
short communications

Acta Cryst. (2012). D68, 1697–1700 doi:10.1107/S0907444912040590 1697

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Nearest-cell: a fast and easy tool for locating crystal
matches in the PDB

V. Ramraj,a,b* G. Evans,b

J. M. Diprosea and R. M. Esnoufa

aThe Division of Structural Biology, Wellcome

Trust Centre for Human Genetics, University of

Oxford, Oxford OX3 7BN, England, and
bDiamond Light Source, Harwell Science and

Innovation Campus, Didcot OX11 0DE, England

Correspondence e-mail: varun@strubi.ox.ac.uk

Received 17 July 2012

Accepted 25 September 2012

When embarking upon X-ray diffraction data collection from a potentially novel

macromolecular crystal form, it can be useful to ascertain whether the measured

data reflect a crystal form that is already recorded in the Protein Data Bank and,

if so, whether it is part of a large family of related structures. Providing such

information to crystallographers conveniently and quickly, as soon as the first

images have been recorded and the unit cell characterized at an X-ray beamline,

has the potential to save time and effort as well as pointing to possible search

models for molecular replacement. Given an input unit cell, and optionally

a space group, Nearest-cell rapidly scans the Protein Data Bank and retrieves

near-matches.

1. Introduction

X-ray crystallography remains the primary method for the determi-

nation of the atomic structure of biological macromolecules. At the

time of writing, more than 80 000 structures form the Protein Data

Bank (PDB; http://www.wwpdb.org; Westbrook et al., 2005), of which

roughly 87% have been solved using X-ray crystallography.

The rate at which macromolecular crystallography (MX) data sets

can now be measured at synchrotron-radiation facilities (Winter &

McAuley, 2011) raises issues relating to the effective use of beamtime.

Automated tools that allow synchrotron beamline users to be as

efficient as possible are under continual development (Bahar et al.,

2006; Keegan & Winn, 2007; Panjikar et al., 2009; Winter & McAuley,

2011). The tool described here, Nearest-cell, is a useful addition to this

automation armoury.

Somewhat masked by the success of MX, numerous challenges

remain in protein production, purification and crystallization. This

is particularly the case for complexes comprising multiple protein

subunits as well as membrane proteins, where there can be an

elevated risk of purifying host-system expression byproducts along

with the target of interest. Given the difficulties associated with

crystallizing many of these ‘high-impact’ targets, it is often the case

that the ‘impurity’ protein crystallizes more readily. A ready way of

determining whether a crystal might arise from an impurity, such as

Nearest-cell, is particularly useful in these situations.

Nearest-cell has been installed at the MX beamlines at the

Diamond Light Source and uses output from automated data-analysis

pipelines such as fast_dp (Winter & McAuley, 2011) to provide users

with a putative list of similar unit cells (and hence, potentially,

structures) in the PDB.

2. Experimental procedures

Nearest-cell depends on a custom set of software (a pipeline)

designed to update an internal database. It was written to be executed

weekly, coinciding with updates of the PDB.

2.1. Database pipeline

The pipeline is written in C++; it updates a database of key

information (PDB ID, organism, experimental method, unit cell,

space group, R factors) from PDB XML files and consists of software

http://crossmark.crossref.org/dialog/?doi=10.1107/S0907444912040590&domain=pdf&date_stamp=2012-11-09


and a database that is used to store

the necessary information for rapid

retrieval by Nearest-cell. It uses part

of the PHENIX software suite

(Adams et al., 2010), specifically

phenix.explore_metric_symmetry, to

pre-compute the reduced symmetry

P1 cell for a given unit cell and space

group. The pipeline parses the unit

cell corresponding to space group

P1 from the phenix.explore_metric_

symmetry output and stores it in the

database.

The pipeline runs automatically to

coincide with the PDB update

schedule and performs the following

tasks.

(i) Synchronize a local PDB XML

repository with the PDBe mirror.

(ii) Extract key information from

new or changed PDB entries and add

it to the database. Purge superseded

entries.

(iii) Run phenix.explore_metric_

symmetry on each updated PDB

entry; store P1 cell in the database.

(iv) Generate flat file SEQRES and

ATOM records for each updated

PDB XML file.

2.1.1. Auxiliary pipeline features.

The pipeline also stores the number

of space-group symmetry operators

for each space group. While PHENIX

can be invoked each time for this

information as required, it is faster for

Nearest-cell to retrieve this informa-

tion from a database. These data are

used by the family-clustering algo-

rithm (described below). The pipeline

also allows the manual curation of

alternate space groups and indexing

conventions that occasionally arise in

the PDB.

