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Research projects in structural biology increasingly rely on

combinations of heterogeneous sources of information, e.g.

evolutionary information from multiple sequence alignments,

experimental evidence in the form of density maps and

proximity constraints from proteomics experiments. The

OpenStructure software framework, which allows the seamless

integration of information of different origin, has previously

been introduced. The software consists of C++ libraries which

are fully accessible from the Python programming language.

Additionally, the framework provides a sophisticated graphics

module that interactively displays molecular structures and

density maps in three dimensions. In this work, the latest

developments in the OpenStructure framework are outlined.

The extensive capabilities of the framework will be illustrated

using short code examples that show how information from

molecular-structure coordinates can be combined with

sequence data and/or density maps. The framework has been

released under the LGPL version 3 license and is available for

download from http://www.openstructure.org.
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1. Introduction

In computational structural biology there is a growing demand

for tools operating at the interface of theoretical modelling,

X-ray crystallography, electron microscopy, nuclear magnetic

resonance and other sources of information for the spatial

arrangement of macromolecular systems (Biasini et al., 2010;

Kohlbacher & Lenhof, 2000; Philippsen et al., 2007). Synergy

between these fields has led to methods which, for example,

combine electron-density information with evolutionary

information from sequence alignments and structural infor-

mation from computational models (DiMaio et al., 2009;

Leaver-Fay et al., 2011; Alber et al., 2007; Trabuco et al., 2008;

Rigden et al., 2008). The need to combine heterogeneous data

in incompatible formats is often found to be the reason why

new methods in computational structural biology rely on

custom-made ad hoc combinations of command-line tools

built to perform specific tasks. Hence, to facilitate these

inconvenient data conversions and to make the development

of new methods more efficient, we have developed Open-

Structure as a powerful and flexible platform for methods

development in computational structural biology (Biasini et

al., 2010). This open-source framework provides an expressive

application programming interface (API) and seamlessly

integrates with external tools, for example for structural

superposition and comparison (Zhang & Skolnick, 2005;

Zemla, 2003; Holm & Sander, 1993; Olechnovic et al., 2012),

secondary-structure assignment (Kabsch & Sander, 1983) and

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5090&bbid=BB53
http://crossmark.crossref.org/dialog/?doi=10.1107/S0907444913007051&domain=pdf&date_stamp=2013-04-19


homology detection (Altschul et al., 1990, 1997; Söding, 2005).

OpenStructure has consistently been extended and its API has

matured to allow the building of complex software stacks

such as homology-modelling software, structure-comparison

methods (Mariani, Kiefer et al., 2011) and model-quality

estimation packages (Benkert et al., 2011).

Since the previous paper on OpenStructure, substantial

improvements to the graphics, the performance and the user

interface have been made and support for molecular-dynamics

trajectories, integration of external software tools and data

handling has significantly been extended. Here, we first briefly

describe the architecture of the OpenStructure framework at

the code level. We then present the main components of the

1.3 release and the individual modules that interact with

molecular structures, density maps and sequence data. Code

examples will be used to demonstrate the smooth integration

of the OpenStructure components.1

2. Architecture

OpenStructure was conceived as a scientific programming

environment for computational protein structure bioinfor-

matics with the reuse of components in mind. The function-

ality of OpenStructure is divided into modules dealing with

specific types of data. mol and mol.alg are concerned with

molecular structures and the manipulation thereof. conop

is mainly concerned with the connectivity and topology of

molecules. seq and seq.alg handle sequence data (alignments

and single sequences). img and img.alg implement classes and

algorithms for density maps and images. File input and output

operations for all data types are collected in the io module. gfx

provides functionality to visualize protein structures, density

maps and three-dimensional primitives. gui implements the

graphical user interface.

The framework offers three tiers of access, in which at the

lowest level the functionality of the framework is implemented

as a set of C++ classes and functions meeting both the

requirement for computational efficiency and low memory

consumption. The framework makes heavy use of open-source

libraries, including FFTW for fast Fourier transforms (Frigo &

Johnson, 2005), Eigen for linear algebra (v.2; http://

eigen.tuxfamily.org) and Qt for the graphical user interface.

The middle layer is formed by Python modules, which are

amenable to interactive work and scripting. This hybrid

compiled/interpreted environment combines the best of both

worlds: high performance for compute-intensive algorithms

and flexibility when prototyping or developing applications.

