SUPPLEMENTARY MATERIAL ## **Supplementary Table S1**. Protein geometry. | Protein geometry | Rotamer outlier | 2.77 | |------------------|---------------------------|--------| | | Ramachandran outliers | 0.19% | | | Ramachandran outliers | 0.17/0 | | | Ramachandran favored | 96.93% | | | Cβ deviations >0.25 | 0 | | | Residues with bad bonds: | 0 | | | Residues with bad angles: | 0.76% | | | | | ## Supplementary Table S2. Shape complementarity statistics | POM1 Fab:huPrP ^c | 0.753 | |--------------------------------|-------| | ICSM18 Fab: huPrP ^c | 0.703 | | VRQ14 Fab:ovPrP ^c | 0.730 | #The shape complementarity statistics were calculated by using program CCP4 Sc (Lawrence & Colman, 1993). **Supplementary Figure S1.** Plots of the mean pair wise RMSDs to the human prion structure bound with POM1 for each residue of the native human structure from X-ray (red) and NMR studies (green). The plots were generated by moving a window of three residues along the sequence and plotting the mean pair-wise RMSD (Å) over the central residue. The shaded area represents the region of huPrP^c in interaction with POM1 Fab. | | | CDR1 | CDR2 | | |--|--|--|---|-----| | POM1 V _H
ICSM18 V _H
VRQ14 V _H | QVQLQQSGTELVMPGASVKMSCKA
EVQLQQSGPELVKPGSSVKISCKA
QIQLVQSGPELKKPGETVKISCKA | SRNTFTDYNLDWVKQSHO | GKTLEWIGNVYPNNGVTGY | 60 | | | ::** *** ** :**:*** | * ***: * : *** | *: :**:* : : : | 00 | | POM1 V _H | NEKFKGKATLTVDESSSTAYMQLS | | | 120 | | ICSM $18 V_H$ | NQKFRGKATLTVDKSSSTAYMELH | SLTSEDSAVYYCALY | -YYDVSYWGQGTLVTVSSA | 117 | | VRQ14 V _H | ADDFKGRFVFSLDTSASTAYLQIN | NLKNEDTATYFFTRG | TDYWGQGTTLTVSSA | 114 | | | | | | | | | | CDR1 | CDR2 | | | POM1 V _L | DIVLTQSPAILSVSPGERVSFSCR | | | 55 | | ICSM18 V _L | QIVLTQSPAIMSASPGEKVTMTCS | ASQNIGTSIHWYO | QQRTNESPRLIIKYASESI
QQKSGTSPKRWIYDTSKLA | 54 | | | | ASQNIGTSIHWYO | QQRTNESPRLIIKYASESI
QQKSGTSPKRWIYDTSKLA | | | ICSM18 V _L
VRQ14 V _L
POM1 V _L | QIVLTQSPAIMSASPGEKVTMTCS | ASQNIGTSIHWY(ASSSVSYMHWY(SSQSLLDSDGKTYLNWLI :*: ::* CDR3 | QQRTNESPRLIIKYASESI
QQKSGTSPKRWIYDTSKLA
LQRPGQSPKRLIYLVSRLD
*:**: *.* | 54 | | ICSM18 V _L
VRQ14 V _L | QIVLTQSPAIMSASPGEKVTMTCS
DVVMSQTPLTLSVTIGQPASISCK
::*::*: * :*::* | ASQNIGTSIHWYC
ASSSVSYMHWYC
SSQSLLDSDGKTYLNWLI
:*: ::*
CDR3
SEDIADYYCQQSNTWPY
AEDAATYFCHQWRSNPY | QQRTNESPRLIIKYASESI
QQKSGTSPKRWIYDTSKLA
LQRPGQSPKRLIYLVSRLD
*:**: *.*.
TFGGGTKLEL 106
TFGGGTKLEI 105 | 54 | **Supplementary Figure S2.** Sequence alignment of the variable heavy chains and the variable light chains from POM1 Fab, ICSM18 Fab and VRQ14 Fab. **Supplementary Figure S3.** Sequence alignment of the structured C-terminal domain of human, mouse, bovine and sheep prion proteins. **Supplementary Figure S4.** ELISA characterization of the binding properties of the Fab fragment antibody POM1 against different prion proteins; moPrP^c, ovPrP^c and boPrP^c are shown in green, blue and red, respectively. **Supplementary Figure S5.** The arrangements of the PrP^c chains in the crystal of ICSM18 Fab:huPrP^c and POM1 Fab:huPrP^c. (A) Illustration of a 4-stranded antiparallel β sheet structure between the neighboring PrP^c molecules in the crystallographic symmetry related arrangement of ICSM18 Fab:huPrP^c. (B) Neighboring PrP^c molecules of the crystallographic symmetry related arrangement of POM1 Fab:huPrP^c interact with one another through the loop structure between sheet β 1 and helix α 1.