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Small-angle scattering is becoming a mainstream technique for structural

molecular biology. As such, it is important to establish guidelines for publication

that will ensure that there is adequate reporting of the data and its treatment so

that reviewers and readers can independently assess the quality of the data and

the basis for any interpretations presented. This article presents a set of

preliminary guidelines that emerged after consultation with the IUCr

Commission on Small-Angle Scattering and other experts in the field and

discusses the rationale for their application. At the 2011 Congress of the IUCr in

Madrid, the Commission on Journals agreed to adopt these preliminary

guidelines for the presentation of biomolecular structures from small-angle

scattering data in IUCr publications. Here, these guidelines are outlined and the

reasons for standardizing the way in which small-angle scattering data are

presented.
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1. Introduction

The last two decades have seen a rapid increase in the use of small-

angle scattering for the study of biomolecular structures (Jacques &

Trewhella, 2010; Mertens & Svergun, 2010). The explosion in the use

of this technique has largely been driven by the increasing desire to

characterize biomolecular structures in solution and the availability of

easy-to-use software for the analysis and interpretation of small-angle

scattering (SAS) data. The latter now also include modelling algo-

rithms for generating three-dimensional models from solution scat-

tering data that provide results in the form of bead or atomic

coordinates. To date, no community-agreed set of publication

requirements has been available, leading to inconsistencies in which

data are reported in publications and to what level of detail. In order

to evaluate the interpretation of SAS data, information concerning

sample quality, data acquisition and experimental validation are

essential, especially when detailed three-dimensional structures are

presented. The omission of these important data can lead to inaccu-

rate structural parameters and the generation of erroneous and

misleading structural models, the validity of which cannot be inde-

pendently assessed.

With SAS emerging as a mainstream structural biology technique,

and a growing market in commercial instrumentation as well as new

SAS beamlines at synchrotron and neutron sources, there has been

considerable community drive for the establishment of publication

requirements and standards for structural biology applications. The

increasing use of SAS in high-throughput efforts (Round et al., 2008;

Hura et al., 2009; Grant et al., 2011) also underscores the need for such

guidelines. The IUCr, through its Commissions on Small-Angle

Scattering and on Journals, has acted to introduce a series of guide-

lines for the presentation of SAS data in IUCr journals. These

guidelines may be found at http://journals.iucr.org/services/sas/. In

parallel, a Small-Angle Scattering Task Force has been established to

advise the Protein Data Bank on whether models based on SAS data

analysis should be deposited and, if so, in what format and with what

kinds of supporting data and validation.

Importantly, the guidelines presented here are not being developed

to define a quality requirement for SAS experiments that would be

acceptable for publication. Rather, the purpose is to establish the way

in which SAS experiments should be presented in order to enable a
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reviewer and a reader to independently assess the validity of the

interpretations made by the authors.

In the present paper, we make the IUCr agreed guidelines broadly

available to facilitate their consideration by the research community

and potential refinement as appropriate.

2. Sample quality

One of the most celebrated aspects of SAS is that it may be

performed on samples without the need for crystals or isotopic

labelling (except in the case of neutron contrast variation, where

perdeuteration may provide additional information). What is less

well appreciated is that small-angle solution scattering data may be

acquired and processed from any sample, regardless of the sample

quality; as a consequence, without critical evaluation and specific

checks the results can be misleading.

The interpretation of solution scattering data in terms of a three-

dimensional structural model requires that the solution contains

identical monodisperse structures and that the conditions approx-

imate those of infinite dilution. In other words, there is no nonspecific

aggregation and no distance correlations between particles such as

may occur owing to charge repulsion. Solution scattering data may

nonetheless be usefully interpreted in cases where there are asso-

ciations, mixtures or flexibility and molecular crowding (Rambo &

Tainer, 2011; Johansen et al., 2011). In these cases, however, the

interpretation will be distinct from interpretation of structural para-

meters and modelling to represent an individual molecular structure.

