Acta Crystallographica Section D

research papers

Supporting Information:

Structural characterization of *Spinacia oleracea* trypsin inhibitor III (SOTI-III)

Bernhard Glotzbach τ^{a1}, Stefan Schmelz τ^b, Michael Reinwarth^a, Andreas Christmann^a, Dirk W. Heinz^b and Harald Kolmar^a*

^aInstitute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Petersenstraße 22, Darmstadt, 64287, Germany, and ^bDepartment of Molecular Structural Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany

Correspondence email: Kolmar@biochemie-tud.de

 $^{1}\,\tau$ - These authors contributed equally.

Appendix A. P-HPLC

For analytical HPLC *Varian* 920-LC analytical HPLC equipped with an UV-Vis detector for detection at 220 nm and 280 nm was used. For analytical RP-HPLC a *Phenomenex* Synergi 4u Hydro-RP 80 Å (250 x 4.6 mm, 4 μ m, 8 nm) column was used at a flow rate of 1 mL/min. Preparative RP-HPLC was conducted on a *Varian* 940 LC equipped with a scale-up module and an axia-packed *Phenomenex* Luna C-18 (250 x 21.2 mm, 4 μ m, 8 nm) column at a flow rate of 18 mL/min.

Eluent systems for both analytical and semi-preparative scales were performed using mixtures of Millipore grade water with 0.1% aq. TFA as eluent A and 90 % aq. acetonitrile containing 0.1% aq. TFA as eluent B.

Gradients started with isocratic 10 % eluent B for 2 (on analytical scale) or 5 (on semipreparative scale) min followed by a linear gradient of 10 to 80 % B over 20 min at a flow rate of 1 mL/min or 18 ml/min, respectively.

Appendix B. LCMS

ESI mass spectra were recorded with a Shimadzu LCMS-2020 equipped with a Phenomenex Jupiter 5u C4 LC column (50 x 1 mm, 5 μ m, 300 Å) and a Bruker-Franzen Esquire LC mass spectrometer. The eluent system consisted of eluent A (0.1% aq. formic acid, LC-MS grade) and eluent B (acetonitrile containing 0.1% formic acid, LC-MS grade). For clarity only the averaged mass spectra of the relevant segment is shown (section 3).

Figure S1. LC-ESI-MS analysis of SOT-III variants before and after oxidation and folding. (1) LC-ESI-MS of linear precursor of SOTI-III. (2) LC-ESI-MS of folded peptide. (3) LC-ESI-MS of linear precursor of SOTI-III F14A. (4) LC-ESI-MS of folded peptide.

Appendix C. Structural analysis

Figure S2. Electron density maps of SOTI-III. (*a*) Un-biased F_o - F_c electron density map of SOTI-III (chain E) contoured at 2.5 δ . SOTI-III residues are superposed from refined coordinates. (*b*) Refined $2F_o$ - F_c electron density map of SOTI-III (chain B) contoured at 1.0 δ . Bovine pancreatic trypsin is shown in transparent surface representation.

trypsin/SOTI-III complex	RMS (Å ²)	trypsin apo vs. trypsin/SOTI-III	RMS (Å ²)
chain AD vs chain BE	0.200	apo - chain AD	0.267
chain AD vs chain CF	0.251	apo - chain BE	0.252
chain BE vs chain CF	0.229	apo - chain CF	0.259
average \pm STD	$\begin{array}{c} 0.227 \pm \\ 0.026 \end{array}$	average \pm STD	$\begin{array}{c} 0.259 \pm \\ 0.008 \end{array}$

Figure S3. Coordination of SOTI-III does not cause domain or loop shift of trypsin. Trypsin apo-form (blue) was superposed with all three monomers of trypsin (white, chain A, B and C) loaded with trypsin inhibitor each (green, chain D, E and F). Superposition is based on trypsin backbone residues. Root mean square (RMS) values are listed in the table on the right hand site. STD: standard deviation.

Figure S4. Comparison of the coordination of all three bound SOTI-III monomers. B-factors for the inhibitor residues are indicated by rainbow colors, whereas blue indicates a low and red a high B-factor (scale bar at bottom right corner). The sequence of each chain is colored according to the structural B-factors. Disulfide bridges are shown in black/green. Arg32 and Phe14 are shown in grey sticks. SOTI-III is most flexible in region of L1, α 1 and L3. Note that the difference between the B-factors is in the range of 10 to 30 Å².

Figure S5. Schematic diagram of interactions between pancreatic trypsin and SOTI-III. Interactions for each of the three complexes are displayed (*(a), (b)* and *(c)*). Diagrams were generated with PDBsum (Laskowski, 2001). Residue colors: Positive (H,K,R); negative (D,E); S,T,N,Q = neutral; A,V,L,I,M = aliphatic; F,Y,W = aromatic; P,G = Pro&Gly; C = cysteine.

Figure S6. Superposition of *wt* and F14A SOTI-III coordination with pancreatic trypsin at the mutated site. In monomer C of the SOTI-III F14A/trypsin co-complex Tyr154 partly blocks the cavity that was formerly occupied by Phe14 of SOTI-III. SOTI-III *wt* and the F14A variant are colored blue and purple, respectively. Trypsin of the *wt* co-complex is shown in white, with a white transparent surface of chain C. Trypsin of the F14A variant is shown in yellow, except Y154 of chain C, which is highlighted in orange.

Figure S7. Superposition of SOTI-III and the *in-silico* model of SOTI-III. SOTI-III structure from the co-complex is colored in a blue-red gradient, which correlates to RMSD of C_{α} atoms with those of the *in-silico* model colored in grey. The active site loop with Arg32 shows the largest discrepancies between the structure and the *in-silico* model.