In fact, this approach to multi-language computing has found

favour with many in the scientific computing community

(Schroeder et al., 2004; Kohlbacher & Lenhof, 2000; Adams

et al., 2011) and Python has established itself as the de facto

standard scripting language for scientific frameworks. In

addition to general-purpose libraries, e.g. NumPy (Dubois

et al., 1996), SciPy (http://www.scipy.org/) and the plotting

framework matplotlib (Hunter, 2007), there are many bio-

informatics and structural biology toolkits that are either

completely implemented in Python or provide a well main-

tained Python wrapper to their functionality (Sukumaran &

Holder, 2010; Chaudhury et al., 2010; Hinsen & Sadron, 2000;

Kohlbacher & Lenhof, 2000; Adams et al., 2011). The combi-

nation of general-purpose frameworks with specialized

libraries allows new algorithms to be developed with very little

effort.

At the highest level, we offer a graphical user interface

with three-dimensional rendering capabilities and controls to

manipulate structures or change rendering parameters. The

three-layer architecture is one of the main strengths of

OpenStructure and sets it apart from other commonly used

tools in computational structure bioinformatics. Rapid

prototyping can be performed in Python, and if successful

the code can subsequently be translated to C++ for better

performance. Since most of the functions in Python have a

C++ counterpart, the Python/C++ adaption is straightforward

and can be completed in a very short time.

3. Molecular structures

The software module mol implements data structures to work

with molecular data sets. At its heart lie the EntityHandle and

EntityView classes, which represent molecular structures such
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Figure 1
Schematic diagram of the components of entity handles and views. The molecular structure is represented as a tree-like structure rooted at the entity (E).
The levels of the tree are formed by chain (C), residue (R) and atom (A). In green, an example entity view containing only a selected subset of elements
is shown. The hierarchy of the entity view is separate from the handle; however, at every level the view maps back to its handle, giving access to its
properties.

1 Code examples and other supplementary materials have been deposited in
the IUCr electronic archive (Reference: IC5090). Services for accessing this
material are described at the back of the journal.



as proteins, DNA, RNA and small molecules. Other classes

deal with molecular surfaces as generated by MSMS (Sanner

et al., 1996) or other external tools. The EntityHandle class

represents a molecular structure. The interface of entities is

tailored to biological macromolecules, but this does not

prevent it being used for any kind of molecule: for example, an

entity may also represent a ligand or a collection of water

molecules, hence the rather generic name. An entity is in

general formed by one or more chains of residues. These

residues in a chain may be ordered, for example in a poly-

peptide, or unordered, for example a collection of ligands. A

residue consists of one or more atoms. The atoms store the

atomic position, chemical element type, anisotropic B factor,

occupancy, charge, atom bond list etc. The hierarchy of chains,

residues and atoms is arranged in a tree-like structure rooted

at the entity (Fig. 1). The atoms of an entity may be connected

by bonds, which group the atoms of the entity into one or more

connected components.

3.1. Working with subsets of molecular structures

The processing and visualization of molecular entities often

requires filtering using certain criteria. The results of these

filtering operations are modelled as so-called EntityViews

(Fig. 1), which contain subsets of atoms, residues, chains and

bonds of the respective EntityHandle. The entity view refer-

ences the original data; for example, modifications to atom

positions in the original entity handle are also reflected in

the entity view. This handle/view concept pertains to the full

structural hierarchy, i.e. residue views will only contain the

atoms that were part of the filtering etc. The EntityView class

shares a common interface with the EntityHandle class that

it points to and hence they can be used interchangeably in

Python. In C++, where type requirements are strict, we

employ the visitor pattern (Gamma et al., 1995) to walk

through the chain, residue and atom hierarchy without having

to resort to compile-time polymorphism through templates.

The use of entity views throughout the framework makes

the implemented algorithms more versatile. For example, the

code used to superpose two structures based on C� atoms can

also be used to superpose the side chains of a binding site. The

only difference is the view and thus the set of atoms that are

passed to the superposition function. These sets of atoms do

not need to be consecutive and thus arbitrary sets of atoms can

be superposed.