In general, SAS patterns reflect not only the structure of individual

particles, but also interparticle interactions, with the latter affecting

the lowest angle scattering data (Chen & Bendedouch, 1986). SAS

is very sensitive to attractive interactions leading to aggregation,

showing a rise in the intensity owing to the dependence of the scat-

tering signal on the square of the molecular volume of the scattering

particle. Repulsive interactions (e.g. between highly charged mole-

cules) tend to diminish the scattering at low angles. When the

repulsive or attractive effects are large they are generally easy to spot,

as the conditions for a linear Guinier region in the scattering data

break down (Guinier, 1938). It is when these effects are at a level such

that one still obtains a linear Guinier region but with artificially

enhanced or suppressed low-angle scattering data that problems

arise. In such a case, the derived parameters and molecular shapes

will be too large or too small and more careful analysis is required to

avoid being misled. Here, we consider requirements for sample purity

and characterization.

2.1. Macromolecular sample purity

As with all biological macromolecular experiments, the purification

protocol and an estimate of the final sample purity must be reported.

Contamination with high-molecular-weight species, in particular, will

bias the data and result in structural parameters and models that are

systematically too large. If one in ten molecules (or particles) in the

solution have ten times the molecular mass of the molecule of

interest, they will account for half of the measured scattering signal

and will dominate at the lowest scattering angles. One in ten mole-

cules with five times the molecular mass will contribute 2.5% of the

signal. In other words, the degree of contamination that can be

tolerated depends on the molecular weight of the contaminating

species. Samples that are >99% pure as determined by methods such

as SDS–PAGE or the ratio of UV absorbance at 260:280 nm, as

appropriate, would generally be adequate. However, it should be

appreciated that these methods are qualitative, with SDS–PAGE

being insensitive to aggregation (as aggregates are usually dissociated

during denaturation by SDS) and UV absorbance at 260:280 nm

being most sensitive to nucleotide or nucleic acid contamination.

Nevertheless, authors should always provide evidence of the degree

of purity of their samples.

2.2. Preparation of solvent blank

Proper subtraction of the scattering arising from solvent is essential

to obtain an accurate scattering profile for the macromolecular

solute. This is true not only for structural analysis, but also for Kratky

(Glatter & Kratky, 1982) analysis, which can provide information on

whether a protein is folded and globular, potentially unfolded and

flexible, or has flexible regions. Accurate solvent background

measurement can be nontrivial, especially for small-angle neutron

scattering, where the incoherent scattering from hydrogen in the

solvent is large and gives rise to a strong background signal that can

be much larger than the macromolecule signal. Dialysis or buffer

exchange by size-exclusion chromatography (SEC) are probably the

best methods for obtaining a sample of solvent that is ‘matched’ to

the protein and solvent sample. Taking the filtrate from a centrifugal

concentration device often yields unmatched solvent blanks owing to

the presence of preservative compounds in the membrane (such as

glycerol). Solvent mismatch manifests in the high-q data, resulting

in either an artificially high or a negative intensity after buffer

subtraction. Negative intensity is a physical impossibility, but high

intensity at high q can be indicative of sample flexibility, and thus

confidence in the solvent subtraction is critical to correct inter-

pretation of scattering data.

2.3. Sample characteristics reported

The nature of the sample (including the molecular mass of the

macromolecule of interest with its amino-acid content, including any

modifications resulting from its production, which could simply be in

the form of a complete sequence and the number and nature of any

bound cofactors) and the precise solvent composition, including all

additives, must be reported. Additionally, if neutron contrast varia-

tion is being undertaken, the level of deuteration achieved and the

method by which this value is determined (usually mass spectro-

metry) must also be reported. All this information allows calculation

of the contrast (�� = �protein � �solvent, where � is the scattering

density; Whitten et al., 2008), which is important for experimental

validation (see below). Also important for subsequent experimental

validation is the concentration of the macromolecule. Usually,

protein or nucleic acid concentration is determined by UV spectro-

photometry, but in some cases this may be nontrivial to measure, such

as when a protein sample is devoid of tryptophan residues or the

buffer contains a compound that also absorbs in the UV, such as DTT.