Table S1. Characterization of SOTI-III disulfide bonds. The type of bridge is abbreviated (RHH: right hand hook; LHS: left handed spiral; RHS: right handed spiral). Chi1, chi2, chi3, chi2' and chi1' values are also recorded. Statistics were acquired with PDBsum (Laskowski, 2001).

Cysteine linkage	1 st cysteine	2 nd cysteine	Туре	Chi1	Chi2	Chi3	Chi2'	Chi1'
1-4	D4	D21	RHH	69.2	79.5	89.0	-42.5	-63.7
2-5	D11	D25	RHS	57.6	101.3	104.5	68.1	177.8
3-6	D20	D36	LHS	-64.0	-73.5	-77.4	-60.3	-66.9

Table S2. Table of β - and γ -turns of SOTI-III inhibitor. (*a*) The following data about each β -turn are shown: The residue numbers of residues i and i+3 in the turn, the one-letter amino acid code of residues i, i+1, i+2 and i+3 in the turn, and the turn type. For each of the central two residues (i+1 and i+2) phi, psi and chi1 are recorded. The final columns show the distance between the C_a atoms of residues i and i+3 and whether or not a hydrogen bond exists between these two residues. (*b*) The following data about the γ -turn are shown: start and end residues of the gamma turn (residues i and i+2), the amino acid sequence of the residues in the turn and the turn type. Phi, psi and chi1 dihedral angles are given for the central residue (i+1). The final column gives the distance between the C_a atoms of residues (i+1). The final column gives the distance between the C_a atoms of residues i and i+2. Statistics were acquired with PDBsum (Laskowski, 2001).

(a)

Loop Turn	T	0	Turn	Residue i+1			Residue i+2			i to i+3	H-
	Sequence	type	Phi	Psi	Chi	Phi	Psi	Chi	C _α -dist b	bond	
L1	Pro6-Ala9	PSGA	П	-56.8	132.8	-60.6	94.1	-11.3	-	5.7	yes
L2	Ser12-Gly15	SGFG	I	-62.6	-14.3	-	-92.0	-12.9	-66.0	5.3	yes
L3	Cys20-Gly23	CCSG	I	-53.4	-37.5	-63.7	-77.2	-14.1	70.9	5.1	yes
L4	His28-Leu31	HPIL	IV	-72.1	-18.7	27.0	-125.7	-56.9	-63.0	5.6	

(b)

No. S	Oterrt	Start End	Sequence	Turn type -	Residue i+1			
	Start				Phi	Psi	Chi1	i to i+2 Ca-dist
L4	Leu31	lle33	LRI	INVERSE	-91.8	48.4	-64.0	5.6

Table S3. Interface statistics of trypsin and SOTI-III co-complex structure. Chain A, B and C correspond to trypsin monomers, respectively. Chain D, E and F are SOTI-III monomers, respectively. Statistics were acquired with PDBsum (Laskowski, 2001).

Chains	No. of interface residues	Interface area (Å ²)	No of H-bonds	No of non-bonded contacts
A : D	25 : 14	696 : 935	12	124
B : E	23 : 15	777 : 994	12	135
C : F	23 : 15	764 : 1012	11	125
average	24 : 15	746 : 980	12	128

Appendix D. Supporting Methods

Comparison of SOTI-III/trypsin co-complex coordination with all known trypsin inhibitors structures

Alignment of the SOTI-III/trypsin co-complex with other trypsin inhibitors deposited at the Protein Data was performed to select those close to Phe14 of SOTI-III. An initial list with 494 structures was generated using the advanced search of the database by searching for 'trypsin' with two or more different protein/peptide chains. All structures in this list were superposed with PyMol to trypsin in chain A of the SOTI-III/trypsin co-complex. Using PyMol's selection algebra only those structures were kept, which are blocking the active site of trypsin and which are simultaneously in close proximity (<3Å) to residues 12-15 of SOTI-III in chain D. This resulted in a list of 110 trypsin-inhibitor structures. After manual inspection only the following 99 structures remained: 1AN1, 1AVW, 1AVX, 1BRC, 1BZX, 1C9P, 1C9T, 1C07, 1D6R, 1EJA, 1EJM, 1EJM, 1EZS, 1EZU, 1EZU, 1F2S, 1F7Z, 1G9I, 1H9H, 1H9I, 1K9O, 1LDT, 1MCT, 1OPH, 1OX1, 1P2I, 1P2J, 1P2K, 1PPE, 1SBW, 1SFI, 1SLV, 1SLW, 1SLX, 1SMF, 1TAB, 1TAW, 1TFX, 1TFX, 1TPA, 1YKT, 1YLC, 1YLD, 1Z7K, 1ZR0, 1ZR0, 2BTC, 2F3C, 2F91, 2F13, 2F14, 2F15, 2FTL, 2FTM, 2G81, 2ILN, 2ILN, 2O9Q, 2PLX, 2PTC, 2QN5, 2QYI, 2RA3, 2RA3, 2STA, 2STB, 2TGP, 2TPI, 2UUY, 2XTT, 3BTD, 3BTE, 3BTF, 3BTG, 3BTH, 3BTK, 3BTM, 3BTQ, 3BTT, 3BTW, 3D65, 3FP6, 3FP7, 3FP8, 3I29, 3M7Q, 3MYW, 3MYW, 3OTJ, 3P92, 3RDZ, 3RDZ, 3TGI, 3TGJ, 3TGK, 3TPI, 4ABI, 4ABJ, 4TPI.