3.2. The query language: making selections

Entity views are conveniently created by using a dedicated

mini-language. Filtering a structure and returning subsets of

atoms, residues, chains and bonds is achieved by predicates

which are combined with Boolean logic, often referred to as

‘selection’. Typical examples include selecting all backbone

atoms of arginines, binding-site residues, ligands or solvent

molecules. Conceptually, the language is similar to the

selection capabilities of other software packages, e.g. VMD

(Humphrey et al., 1996), Coot (Emsley et al., 2010) or PyMOL

(Schrodinger).

The predicates may use any of the available built-in prop-

erties defined for the atoms, residues and chains. Examples

include the atom name, residue number, chain name or atom

element. A complete list of built-in properties is given in the

OpenStructure documentation. In addition, the predicates may

refer to user-defined properties declared using generic prop-

erties (see below). The within operator of the query language

allows the selection of atoms in proximity to another atom or

another previously performed selection.

Since selection statements can be applied both to Entity-

Handles and EntityViews, complex selections can be carried

out by chaining selection statements. For rare cases of highly

complex selections, the user may assemble the view manually,

for example by looping over the atoms and including atoms

meeting some conditions.

3.3. Selection example: superposition

As an example of how entity views make OpenStructure

functions more versatile, we will now consider the binding

sites of two haem-containing proteins. We will use the

Superpose function of the mol.alg module to calculate rotation

and translation operators that superpose the atoms of two

structures, firstly based on the coordinates of the haem ligands

and secondly on the residues binding the haem:

Ascanbes een,thesuperposition basedonhaematomsorhaem-bindingresiduesusethesameSuperposefunction.Theonlydifferenceisthe selectionstatementto preparethesubsetofatomsusedtosuperpose.

3.4. Mapping user-defined properties on molecular structures

Many algorithms calculate properties for atoms, residues,

chains, bonds or entities. Examples of such properties include

the sequence conservation of a residue or local structural

similarity scores. OpenStructure includes a system to store

these properties as key-value pairs in the respective handle

classes: the generic properties. Classes deriving from Generic-

PropertyContainer inherit the ability to store properties of

string, float, int and bool type, identified by a key. For each

of these data types, methods to retrieve and store values are

available in both Python and C++. As with all other built-in

properties, the view counterpart will reflect the generic

properties of the handle. Since generic properties are imple-

mented at a low level of the API, they are accessible by the

query language and may for example be used for substructure

selection or in colouring operations.

3.5. Connectivity and topology

The conop module interprets the topology and connectivity

of proteins, polynucleotides and small molecules. For example,
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after importing a structure from a PDB entry, bonds between

atoms have to be inferred and missing information has to be

completed. In addition, the conop module provides an infra-

structure for consistency checks. OpenStructure supports two

conceptually related yet different approaches for deriving the

connectivity information: a rule-based approach that connects

atoms based on rules outlined in a database and a heuristic

approach which uses a distance-based heuristic.

The rule-based approach to connectivity derivation is based

on a set of rules that define the bonding partners for each atom

based on its name. The rules are extracted from the chemical

component dictionary provided by the wwPDB (Berman et al.,

2003) and are stored in a compound library. Since this library

has knowledge of all residues deposited in the PDB, deviations

from the rules are easily detected and may be reported back to

the user. For automatic processing pipelines that operate on

large set of structures, strict settings when loading a structure

are advised in order to limit surprises.

For structures from other sources, including molecular-

dynamics simulations and virtual screening studies with

loosely defined naming conventions, the heuristic approach

might be more appropriate. The heuristic builder uses lookup

tables for the connectivity of standard nucleotides and stan-

dard amino acids, but falls back to a distance-based connection

routine for unknown residues or additional atoms that are

present in the structure. In contrast to the rule-based approach

outlined above, the heuristic builder is meant to be used as

a quick-and-dirty connectivity algorithm when working with

structures interactively.

3.6. Loading and saving molecular structures

OpenStructure contains the io module for importing and

exporting structures from and to various file formats such as

PDB, CRD and PQR. In the following, reading of molecular

structures and molecular-dynamics trajectory files is described

in more detail.

File input is concerned with data from external sources.

As such, importers are exposed to files of varying quality.

For automated processing scripts, it is crucial to detect non-

conforming files during import, as every nonconforming file is

a potential source of errors. For visualization purposes and

interactive work, on the other hand, one would like files to

load, even if they do not completely conform to standards.