Refractometry provides an alternative method to determine the

concentration. Refractometry is advantageous in that the refractive

index of a protein or nucleic acid is neither dependent on the folded

state nor the sequence of the macromolecule. In any event, the

macromolecule concentrations in the samples used to collect the

scattering data must be explicitly stated, along with the method by

which these values are determined.

2.4. Scattering-data-independent measures of sample quality

One of the most important measures of sample quality concerns

the evaluation of potential aggregation. While careful treatment of

scattering data can yield information regarding aggregation, or

possibly the oligomeric state of the sample, an independent measure
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of molecular weight provides confidence in the starting sample

quality prior to scattering measurement. Dynamic light scattering

(DLS) operates over similar concentration and temperature ranges to

SAS, but is more sensitive to aggregation. As a dynamic method, DLS

is also sensitive to changes in sample viscosity, so high-concentration

samples or samples in D2O may return artificially high molecular

weights unless the data have been corrected for viscosity. Multi-angle

laser light scattering (MALLS) is also very useful in this context.

Because MALLS measurements are usually made immediately

following size-exclusion chromatography (SEC), the molecular-

weight profile across the elution peak is a powerful method for

determining sample molecular weight and polydispersity. If the

instrument is connected to a DLS detector (also known as quasi-

elastic light scattering or QELS), the measurement will also give an

assessment of conformational polydispersity. Samples that dissociate

upon dilution are often identified using the SEC-MALLS method

by a drop in molecular weight across the elution peak. SAS data

collected from such samples need to be treated carefully to demon-

strate that no modelling artifacts arising from dissociation or oligo-

merization result. Often, it is not possible to conduct SEC-MALLS

experiments over the same concentration range as SAS experiments.

It is possible, therefore, that dissociation effects may be more severe

under the conditions of the lower concentration experiment, which is

typically the SEC-MALLS experiment as the sample is diluted on the

column (Jacques et al., 2009). Such observations can provide clues as

to dissociation constants and potentially the biological relevance of

macromolecular associations. Owing to the complementary nature of

the information provided by DLS and SEC-MALLS, these experi-

ments can greatly improve the confidence in bead or atomistic models

derived from SAS data and therefore the data should be presented

where available. This argument has been shown to be particularly

true for RNA structures (Rambo & Tainer, 2010). The presentation

of the SEC-MALLS profile should provide the light scattering from

the void volume to the end of the SEC run, thereby informing the

reader of the possible scattering contaminants (in particular aggre-

gates) that may be present in the SAS sample.

3. Data acquisition and reduction

As with any reported experiment, details of how the SAS measure-

ment was performed are essential. Of particular importance are the

instrument type and configuration. SAS data are acquired from either

conventional laboratory-based instruments or dedicated synchrotron

beamlines for X-ray scattering and reactor-based or spallation source

instruments for neutron scattering. Instrumentation configuration

issues that may affect data interpretation include the sample envir-

onment (temperature and sample-cell properties, including window

material and path length), the wavelength of the incident radiation,

the measured q range and the number of detector positions required

to obtain this range (especially important for reactor-based SANS

experiments) and information required to account for data-smearing

effects such as the incident-beam geometry and wavelength spread.

In the case of a line-source instrument the beam profile should be

provided (either in terms of dimensions of a defined shape, e.g.

parameters of a trapezoidal profile, or as an intensity plot as a

function of q). Smearing effects can be insignificant for X-ray

instruments approximating point geometry. In the case of neutron

instruments the smearing effects will generally be significant and the

beam-aperture dimensions and wavelength spread (cited as a ��/�)

should be reported along with sample-to-detector distances.