The SEQRES records that are

generated by the pipeline are simple

short communications

1698 Ramraj et al. � Crystal matches in the PDB Acta Cryst. (2012). D68, 1697–1700

Figure 1
Schematic showing Nearest-cell’s logic. (1)
The input cell is first converted to P1 if
required. (2) It is then compared with every
known P1 cell in the PDB using MATFIT
(McLachlan, 1972; Kabsch, 1976, 1978); the
schematic in box 2a shows an example
superposition with one permutation of the
database P1 cell (O0 superposed on O, A0 on
A, B0 on B and C0 on C). If the lowest r.m.s.
difference of all six superpositions is less than
the specified cutoff (see x2.2.1), the database
cell qualifies as a positive match. (3) The
family-clustering algorithm clusters PDB
entries into families of sequence similarity.
Results are then displayed to the user with
each family represented by the PDB entry
with the smallest r.m.s. difference from the
input. Families can be expanded to show all
hits, as shown in Fig. 2.



FASTA format files containing descriptive headers and single-letter

amino-acid sequences for each chain of a PDB entry. The single-letter

sequence is derived from the three-letter amino-acid code in the PDB

XML file. To account for nonstandard amino acids, the pipeline is

able to call a JSON web service developed by the EBI for this specific

purpose (personal communication with Jose Dana and Sameer

Velankar of the EBI) to retrieve the appropriate standard amino acid

for a given nonstandard input. For example, the amino acid seleno-

methionine, coded in a PDB record as ‘MSE’, is resolved by the

JSON web service to ‘M’ (methionine). Once again, it is advanta-

geous to retrieve all nonstandard amino-acid mappings in advance,

since the JSON query is slower and relies on an external server. The

pipeline has the capacity to pre-fetch and store all of these mappings

to the database, although this feature need not be run weekly.

2.2. Nearest-cell

Nearest-cell is a multi-process capable command-line driven C++

application with a Python web service front end. Fig. 1 describes

the logic underpinning Nearest-cell. When invoked, it calls several

external applications.

(i) phenix.explore_metric_symmetry for reducing the query unit

cell to a P1 unit cell.

(ii) MATFIT, a superposition subroutine (McLachlan, 1972;

Kabsch, 1976, 1978) described in x2.2.1.

(iii) CD-HIT (Li & Godzik, 2006), a sequence-clustering method,

as part of the family-clustering algorithm (x2.2.2).

2.2.1. MATFIT. This is a Fortran subroutine that calculates the

rotation matrix and translation vector for the best superposition of

two sets of atomic position vectors (McLachlan, 1972; Kabsch, 1976,

1978) and returns an r.m.s. difference. When Nearest-cell compares

the input P1 cell against a pre-computed PDB P1 cell in its database,

it tests all six valid right-handed combinations of axes (since proteins

are enantiomorphic), running MATFIT each time and choosing the

smallest r.m.s. difference of the six. If this lowest r.m.s. difference is

within a cutoff (either specified on the command line or, by default,

set to the larger of 2.5 Å or 1% of the sum of the longest and the

shortest unit-cell dimensions), the PDB cell qualifies as a positive

match. Box 2a in Fig. 1 shows one such comparison between the

query P1 cell and a database P1 cell.

2.2.2. CD-HIT. This program (Li & Godzik, 2006) groups amino-

acid sequences into clusters at a desired level of sequence identity

(set to 90% of the length of the shortest sequence by default). Each

cluster is described by a representative sequence. It is used here as

a preliminary clustering step for the family-clustering algorithm

described below.

short communications

Acta Cryst. (2012). D68, 1697–1700 Ramraj et al. � Crystal matches in the PDB 1699

Figure 2
Typical output from Nearest-cell, shown as part of Diamond’s fast_dp report for a thaumatin unit cell. The results are appended to the end of a fast_dp run. Family 1 contained
46 thaumatin unit cells clustered together, showing the effectiveness of the family-clustering algorithm for reducing the number of results displayed to the user (inset). Note
that this family contains two exact matches (r.m.s. difference = 0.00 Å).



2.3. Family-clustering algorithm

This algorithm was developed to exploit similarity at the sequence

level to usefully group matches at the PDB-record level, which can

contain different numbers of chains and/or belong to different space

groups. This allows Nearest-cell to substantially reduce the output.