To account for these two different scenarios, OpenStructure

introduced IO profiles in v.1.1. A profile aggregates flags that

fine-tune the behaviour of both the io and conop modules

during the import of molecular structures. The currently active

IO profile controls the behaviour of the importer upon

encountering an issue. By default, the import aborts upon

encountering a nonconforming file. This strict profile has been

shown to work well for files from the wwPDB archive. Many

files that could not be loaded using the strict settings, exposed

actual problems in the deposited files. These issues have been

reported and resolved in the meantime by the wwPDB.

Molecular-dynamics simulations generate a series of coor-

dinate snapshots of the simulated molecule. These snapshots

are often stored in binary files. OpenStructure supports the

reading of CHARMM-formatted DCD files in two different

ways. Firstly, the whole trajectory may be loaded into memory.

This is the recommended behaviour for small preprocessed

trajectories. However, since trajectories may well be larger

than the available RAM, loading the complete trajectory is

not always an option. The second alternative is to load only a

set of frames into memory. The remaining frames are trans-

parently fetched from disc when required. This allows the

efficient processing of very large trajectories without

consuming huge amounts of memory.

4. Sequences and alignments

Since the sequence and the structure of a protein are intrin-

sically linked, scientific questions in computational structural

biology often require the combination of structural and

sequence data. In fact, for many applications, methods based

on evolutionary information considerably outperform physics-

based approaches (Kryshtafovych et al., 2011; Mariani, Kiefer

et al., 2011). Thus, efficient and convenient mapping between

sequence information and the structural features of a protein

is crucial.

In OpenStructure, the functionality for working with

sequences, and the integration with structure data, is imple-

mented in the seq module. The principal classes Sequence-

Handle, AlignmentHandle and SequenceList represent the

three most common types of sequence data. Instances of

SequenceHandle hold a single, possibly gapped, nucleotide or

protein sequence. These instances serve as a container for

the raw one-letter-code sequence with additional methods

geared towards common sequence-manipulation tasks. The

SequenceList is suited for lists of sequences, e.g. sequences

resulting from a database search using BLAST (Altschul et al.,

1990). An AlignmentHandle holds a list of sequences which

are related by a multiple sequence alignment. The interface

for alignments is focused on column-wise manipulation; for

example, the insertion or removal of blocks or single columns.

The import of alignments and sequences is supported for the

FASTA, ClustalW or PIR formats, while export of sequence-

related data is implemented for the FASTA and PIR formats.

4.1. Efficient mapping of structure-based and
sequence-based information

The combination of structure and sequence information

is embedded into the core of the SequenceHandle class. A

structure may be linked to its matching amino-acid sequence

by simply attaching it, defining a relation between information

associated with residues in the structure and information

related to residues in the sequence. To determine the index of

the residue in the protein sequence at the nth position in the

alignment, the number of gaps prior to n needs to be

subtracted. A naive mapping implementation counting the

number of gaps prior to position n would scale linearly with n,

which is suboptimal for long sequences. For efficiency, the

sequence handle maintains a list of all of the gaps present in
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the sequence. Instead of traversing the complete sequence,

traversal of the gap list yields the number of gaps before a

certain position. Since the number of gaps is usually much

smaller than the sequence length, a more efficient run time is

thus observed when mapping between residue index and

position in the alignment.

4.2. Algorithms for sequences and alignments

The seq.alg module contains several general-purpose

sequence algorithms. To align two sequences using a local

or a global scoring scheme, the Smith–Waterman (Smith &

Waterman, 1981) and Needleman–Wunsch (Needleman &

Wunsch, 1970) dynamic programming algorithms have been

implemented. Conservation of columns in an alignment may

be calculated with a variation of the algorithm from ConSurf

(Armon et al., 2001), which considers the pairwise physico-

chemical similarity of residues in each alignment column

(for an example, see Biasini et al., 2010). More sophisticated

sequence and alignment algorithms are available through one

of the available interfaces to external sequence-search tools

such as BLAST (Altschul et al., 1997, 1990), ClustalW (Larkin

et al., 2007), kClust (A. Hauser, unpublished work) or

HHsearch (Söding, 2005).