The data-collection strategy, particularly sample-exposure times,

must be reported. It is important to monitor radiation damage

(particularly at synchrotron sources) and the method by which this

damage (or indeed any time-dependent sample deterioration) is

monitored must be reported. Typically, radiation damage is detected

by the comparison of successive exposures, with sample deterioration

often manifesting as a change in scattering intensity as a function of

time (generally an increase in scattering intensity at low q as covalent

bonds are broken by free radicals, resulting in unfolding and non-

specific aggregation). Radiation damage can be reduced by the

addition of radical scavengers (such as DTT, TCEP or ascorbate) or

by the use of a flow-cell, which continuously passes the sample

through the beam for the duration of the exposure. If any measures

are taken to reduce the radiation damage, they should be reported.

Data-reduction protocols and software should also be reported,

including the application of corrections for sample absorbance or

transmission, detector sensitivity and nonlinearity, data normal-

ization for solvent-scattering subtraction and the method for placing

the data on an absolute scale (see below). Importantly, the way that

smeared data are treated must be described. Some software packages

attempt to desmear data based on a supplied beam profile, while

others apply a smearing correction to calculated models in order to fit

the data. Inappropriate treatment of smeared data can lead to grossly

incorrect models and authors need to demonstrate that the data have

been processed correctly.

4. Presentation of scattering data and validation

Once data have been acquired and reduced, data quality must be

demonstrated. In crystallography, metrics such as Rmerge, hI/�(I)i and

data completeness are used to report on data quality. However, in

contrast to crystallography, which generally yields diffraction from

good-quality samples, SAS data can be acquired from samples of any

quality and therefore the data require rigorous evaluation in order to

demonstrate that they are interpretable in terms of accurate struc-

tural parameters and models. It may be argued that making scattering

data publicly available is necessary, or at least desirable. For each

specimen where a three-dimensional model is presented, submission

of the relevant solvent-subtracted data in ASCII three-column format

[q, I(q) and the associated errors] as supplementary materials is

suggested.

4.1. Presenting I(q) versus q as the primary data

I(q) versus q plots, as the unadulterated reduced data, must be

reported without artificial truncation of low-q data that can mask the

presence of aggregation or interparticle interference effects. I(q)

plots should be presented as either linear X–log Y (Fig. 1a) or log X–

log Y (Fig. 1c). The former facilitates the reader evaluating the

behaviour of the high-q data, while the latter provides the optimal

view for evaluating sample polydispersity. A linear X–linear Y

presentation (Fig. 1d) does not allow the evaluation of key features in

the scattering and is therefore discouraged.

Guinier plots {ln[I(q)] versus q2; Fig. 1e} should also be routinely

supplied as these are the most effective at revealing the upturns in

intensity at low q that are indicative of aggregation (the smiling

Guinier) or downturns that are indicative of interparticle interference

(the frowning Guinier). The Guinier linear fit must be shown for a

range not exceeding qRg = 1.3 for globular scattering particles, and

for more asymmetric particles this limit approaches values around 1.0

and as small as 0.8 (Hjelm, 1985). The Guinier plot yields approx-

imations for Rg and I(0) from its slope and Y intercept, respectively.

It could be useful to report a quantitative estimate of the quality of

the Guinier plot, e.g. as provided by the AutoRg program from the
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ATSAS package (Petoukhov et al., 2007). While Rg and I(0) can be

calculated more precisely from P(r) analysis (as this method uses all

of the data), consistency between the Guinier-derived and P(r)-

derived values can give confidence in the internal consistency of the

scattering profile and it is therefore useful to report both values

(Table 1). Additional representations, such as a Kratky plot [q2I(q)