The problem is evident for an input cell matching that of horse heart

myoglobin (PDB entry 3vau; Yi & Richter-Addo, 2012), for instance,

which produces 126 hits when run through Nearest-cell. Since most of

the hits are from the same family (myoglobin), the family-clustering

algorithm reduces the output to representative PDB IDs for each of

just five families. The output from a more typical query is shown in

Fig. 2.

The basic logic of the algorithm is shown in step 3 of Fig. 1. All

sequences from all PDB entries with matching P1 cells are grouped

into clusters using CD-HIT. The contents of the asymmetric unit for

each PDB entry can then be described by how many examples of each

cluster it contains. This can then be expanded to describe the P1 cell

by multiplying by the number of symmetry operators for the space

group. Finally, a pair of PDB IDs are clustered together into the same

family only if the CD-HIT cluster numbers and multiplicities match.

3. Results and discussion

Nearest-cell is currently available for public use through the

web service located at http://www.strubi.ox.ac.uk/nearest-cell/

nearest-cell.cgi.

The web service takes a unit cell as required input. Space group

is optional, and if not provided is assumed to be P1. In parallel

computation mode, using two cores on a modern computer, compu-

tation takes just under 1 s. Across 24 cores, this computation time is

reduced to 0.3 s. The entire web-service request from start to finish

takes about 5 s if the space group is P1 and about 10 s otherwise (the

overhead of invoking PHENIX to reduce the unit cell to P1 using

phenix.explore_metric_symmetry). Note that space groups need to be

in PHENIX-accepted format (Adams et al., 2010). The CGI script

can also be invoked using a GET request with the parameters

in the URL; for example, http://www.strubi.ox.ac.uk/nearest-cell/

nearest-cell.cgi?unit-cell=24,24,24,90,90,90&space-group=R3:R. In

this way, URLs can be generated programmatically as part of other

pipelines. This is especially useful for facilities such as the Diamond

Light Source, where Nearest-cell has been integrated into internal

pipelines such as fast_dp (Fig. 2; Winter & McAuley, 2011).

4. Conclusion

The design decision for Nearest-cell was to base match solely on the

unit-cell dimensions rather than attempting to match (low-resolution)

structure factors. Although our approach is less selective and gives

more false positives, it allows Nearest-cell to be run more rapidly and

directly after unit-cell characterization, thereby informing effective

use of beamtime. While current PDB search tools do allow a search of

unit-cell dimensions within given tolerances, this does not provide the

comprehensive matching provided by Nearest-cell. The more rigorous

approach of matching structure factors is embodied within molecular-

replacement strategies such as BALBES (Long et al., 2008).

The authors would like to thank Jose Dana and Sameer Velankar

at the European Bioinformatics Institute for their support with the

PDB XML schemas and EBI web services. We also thank Dave Stuart

for initial discussions and encouragement and for establishing this

Oxford–Diamond link. The authors would also like to acknowledge

Graeme Winter, Alun Ashton, Mark Williams and Bill Pulford at

Diamond Light Source for their assistance in setting up Nearest-cell

on the Diamond MX beamlines. VR is partly supported by a Joint

Studentship award between Diamond Light Source and the Univer-

sity of Oxford. JMD is supported by the UK MRC. RME is supported

by Wellcome Trust Core Award Grant No. 090532/Z/09/Z.

References

Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221.
Bahar, M. et al. (2006). Acta Cryst. D62, 1170–1183.
Kabsch, W. (1976). Acta Cryst. A32, 922–923.
Kabsch, W. (1978). Acta Cryst. A34, 827–828.
Keegan, R. M. & Winn, M. D. (2007). Acta Cryst. D63, 447–457.
Li, W. & Godzik, A. (2006). Bioinformatics, 22, 1658–1659.
Long, F., Vagin, A. A., Young, P. & Murshudov, G. N. (2008). Acta Cryst. D64,

125–132.
McLachlan, A. D. (1972). Acta Cryst. A28, 656–657.
Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. & Tucker, P. A.

(2009). Acta Cryst. D65, 1089–1097.
Westbrook, J., Ito, N., Nakamura, H., Henrick, K. & Berman, H. M. (2005).

Bioinformatics, 21, 988–992.
Winter, G. & McAuley, K. E. (2011). Methods, 55, 81–93.
Yi, J. & Richter-Addo, G. B. (2012). Chem. Commun. 48, 4172–4174.

short communications

1700 Ramraj et al. � Crystal matches in the PDB Acta Cryst. (2012). D68, 1697–1700

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5261&bbid=BB12