4.3. Example: ligand-binding site annotation

The following example illustrates how the annotation of

ligand-interacting residues for a protein may be automatically

inferred from a related protein structure.

Dengue fever is a neglected tropical disease caused by a

positive-sense RNA virus which contains a type 1 cap structure

at its 50 end. The dengue virus methyltransferase is responsible

for cap formation and is essential for viral replication (Egloff

et al., 2002). Thus, it is an attractive drug target. Four closely

related dengue-virus serotypes (DENV1–4) have been

isolated; each serotype is sufficiently different such that no

cross-protection occurs (Halstead, 2007). The structure of

DENV2 methyltransferase (PDB entry 1r6a; Benarroch et al.,

2004) binds S-adenysyl-l-homocysteine (SAH) and ribavirin

monophosphate (RVP) in two distinct binding sites. RVP is a

weak inhibitor of the activity of the enzyme (Benarroch et al.,

2004). In the structure of DENV3 methyltransferase (PDB

entry 3p97; Lim et al., 2011) only the SAH-binding site is

occupied. We would now like to identify which residues in the

second structure potentially interact with RVP. Since the two

structures share a sequence identity of 77% with each other,

the two sequences can be aligned with high confidence using a

pairwise sequence-alignment algorithm. Using the mapping

defined by the sequence alignment, we then transfer the

ligand-binding site information from the first structure to the

second structure:

This example illustrates how little effort it takes to map

between information contained in two distinct structures. The

results are visualized in Fig. 3(b). Often, useful scripts can be

built with only a few lines of descriptive OpenStructure Python

code.

5. Density maps and images

The majority of available experimental protein structures have

been determined using X-ray crystallography. This technique

produces density maps into which an atomistic or semi-

atomistic model is built. For high-resolution structures, model

building into density maps is completely automated (Adams
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Acta Cryst. (2013). D69, 701–709 Biasini et al. � OpenStructure 705

Figure 2
A selection of possible backbone conformations to bridge a fragmented
chain. The fragments are coloured by correlation with the density from
yellow to green. The tube thickness used to render the backbone
fragment is scaled according to the density correlation.



et al., 2011; Langer et al., 2008). However, at low resolution

automated approaches usually fail and manual intervention is

required. As has been repeatedly shown, the integration of

theoretical modelling techniques is often able to improve the

models built (DiMaio et al., 2009; Trabuco et al., 2008). The

theoretical modelling field, on the other hand, can profit from

the availability of density maps, even at low resolution, to

refine homology models.

To provide efficient and convenient access to density data,

OpenStructure includes the img and img.alg modules. The core

functionality of these two modules was initially developed as

part of the Image Processing Library and Toolkit (IPLT;

Philippsen et al., 2003, 2007; Mariani, Schenk et al., 2011). The

IPLT package implements a complete processing pipeline to

obtain density maps from recorded electron micrographs. As

part of a joint effort to lower the maintenance burden for the

two packages, the core data structures and algorithms of IPLT

have been moved into OpenStructure. The two modules offer

extensive processing capabilities for one-, two- and three-

dimensional image data. In this module electron-density maps

are considered as three-dimensional images, and hence the

terms image and density map are used interchangeably.

The principal class of image-processing capabilities is the

ImageHandle. It provides an abstraction on top of the raw

pixel buffers and keeps track of pixel sampling, dimension and

data domain. An ImageHandle can store an image either in

real or reciprocal space. The image is aware of the currently

active domain. This means, for example, that one can apply a

Fourier transformation (FT) to an ImageHandle containing a

spatial image and the image will correctly identify the new

active domain as frequency. The ImageHandle also supports

the application of a FT to an image with conjugate symmetry,

resulting in a real spatial image, while applying a FT to an

image without conjugate symmetry results in a complex spatial

image.

Image and density data may be imported and exported from

and to PNG, TIFF, JPK, CCP4, MRC, DM3 and DX files.

Standard processing capabilities for images are provided in

the img.alg module. This module contains filters; for example,

low- and high-pass filters, masking algorithms and algorithms

to apply a Gaussian blur to an image. Additionally, the module

contains algorithms to calculate density maps from molecular

structures either in real space or Fourier space (DiMaio et al.,

2009), which we will use in the following example.