versus q; Fig. 1f], may also be desirable in order to demonstrate

whether the macromolecule is folded and globular or whether it has

significant flexibility. The data presented in Fig. 1 were purposefully

chosen for their small imperfections (notably at high q), but impor-

tantly presented so that the reader can assess potential caveats to any

interpretation and a reviewer might ask for revisions.
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Figure 1
Data were collected on a slit-geometry instrument. Subsequently, all presentations are for smeared data and fits. Scattering data are typically presented as linear X–log Y
plots (a) alongside the corresponding P(r) curve (b). A log X–log Y plot (c) is also acceptable as it emphasizes the low-angle data that carry the strongest signal and provide
the most information regarding the overall shape of the molecule. A sample free from aggregate or interparticle interference will also be flat at small angles, again providing
the reader with a rapid diagnostic of data quality. The linear X–linear Y plot (d), however, will obscure both the low-angle information as well as any fits made and must be
avoided. Additional representations of the data include the Guinier plot (e) and the Kratky plot (f). The former provides a rapid diagnostic of sample quality, as deviations
from linearity would be indications of either nonspecific aggregation (upturn) or interparticle interference (downturn). The latter provides information as to the folded state
of the macromolecule: a fully folded protein would have a parabolic peak followed by convergence at a constant value at high q, while a fully disordered protein would show
an increase at high q. If the Porod invariant is used to calculate the molecular mass of the solute, it is necessary to show the Kratky plot to demonstrate that the sample is
folded and therefore that the calculation is valid. In this real example, the presented data were used for structural modelling of lysozyme and three orthogonal views of the
models generated are presented (g). 12 DAMMIF calculations (Franke & Svergun, 2009) were performed [a typical fit is presented in magenta in (a), (c) and (d); �2 = 1.27]
and averaged with DAMAVER (Volkov & Svergun, 2003) to produce the averaged and filtered shape shown in magenta in (g). It is important to cite the mean normalized
spatial discrepancy value and its standard deviation (in this case 0.507 � 0.009) and whether or not any models in the set were rejected (in this case none) to quantify the
degree of similarity among the models generated. In this example, the total volume occupied by the spread of all of the models (aligned for maximum overlap) is shown in
grey, with the most-populated volume presented in magenta. The crystal structure of lysozyme has been superposed (black cartoon) on the dummy-atom structure with
SUPCOMB (Kozin & Svergun, 2001) and its fit to the scattering data calculated with CRYSOL [black line in (a), (c) and (d); �2 = 1.56; Svergun et al., 1995]. Sources for the
discrepancy in the fit for the high-q data should be considered in comments on the interpretation of the data. With the data presented as above, it is possible to see that there
is a small upturn at high q in the Kratky plot (e), which may be indicative of flexibility (unlikely in the case of lysozyme), a difference between the internal structures of the
model (e.g. high-resolution features not fully accounted for) and the measured data, or a poor solvent subtraction. The P(r) curve would support the poor subtraction
possibility, as the curve does not cleanly approach zero at r = 0. With these data available, a reviewer may recommend that the experimenter repeat the measurement before
publication, depending on the interpretations made in the manuscript.



4.2. Processed profiles

Even though the goal may be to obtain a molecular model from

scattering data, it is useful to provide the Fourier transform of I(q)

versus q in order to obtain a real-space representation of the data

in the form of the probable distribution of the pairwise distances

between scattering centres (atoms) within the scattering particle.

These P(r) curves (Fig. 1b) provide a simple interpretation of the data

that can be understood intuitively (Glatter & Kratky, 1982, chapter 5)

and also provide evidence for the quality of the data by the manner in

which the profile approaches zero at r = 0 and r = Dmax, the maximum

linear dimension of the scattering particle. At both limits the

approach should be smooth and concave when viewed from above

the r axis. Failure of this test for a structured macromolecule at r = 0

indicates that there is a problem with the solvent subtraction and at

r = Dmax can be indicative of aggregation or alternatively that there is

significant flexibility in the ensemble of scattering particles. Owing to

the finite nature of the measured q range, indirect Fourier methods

are used to calculate P(r) from I(q). As Dmax is chosen by the

experimenter, the ease with which Dmax can be unambiguously

determined in this process also provides insights into the quality of

the data. If a condition P(Dmax) = 0 is imposed using the indirect

transform, it is important that the P(r) function smoothly approaches

zero at Dmax without a break in the derivative, as the latter may

indicate that the Dmax value is underestimated.

