IDs and renaming the resulting

chain fragments by hand.

(ii) Where there are discontinuities (or breaks) in the

resulting chains, an attempt is made to fix these discontinuities

by pruning any overlap and placing a fragment from a stored

database of protein fragments across the gap.

The steps involved in the grouping of fragments into chains

are described in detail in xx3.1, 3.2 and 3.3. The correction of

breaks is discussed in x3.4. These steps are inserted between

steps (ix) and (x) of the workflow described in x1.3.

3.1. Grouping fragments into chains

The process of grouping fragments into chains involves

assigning a chain identifier to each fragment such that the

fragments which make up a single chain all have the same

chain identifier. Furthermore, the resulting fragments may

need to be transformed by the application of crystallographic

symmetry elements to form a compact molecule.

In the simplest case of a single sequence with no noncrys-

tallographic symmetry (NCS), the process of allocating chain

identifiers is simply a matter of separating a set of fragments

which comprise a single complete chain from those which are

incorrectly built or sequenced (however, the remaining frag-

ments are retained with dummy chain identifiers in case they

contain correctly located but wrongly sequenced residues).

The general case involves two additional layers of

complexity. Firstly, there may be multiple copies of the

molecule in the asymmetric unit. In this case, multiple chains

with different chain identifiers must be built and each frag-

ment must be allocated to one of the chains in such a way as

to build several compact molecules. Secondly, in the case of

a hetero-complex there may be multiple distinct sequences

involved.

The basic steps of the calculation are as follows.

(i) In the case where multiple sequences are present, those

fragments which have been docked to one of the sequences

are sorted according to which sequence was used. Each

sequence is then considered in turn and the following steps are

applied to all the fragments belonging to that sequence.

(ii) A set of ‘seed’ fragments are identified by the method

described in x3.2, including one fragment from each NCS copy

of the molecule. The fragments are chosen such that they all

incorporate some common range of sequence numbers and

thus must belong to distinct copies of the molecule. The

selection of this range is made in such a way as to maximize

the number of NCS copies identified, subject to the validation

criteria described below.

(iii) The seed fragments are then grown by successively

adding an additional fragment to a seed by the method

described in x3.3. Each fragment is scored for its geometrical

proximity to each seed (taking into account crystallographic

symmetry) and penalized for any sequence overlap with that

seed. The fragment which obtains the highest score to be

docked to a seed is then added to that seed. The calculation

repeats until all fragments have been assigned or the highest

score fails to reach a threshold.

Steps (ii) and (iii) are repeated for each sequence until all

sequences have been considered. The fragments are then

assembled into chains by grouping all the fragments sharing a

chain identifier in order of sequence number. In some cases,

sequence numbers of grouped fragments may overlap; in this

case, insertion codes are used to ensure that each residue is

uniquely identified.

3.2. Identification of seed fragments

The identification of ‘seed’ fragments is performed as

follows. Firstly, a matrix is constructed whose order is the

number of fragments under consideration. The matrix is used

to store flags identifying which fragments overlap. For each

pair of sequences, the number of residues of overlap is iden-

tified. If the overlap exceeds 12 residues and the overlapped

regions have similar conformations, the number of overlapped

residues is stored in the matrix. (In this context, a similar

conformation is identified by the least-squares superposition

of the best-matched 50% of the overlapped C� coordinates

having an r.m.s. difference of less than 1 Å.)

A depth-first permutation search is then performed to

identify the largest subset of fragments all of which overlap.

There will usually be multiple equal solutions; in this case, the

set is chosen for which the total number of residues in the

overlapping fragments is the greatest.

At first glance the algorithm is computationally expensive,

since potentially 2n sets must be considered, where n is the

number of fragments. In practice, the number of overlapped

sequences does not significantly exceed the number of NCS

copies and depth searches may be terminated early if they

cannot match the current best solution; thus, in practice the

computational cost of this step is negligible.

The fragments thus selected contain the same sequence of

residues in a similar conformation and thus can be assumed to

be different NCS copies of one part of the structure. Each of

the selected seed fragments is therefore allocated a different

chain identifier and becomes the core of that chain.

3.3. Allocation of additional fragments to the chains

This step is performed iteratively. Every unallocated frag-

ment is considered and the score is calculated for adding that
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fragment to each chain. The highest scoring chain/fragment

combination is selected and the fragment is added to that

chain. This will affect all subsequent scores for that chain and

therefore the calculation is then repeated from the start.

The scoring function rewards geometrical compactness and

penalizes sequence inconsistencies as follows. Each C� atom

within 5 Å of a C� atom which has already been allocated to a

given chain provides a score of +1 for adding the fragment to

that chain. Each residue which has been docked into sequence

with a sequence number clashing with a residue already

allocated to a given chain provides a score of �2 for adding

the fragment to that chain.