5.1. Correlating backbone fragments with local electron
density

We would like to illustrate the combined use of density

maps and structure data in OpenStructure in the following

paragraph. As an example, consider a protein structure in

which a segment of six residues has not been resolved.

However, close inspection of the density map reveals that

there is substantial experimental evidence to connect the two

parts of the protein chain. We would now like to rebuild the

missing part of the backbone. Possible conformations are

sampled from a database of structurally non-redundant frag-

ments compiled from the PDB. For scoring, the density for the

fragment is calculated by placing a Gaussian sphere at the

position of every atom. The resulting density map is then

compared with the experimental density by real spatial cross-

correlation. Fig. 2 shows a few selected backbone conforma-

tions coloured by correlation to the density map.

6. Visualization

Solutions to challenging scientific and algorithmic problems

often become obvious after an appropriate form to display the

information has been found. Readily available visualization

tools are an enabling factor both for science and algorithm

development. OpenStructure features sophisticated visualiza-

tion capabilities as part of the gfx module. The rendering

engine is capable of producing publication-ready graphics. It

has been used for the visualization of very long molecular-

dynamics simulations (Yang et al., 2012; Shan et al., 2012).

Each principal class of the mol and img modules has a

renderer (graphical object) in the graphics module that is

responsible for converting the abstract data into a three-

dimensional rendering and supports the display of molecular

structures, surfaces and density data. The separation of
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Figure 3
Two distinct visualization styles illustrating the graphical capabilities (see
text for a more detailed description). (a) Hemi-light shading with outline
mode, (b) simplified enzyme representation by its molecular surface
together with an inhibitor.



graphical objects from their corresponding counterparts keeps

the orthogonal concepts of display and general manipulation/

querying of structural data separate and saves memory when

no visualization is required. Graphical objects are organized

by scene: a scene graph-like object. The scene manages the

currently active graphical objects and is responsible for

rendering them. In addition, the scene manages rendering

parameters such as light, fog, clipping planes and camera

position.

The rendering engine has been implemented with OpenGL.

Typically, each of the graphical objects calculates the

geometry, i.e. the vertices and triangle indices, once and stores

it in vertex buffers. Since the geometry of most objects does

not change in every frame, storing the geometry allows more

efficient rendering of large structures. If possible, the vertex

buffers are transferred to the video memory of the graphics

cards to save the round-trip time of sending the geometry over

the system bus. For advanced effects, the gfx module uses

the OpenGL shading language (GLSL). The fixed pipeline

shaders of OpenGL are replaced by custom shaders which

implement special lighting models, e.g.

cartoon or hemi-light shading, shadows

or ambient occlusion effects.

Fig. 3 shows two images generated

with the graphics module of Open-

Structure. The scripts to generate these

images have been deposited as

Supplementary Material. Fig. 3(a) is

inspired by a recent analysis of

modelling performance within the

Continuous Automated Model Evalua-

tiOn assessment framework (CAMEO;

http://www.cameo3d.org). The target

structure is shown in tube representa-

tion (white colour, larger tube radius)

together with two theoretical models

(thin tubes). The models are coloured

with a traffic-light gradient from red to

yellow to green using a superposition-

free all-atom structural similarity

measure called the local distance

difference test (lDDT; Mariani, Kiefer

et al., 2011). The combination of outline

render mode with hemi-light shading

gives this image a very clear style. Fig.

3(b) shows the structures of the

methyltransferases of two different

dengue virus serotypes as described in

the example in x4.3. At the top the

enzyme is in complex with the inhibitor

ribavarin monophosphate, whereas at

the bottom no ligand is present in this

binding pocket. The enzyme is repre-

sented by its molecular surface as

calculated by MSMS (Sanner et al.,

1996) and the inhibitor is shown in stick

representation. The surface of the
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Figure 5
Screenshot of the graphical user interface DNG. Controls for data display are organized in a main
application window. By default, the majority of the main window is taken up by the three-
dimensional scene window, which shows a structure rendered in ribbon mode. The user interacts with
the scene using the mouse and keyboard shortcuts. On the left side the currently loaded graphical
objects are shown in the scene as a tree view that reflects the structure in the scene graph. The render
parameters of graphical objects may be changed using the inspector widget displayed on top of the
three-dimensional window. In the bottom right corner the sequences of the loaded proteins are
shown.