4.3. Molecular-mass calculations are an important quality check

Determination of the molecular mass or volume of the scattering

species is one of the most important parameters to report, as it gives

confidence that the scattering is from the molecule of interest without

bias from possible weak attractive forces or interparticle interference.

Estimates of molecular mass, Mr, may be obtained directly from

the I(0) value if the data are placed on an absolute scale (Orthaber et

al., 2000) using

Mr ¼
Ið0ÞNA

cð���Þ2
; ð1Þ

where NA is Avagadro’s number, c is the sample concentration and �
is the partial specific volume of the macromolecule (see Table 1).

Alternatively, a secondary scattering standard such as lysozyme

(Krigbaum & Kügler, 1970) may be used to estimate the relationship

between I(0) and molecular mass, providing all samples are

normalized according to their macromolecular concentrations. This

approach, while often employed, assumes that the unknown sample

and the standard share a similar contrast and partial specific volume.

For samples that have an unusual buffer composition (such as a high

concentration of salt or glycerol) or have scattering-length densities

significantly different from the standard (such as when the sample

contains bound metal cofactors) this assumption breaks down and

these factors need to be taken into account.

For globular particles, an alternative estimate of Mr can be made

based on the Porod invariant, which provides the excluded particle

volume Vp. Empirical calculations show that a relation between Mr

and Vp exists which allows one to assess Mr with reasonable accuracy,

and tools are available for online calculations (Fischer et al., 2010) or

for automated computations (the AutoPorod module in the ATSAS

package http://www.embl-hamburg.de/biosaxs/automation.html).

An experimentally determined value for the molecular mass of the

scattering particle in agreement with the expected value (typically

within 10%, although an estimate of the uncertainties should be

provided) provides confidence that the sample contains mono-

disperse particles of the expected composition, and analysis of the

data to extract structural parameters can proceed.

4.4. Testing the concentration dependence of the scattering data

It is important to determine I(0)/c and Rg at several concentrations

of the biomolecule. An increase in these values with concentration is

evidence that the sample is undergoing some form of self-association

such as oligomerization or aggregation (attractive interactions). On

the other hand, a decrease in these values with concentration is

evidence of interparticle interference owing to charge repulsion and

it may be necessary to adjust the solvent composition to decrease this

effect (typically by increasing the ionic strength or adjusting the pH

to reduce the particle repulsion). In cases of moderate interactions, it

is often possible to extrapolate the scattering to infinite dilution from

multiple concentration measurements, assuming that these effects are

linearly dependent on the concentration (at low values) of the

macromolecule. Whether the data are extrapolated to infinite dilu-

tion or a single measurement is used for analysis, data collected at

multiple concentrations need to be reported to demonstrate any

concentration dependence, or lack thereof, of the observed macro-

molecular size.

4.5. Neutron contrast variation

In the case of neutron contrast-variation experiments, additional

data and analyses are required. The number and the nature of the

contrast points needs to be reported (i.e. %D2O solvent values), with
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Table 1
Data-collection and scattering-derived parameters.

Parameters should be reported either normalized by macromolecule concentration or for
each point in a concentration series with the sample-concentration values and with details
as to how the scattering data were scaled (either to absolute values or relative to a known
standard). Where multiple samples are being described, additional columns should be
added to provide an easy comparison. The units indicated apply to both X-ray and
neutron scattering. [In the case of X-rays, scattering power and contrast values may also
be reported as number of electrons (e) and e Å�3, respectively.]