In this way, fragments which are intimate to an existing

chain but which do not contain the same set of sequence are

added to that chain. The process continues until no positive

scores remain.

3.4. Correction of chain breaks

Often it will occur that there are gaps in the trace of the

protein chain. These most commonly occur for one of two

reasons.

(i) Flexible surface loops for which the electron density is

poor.

(ii) Mistracings where the chain trace has left the chain

(often following a side chain or disulfide bridge) and the chain

trace is then continued in a subsequent fragment.

For the gap to be corrected, any wrongly traced residues

(e.g. following a side chain or disulfide bridge) must first be

removed by pruning back at least enough residues to remove

any duplicated sequence numbers from the ends of the two

fragments (multiple choices about how many residues to

prune from each end are possible and additional pruning may

be required to eliminate all mistraced residues, so multiple

prunings are tested) and then selecting a fragment from a

database of protein-chain fragments to bridge the gap.

Note that caution is required in this step. Earlier in the

Buccaneer calculation an attempt is made to link spatially

proximal N- and C-termini without regard to sequence.

Sometimes these linkages are made incorrectly. However, this

mistake is not serious, because when docking the resulting

chain to the sequence the two parts of the joined chain will

usually dock to different places in the sequence, at which point

the error can be corrected by breaking the chain again. When

linking chains on the basis of previously assigned sequences,

the use of the sequence to validate the link is no longer

available, so mistakes introduced at this stage will never be

corrected. As a result, it was found to be necessary to limit the

maximum length of the bridging fragment to six amino acids

(i.e. two amino acids overlap with each chain and a maximum

of two amino acids of gap). Longer missing loops must still

be built manually. Since the errors arise from the presence of

wrongly sequenced fragments which occur early in the model-

building process when the fragments are short, this constraint

should probably be relaxed to allow longer loops to be built

once the model is approaching completion, at which point

errors become less likely.

3.5. Additional applications of the fragment database

Two existing steps in the Buccaneer calculation were also

rewritten to make use of the fragment database. The ‘linking’

step (joining nearby N- and C-termini irrespective of

sequence) and ‘correction’ step (correcting insertions and

deletions by rebuilding one or three residues with two resi-

dues) both made use of a routine for building a loop of two

residues by searching over allowed Ramachandran angles.

Both of these steps have been replaced by an equivalent

implementation using the fragment database.

4. Results

Some preliminary results are presented here on the applic-

ability of the fragment database and on the automated model-

tidying features in the Buccaneer software.

4.1. Coverage as a function of fragment size in the fragment
database

To investigate the usefulness of the fragment database, an

exhaustive search was performed to test for a given fragment

length how well each fragment in the database can be repre-

sented by some other fragment from the database.

Each possible fragment of the chosen length was extracted

from the database in turn and used as a search model to find

other similar fragments. In every case the best-fitting fragment

will be the original fragment, so the best fit is discarded and

the second-best match is used. Two statistics are calculated

for the matching fragment: the r.m.s. deviation between the

C�-atom positions and those of the search fragment, and the

distance between the worst-matching C� atom and the corre-

sponding atom in the search fragment. This calculation was

performed for fragments of six, nine and 12 residues (as would

be used in fitting missing loops of two, five and eight residues,

respectively).

The results are shown in Fig. 3 as tail plots showing the

proportion of the search fragments for which the difference

from the database fragment is no worse than a given value.

The r.m.s. deviations are worse than 1.0 Å for 0.04% of six-

residue fragments, 5% of nine-residue fragments and 38% of

12-residue fragments. Given that a significant proportion of

the fragments in the database will be in very similar helical

or strand conformations, this suggests that the library will be

of limited use for 12-residue fragments except for common

motifs.

Similarly, the worst deviating atom has a displacement of

worse than 1.5 Å for 0.05% of six-residue fragments, 5% of

nine-residue fragments and 36% of 12-residue fragments.

(Note the change in distance criterion compared with the

previous data.) This again suggests that 12-residue fragments

will be of less use, since automated refinement is likely to

struggle to correct errors of this magnitude.

As a result, the database provides effectively complete

coverage for fragments of up to six residues or for loop fitting

over only two missing residues. (This case was previously

handled by a simple Ramachandran search; however, the
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database approach has the advantage of providing a compu-

tationally cheaper sampling of conformation space which

increases in density as the frequency of that conformation

increases.)

