Supplemental Materials

Mechanism for Controlling the Monomer-Dimer Conversion of SARS Coronavirus Main Protease

Cheng-Guo Wu1, Shu-Chun Cheng2, Shiang-Chuan Chen1, Juo-Yan Li1, Yi-Hsuan Fang1, Yau-Hung Chen2 and Chi-Yuan Chou1*

1Department of Life Sciences and Institute of Genome Sciences
National Yang-Ming University
Taipei 112, Taiwan

2Department of Chemistry
Tamkang University
Tamsui 251, Taiwan

* Correspondence information for Chi-Yuan Chou
Phone: +886-2-28267168, FAX: +886-2-28202449
E-mail: cychou@ym.edu.tw

Containing 1 supplement figure
Supplemental Figure 1. AEC pattern of the N-strept tagged R298A mutant of SARS-CoV M^{pro}. The amount of protein used was 15 μl (2 mg/ml), and the total volume of the cell was 330 μl. A and B, show the trace of absorbance at 250 nm of the N-strept tagged R298A mutant during the experiments at phosphate buffer (pH 7.6) (A) and a substrate concentration of 200 μM (B), respectively. C, shows the continuous c(s) distributions of the proteins from the best-fit analysis of the 250 nm results. Solid and dashed lines show the results in phosphate buffer (pH 7.6) and in the substrate concentration of 200 μM, respectively. Two straight dotted lines indicate the positions of the monomer (M) and dimer (D). Insets show the residual bitmap of the raw data and the best-fit results.