Data-collection parameters
Instrument SAXSess (Anton Paar)
Beam geometry 10 mm slit
Wavelength (Å) 1.5418
q range (Å�1) 0.009–0.300
Exposure time (min) 60
Concentration range (mg ml�1) 2–10
Temperature (K) 283

Structural parameters†
I(0) (cm�1) [from P(r)] 0.114 � 0.001
Rg (Å) [from P(r)] 14.27 � 0.03
I(0) (cm�1) (from Guinier) 0.112 � 0.001
Rg (Å) (from Guinier) 14.5 � 0.1
Dmax (Å) 45 � 3‡
Porod volume estimate (Å3) 16500 � 1000
Dry volume calculated from sequence (Å3) 17570

Molecular-mass determination†
Partial specific volume (cm3 g�1) 0.724
Contrast (�� � 1010 cm�2) 3.047
Molecular mass Mr [from I(0)] 14100 � 200
Calculated monomeric Mr from sequence 14300

Software employed
Primary data reduction SAXSquant 1D
Data processing GIFT
Ab initio analysis DAMMIF
Validation and averaging DAMAVER
Rigid-body modelling N/A
Computation of model intensities CRYSOL
Three-dimensional graphics representations PyMOL

† Reported for 10 mg ml�1 measurement. ‡ Dmax is a model parameter in the P(r) calculation

and not all programs calculate an uncertainty associated with Dmax. As such, it is reasonable to

not cite an explicit error in Dmax, although it may be useful to provide some estimate based on

the results of P(r) calculations using a range of Dmax values.



a plot of I(0)1/2 (normalized by concentration and exposure time)

versus solvent scattering density (or %D2O) that should be linear

(reflected at the X axis). This relationship demonstrates that the

chosen contrast points provide a sensible level of signal and that the

sample is stably monodisperse over the range of solvent conditions

chosen. For example, if the sample aggregates at high %D2O there

will be a consequent deviation from linearity. Molecular-mass

calculations from I(0) should be provided for each measured contrast

point. Additionally, a Stuhrmann plot of Rg
2 versus ���1 is desirable

as it can provide a model-independent estimate of the Rg values of

the individual components as well as that for the overall particle (Ibel

& Stuhrmann, 1975). The Sturhmann analysis also provides an esti-

mate of the separation of the centres of mass of the two components,

as well as indicating which component is closer to the centre of the

complex (Stuhrmann & Kirste, 1967). It is also desirable to present

extracted component scattering functions and their resultant P(r)

curves to demonstrate the distribution of interatomic vectors within

each of the components and between components (the cross-term;

Whitten et al., 2008). Tools for these analyses may be found at http://

smb-research.mmb.usyd.edu.au/NCVWeb/. A recent example of this

type of treatment of neutron scattering data can be found in the

investigation of the complex formed between the histidine kinase

KinA and its inhibitor Sda (Whitten et al., 2007).

5. Modelling

The conventional analyses described above can give confidence in

proceeding to three-dimensional modelling by optimization against

scattering data. If a structural model is being put forward for a

particular macromolecular system, justification for the specific

modelling protocol employed must be provided. A problem

frequently encountered when using SAS for structure determination

is that of overparameterization. SAS data have an inherently low

information content, which leads to the risk of inadvertently intro-

ducing more parameters into the model than can be justified. Again

drawing parallels with crystallography, the problem of over-

parameterization during crystal structure refinement has been largely

overcome by the use of restraints and the calculation of an Rfree value.

In SAS there is no ‘Rfree equivalent’ and so care must be taken to

avoid overparameterization. Where a highly parameterized model is

reported, the burden is on the author to demonstrate that a simpler

model is inadequate to fully explain the data (Jacques & Trewhella,

2010). The example shown in Fig. 1 compares a simple crystal

structure fit with that obtained from a dummy-atom reconstruction,

but other examples might include the comparison of single rigid-body

structures with ensemble models.