For missing loops of intermediate length (3–6 residues), the

database will provide good loop conformations in a subset of

cases where the loop happens to match one in the database

and so will catch common turn motifs, for example. For longer

loops, the database is likely to be useful only in less frequent

cases. However, this approach has been shown to have good

success by Choi & Deane (2010) for loops of up to 20 residues

with a larger database of structures.

4.2. Automated model tidying in the Buccaneer software

The model-tidying procedure was applied to the same 55

test structures used in Cowtan (2008) and is detailed in the

supplementary material of that paper; the data were obtained

from the JCSG (Joint Center for Structural Genomics, 2006).

Of the resulting models, 29 contained fragments which were

grouped into chains by the tidying algorithm. Some of these

structures included multiple NCS copies of the structure and

therefore the total number of chains assembled was 50.

Each of the 50 tidied chains was examined to determine the

proportion of the chain corresponding to a single molecule in

the final structure. As the model becomes more complete, the

assignment becomes easier, so these proportions are tabulated

along with the completeness of the chain in Table 1.

In every case where the chain is at least 60% complete, at

least 80% is correctly assigned to a single molecule and in 44

of 48 such cases the assignment is entirely correct or correct

apart from a few trailing residues. For the two cases where the

completeness is less than 50%, the grouping of fragments into

chains is rather less accurate.

The case of the 1vlu A chain (as labelled by Buccaneer; this

is actually the B chain in the deposited structure) is shown in

Fig. 4, in which 91% of the chain has been built but only 83%

of the residues built correspond to a single molecule. In this

case the deposited model contains chain breaks and the

Buccaneer model shows chain breaks in similar positions. The

disconnected range of residues 331–391 has been placed at the

wrong end of the molecule. It is probable that the error could

have been corrected in this specific case by adding a term

rewarding proximity of sequence number to the scoring

function; however, this was not tested because in the experi-

ence of the author the incorrect linking of chains across

protein contacts is a significant problem in the early stages of

building and this problem is likely to be exacerbated by such a

change.

4.3. Application of the fragment database in the Buccaneer
software

The usefulness of the fragment database in automated

building was tested by rewriting two existing steps of the

Buccaneer calculation to make use of the database and by

adding a new loop-building step using the database, as

described in x4.2. The results of these changes were tested

individually and in combination.
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Table 1
Reliability of the model-tidying algorithm as measured by the proportion
of each autobuilt chain corresponding to a single chain in the deposited
structure.

Structure (chain)
Proportion belonging
to a single chain (%)

Chain completeness
(%)

1vjn (A) 72 49
1zej (B) 75 46
1z85 (A) 81 90
1vlu (B) 81 73
1vlu (A) 83 91
1zej (A) 92 69
1vr8 (A) 95 99
1vp7 (C) 97 100
1vk3 (A) 98 90
41 cases 100 62–100

Figure 3
Tail plot of the proportion of search fragments for which the fit of the
best-matching fragment is worse than a given criterion for different
fragment lengths. (a) R.m.s. deviation of C� positions between the best
database fragment and the search fragment; (b) maximum deviation of
any C� positions between the best database fragment and the search
fragment.



The results of the model-building calculation are rather

sensitive to changes in the algorithm or input data, so to

determine whether each change made an improvement

multiple model-building runs were used. For each of the 55

test structures used in Cowtan (2008) ten model-building runs

were performed using ten different sets of free reflections for

both model building and refinement. The change in the set of

reflections used to calculate the initial map is sufficient to

significantly alter the results of the first model-building step

and the differences propagate to subsequent cycles.

The percentage of the model built and correctly sequenced

(measured by the percentage of residues built with the correct

residue type and with the C� within 1.9 Å of the correct

position) was averaged over the 550 runs to obtain a score for

this method.

Furthermore, the entire set of calculations was then repe-

ated using lower resolution data. For these calculations, the

data resolution was truncated by 0.4 Å, the B factor was

increased by 20 Å2 and the density-modification step (using

the Parrot software; Cowtan, 2010) was rerun on the truncated

data. The resolutions of the original data sets vary over the

range 1.4–3.2 Å and the truncated data over the range 1.8–

3.6 Å.

The results of these calculations are shown in Table 2. The

first step modified (‘link’) is the linking of chain fragments

irrespective of sequence [step (iii) in the Buccaneer calcula-

tion], the next (‘correct’) is the correction of insertions and

deletions during sequencing [step (v) in the Buccaneer calcu-

lation]. These steps were previously performed using an

exhaustive search over allowed Ramachandran angles, in the

first case to build a link of up to two residues and in the second

to rebuild a stretch of either one or three residues with two

residues. Finally, a new loop-building step was added, similar

to the ‘link’ step but performed after the sequence has been

assigned to the chains. Unlike the ‘link’ step, the loop-building

step may prune an arbitrary number of residues from either

chain to bring similarly numbered residues into proximity.

