Supplementary Material and Figures to

Crystal structure of the protein core of translation initiation factor IF2 in apo, GTP and GDP forms

Angelita Simonetti1, Stefano Marzi2, Attilio Fabbretti3, Isabelle Hazemann1, Lasse Jenner1, Alexandre Urzhumtsev1,4, Claudio O. Gualerzi3 and Bruno P. Klaholz1*

1 IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Institut National de la Santé de la Recherche Médicale (INSERM) U964 / Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France.

2 Architecture et Réactivité de l’ARN, UPR 9002 CNRS, IBMC (Institute of Molecular and Cellular Biology), 15 rue R. Descartes, 67084 Strasbourg, France; Université Louis Pasteur de Strasbourg, Strasbourg, F-67000 France.

3 Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino (MC), Italy.

4 Université de Lorraine, Physical Department, Vandoeuvre-lès-Nancy, 54506, France.

*To whom correspondence should be addressed. klaholz@igbmc.fr, Tel. ++33 388655755; FAX ++33 388653276
Characterization of IF2

The characterization of crystal content by MALDI-TOF and ESI-MS$^+$ analysis in denaturating conditions of IF2 after degradation revealed that the C-terminal part of IF2 got cleaved off during the crystallization process at position 363 close to a known protease site (residues ~362-365; Szkaradkiewicz, K, Zuleeg, T, Limmer, S, and Sprinzl M., 2000. Interaction of fMet-tRNA$^{\text{fMet}}$ and fMet-AMP with the C-terminal domain of *Thermus thermophilus* translation initiation factor 2. *Eur. J. Biochem.* 267, 4290-4299). Proteolysis also occurs in solution and is visible after one week at 4°C. To our knowledge such cleavage is not known for elongation factors.

Suppl. Fig. S1