Restraints are an effective method for reducing the number of

model parameters, but usually these derive from additional experi-

ments, which need to be reported (e.g. domain structures, distances

from NMR or FRET, symmetry etc.). SAS results are at their most

robust when modelled in conjunction with information from inde-

pendent experiments. As such, SAS is often regarded as a powerful

complementary technique to high-resolution methods.

When models are presented [including the generation of P(r)

curves] authors must report the software used. In the case of three-

dimensional modelling, it is important to have a measure of the

quality of the fit to the data for any model being proposed. At this

time the most common statistical measure used in the modelling of

scattering data is �2, and this value must be reported for at least the

best model. Because �2 describes the global goodness-of-fit of the

theoretical model scattering to the measured data, it is possible to

obtain a low value when fitting data with large errors. In most SAS

experiments only counting statistics are used for the calculation of

errors. Values of �2 of less than 1.0 may arise when counting statistics

overestimate the error or when overfitting has occurred. Usually the

latter is unlikely, as a smooth function is almost always chosen to

fit the data. Such a function is unlikely to result in overfitting, but

experimenters should examine their fits to ensure that there is no

‘structure’ in the calculated curve that might be evidence of over-

parameterization. Likewise, �2 values of above 1.0 occur when

counting statistics fail to fully account for the errors in the

measurements (e.g. when there is a systematic error that is not

accounted for in the error model derived from counting statistics

alone). This situation is of greatest concern at synchrotron SAXS

beamlines, where excellent counting statistics are more easily

obtained. In these situations, data reduction is of critical importance

to avoid the introduction of systematic errors into the scattering

profile. Of course, the most likely explanation for �2 values greater

than 1.0 is that the proposed model does not fully explain the data. In

the event that a model is being proposed where the �2 value is

significantly greater or less than 1.0, the author must explain why the

structural interpretation is valid.

As the absolute value of �2 may be somewhat misleading (parti-

cularly when comparing the quality of models obtained from

different data), a plot of the model fit to the experimental I(q) versus

q must be shown for at least the best model. This plot allows a

qualitative judgment to be made as to the goodness-of-fit to the data

and can highlight specific regions of poor fit to the scattering profile.

This information may have important implications regarding the

accuracy of the final model (an example of local poor fit is shown in

Fig. 1a).

One consequence of the rotational averaging in small-angle solu-

tion scattering data is the possibility that multiple non-unique solu-

tions may be obtained to any modelling calculation. Authors must

endeavour to describe the degree of ambiguity of any shape recon-

struction. One way to report this ambiguity is by the normalized

spatial discrepancy values obtained through clustering or averaging

of individual models (Volkov & Svergun, 2003). Additionally, if

modelling calculations generate multiple distinct populations of

solutions that fit the data equally well, each of these populations

should be described. Alternatively, if only one solution is presented,

justification for the rejection of other solutions must be made.

Perhaps the most powerful use of SAS is to combine atomic models

for individual domains and to use this information to represent the

global structure using rigid-body modelling (Petoukhov & Svergun,

2005). Where authors are reporting rigid-body models, a description

of how the starting structures were obtained must be provided (e.g.

crystallography, NMR or homology models). Additionally, any other

modelling assumptions that have been made (such as distance

restraints, disorder and symmetry) need to be detailed and justified.

6. Concluding remarks

These guidelines largely focus on those SAS experiments that have

been used to produce atomic coordinates, whether they are dummy-

atom (bead) models or atomic positions from rigid-body calculations.

While such structures can be produced relatively easily and may be

visually appealing, it is of the utmost importance that authors and

readers appreciate the accuracy and limitations of these models, the

appropriateness of the modelling techniques employed and therefore

the validity of any conclusions drawn. These guidelines form the

foundation of what will hopefully be an evolving process of stan-

dardizing the way in which structural biology is reported from small-

angle scattering experiments.
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