Figure 4
Visualization of predicted cross-link locations in a homology model of the
urease from Y. enterocolitica. The subunits of the urease are coloured
blue (� subunits), green (� subunits) and grey (� subunits).



observed (top) or the predicted residues (bottom) interacting

with the ligand are highlighted in blue or red, respectively.

6.1. Visual data-exploration example: proteomics cross-links

The following example illustrates how the visualization of

structure-based predictions can help to rationalize the plan-

ning of proteomics cross-linking experiments. Large macro-

molecular structures are difficult to crystallize and often only

diffract to limited resolution where it is unfeasible to deter-

mine the structure in atomic detail. It is thus common practice

to solve the structure of individual components separately and

to use other experimental techniques to identity the relative

orientations of the components. Proteomics cross-links are

one such experimental technique (Leitner et al., 2010), in

which isotope-labelled cross-linkers such as disuccinimidyl

glutarate (DSG) or disuccinimidyl suberate (DSS) are added

to the sample. The cross-linking reaction chemically connects

primary amines, i.e. the terminal amines of lysine side chains,

which are in close proximity. After protein digestion with

trypsin, the cross-linked fragments are identified using mass

spectrometry.

Urease from Yersinia enterocolitica is a large oligomeric

complex that is vital to the pathogenicity of the bacterium. The

enzyme catalyzes the cleavage of urea to ammonia at the

expense of protons in order to reduce the acidity during the

bacterium’s passage through the stomach. To investigate

which cross-links are theoretically possible for this protein, we

have built a homology model based on the X-ray structure of

the urease from Helicobacter pylori (PDB entry 1e9y; Ha et al.,

2001), which shares 50% sequence identity. Possible cross-

linking sites were then identified using Xwalk (Kahraman et

al., 2011). Visualizing the cross-links by connecting the lysine

atoms by a straight line does not lead to conclusive results, as

the straight lines pass through the protein. To overcome this

visualization problem, we used OpenStructure to simulate the

cross-links as strings of beads. By introducing a force that

drives the beads away from the centre of the protein, their

positions are optimized. The cross-links appear as red loops

sticking out from the surface of the protein. The resulting

image (Fig. 4) of the proteomics cross-links is visually

appealing and easily conveys the message that all connections

represent intra-chain, not inter-chain, cross-links.

The efficient visualization of the expected outcome allows

effective planning of experiments, in this case indicating that

experimental proteomics cross-linking data will not contain

sufficient information to determine the relative orientation

and stoichiometry of the components of the urease complex.

The OpenStructure script used to generate the example is

given in the Supplementary Material.

6.2. Graphical user interface

For interactive work, we have developed a graphical user

interface called DNG (DINO/DeepView Next Generation;

Guex et al., 2009). This graphical user interface builds on the

visualization and data-processing capabilities of the Open-

Structure framework and provides controls to interact with

macromolecular structures, sequence data and density maps

(Fig. 5). A central part of DNG is the Python shell, which

allows efficient prototyping and interaction with the loaded

data at runtime. Objects may be queried, modified and

displayed using the OpenStructure API. For convenience,

the shell supports tab-completion and multi-block editing:

complete functions and loops may be pasted into the Python

shell.

7. Conclusions

OpenStructure is a software framework tailored towards

computational structural biology. Its modular and layered

architecture makes it an ideal platform for hypothesis-driven

research and methods development, particularly when density

maps, molecular structures and sequence data are to be

combined. Together with powerful visualization capabilities,

the expressive API allows new algorithms to be implemented

in a very short time. Additionally, through a variety of bind-

ings, third-party applications can be included into the scripts

without worrying about input and output file formats.

OpenStructure has been successfully used as an analysis and

development platform in several recently published research

projects, e.g. QMEAN (Benkert et al., 2011), the local differ-

ence distance test (Mariani, Kiefer et al., 2011), the identifi-

cation of two-histidine one-carboxylate binding motifs in

proteins amenable to facial coordination to metals (Amrein

et al., 2012; Schmidt et al., 2011), the evaluation of template-

based modelling (Mariani, Kiefer et al., 2011), the assessment

of ligand-binding site prediction servers (Schmidt et al., 2011)

and the visualization of very long molecular-dynamics simu-

lations (Yang et al., 2012; Shan et al., 2012).
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