The updated link step makes minimal difference to the

amount of model built, but does provide a speed benefit over

the previous (Ramachandran search) implementation. The

updated correct step gives a small improvement in the amount

of model built, although the difference is comparable to the

noise among different runs. The loop-building step shows no

significant improvement in the proportion built. It is a recur-

ring problem in the development of the model-building

algorithm that the improvements are marginal and hard to

distinguish from noise, even with the large number of test runs.

However, in each of four cases where only the correct step is

changed the results always improve, suggesting that this result

is significant.
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Table 2
Proportion of models built and correctly sequenced with different
building strategies; results are averaged over 550 runs on 55 structures.

Values in parentheses are standard deviations across the ten runs of 55
structures.

Full resolution Truncated resolution

Method
Percentage
built

No. of
chains

Percentage
built

No. of
chains

Original version 86.2 (0.6) 8.7 (0.4) 75.1 (1.0) 13.0 (0.4)
DB for link 86.2 (0.5) 8.6 (0.6) 75.5 (0.9) 12.8 (0.5)
DB for correct 86.5 (0.6) 8.7 (0.3) 76.2 (1.3) 12.9 (0.7)
DB for loop build 86.1 (0.4) 7.4 (0.4) 75.3 (0.9) 11.4 (0.4)
DB for link, correct 86.6 (0.7) 8.6 (0.3) 76.4 (0.6) 12.6 (0.6)
DB for link, correct,

loop build
86.6 (0.7) 7.3 (0.3) 76.5 (0.9) 11.1 (0.7)

Figure 4
Partially incorrect assembly of the model for 1vlu from multiple
fragments. The wrongly positioned region is shown in black (a) in the
Buccaneer model and (b) in the deposited structure.



However, the benefit of the loop-building step can be seen

in the connectivity of the model, which is a benefit when it

comes to finishing the model by hand. The number of frag-

ments in the output model gives an indication of what is

happening. For the original version, the average number of

fragments over the 550 autobuilt models is 8.7; when the loop-

building step is added, this reduces to 7.4 (similar changes are

seen when combining the loop-building step with the other

new steps and when the resolution is truncated). A reduction

in the number of fragments without a reduction in the

proportion built implies an improvement in connectivity. The

implication is that the loop-building step is most commonly

dealing with cases where chains are coming into close proxi-

mity but failing to meet (and possibly branching down side

chains) rather than true loop-building problems when there

are missing residues.

To summarize, using the fragment database for the link step

reduces the computational overhead, using the fragment

database for the correct step provides a small improvement

in completeness and using the fragment database for loop

building provides a significant improvement in connectivity.

4.4. Other applications of the fragment library

The fragment library has also been used in the imple-

mentation of a loop-building tool, Sloop, which is capable of

building short missing loops in incomplete protein models. As

noted above, the usefulness of this tool varies according to

whether the loop concerned happens to conform to an existing

motif.

A tool for converting a C� trace into a main-chain (poly-

alanine) trace has also been implemented. The results show

similar high levels of accuracy to those of Esnouf (1997). The

program has not been released owing to the availability of

many other tools for this task; however, the source code is

available from the author on request.

The use of the library for the building and validation of

motifs in the Coot graphical model-building and validation

software (Emsley et al., 2010) is under development.

4.5. Discussion

The tidying of fragments into chains is an important

element of an automated model-building calculation, princi-

pally because it reduces the manual intervention required

later in the structure-solution process. The technique

described here is reliable when the completeness of the model

is good and is completely general with respect to NCS and

hetero-complexes, without requiring knowledge of the

number of copies of a given sequence present in the asym-

metric unit.

The protein-fragment database is capable of reproducing

the various functionalities implemented by previous authors,

with the efficient search algorithm allowing the use of a larger

database than in previous implementations. Some preliminary

applications have been explored and a range of future appli-

cations are planned, including the following.

(i) Use of the loop-building code to build longer loops when

the model is nearly complete. This may be in a single step, or

possibly using the stepwise approach of Joosten et al. (2008)

where a suitable large fragment is not found in the library.

(ii) Use of the fragment library to rebuild regions of the

chain where residue type influences geometry, in particular in

the vicinity of Gly and Pro residues.

(iii) Testing the use of a subset of the fragment library

to replace the current Ramachandran search in the chain-

growing step in Buccaneer, in a manner similar to that of

Terwilliger (2003).

(iv) Use of the fragment library to provide validation scores

in the manner of Jones & Thirup (1986) in the Coot software.

(v) Extension of the fragment-database concept to handle

nucleotides.
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