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The human mind innately excels at some complex tasks that

are difficult to solve using computers alone. For complex

problems amenable to parallelization, strategies can be

developed to exploit human intelligence in a collective form:

such approaches are sometimes referred to as ‘crowdsourcing’.

Here, a first attempt at a crowdsourced approach for low-

resolution ab initio phasing in macromolecular crystallography

is proposed. A collaborative online game named CrowdPhase

was designed, which relies on a human-powered genetic

algorithm, where players control the selection mechanism

during the evolutionary process. The algorithm starts from

a population of ‘individuals’, each with a random genetic

makeup, in this case a map prepared from a random set of

phases, and tries to cause the population to evolve towards

individuals with better phases based on Darwinian survival of

the fittest. Players apply their pattern-recognition capabilities

to evaluate the electron-density maps generated from these

sets of phases and to select the fittest individuals. A user-

friendly interface, a training stage and a competitive scoring

system foster a network of well trained players who can guide

the genetic algorithm towards better solutions from genera-

tion to generation via gameplay. CrowdPhase was applied to

two synthetic low-resolution phasing puzzles and it was shown

that players could successfully obtain phase sets in the 30�

phase error range and corresponding molecular envelopes

showing agreement with the low-resolution models. The

successful preliminary studies suggest that with further

development the crowdsourcing approach could fill a gap in

current crystallographic methods by making it possible to

extract meaningful information in cases where limited

resolution might otherwise prevent initial phasing.
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1. Introduction

Compared with humans, computers have the capacity to solve

problems at much greater speed. There are many problems,

however, where computational speed alone is insufficient to

find a correct or optimal solution, for example because the

parameter space cannot be fully searched in a practical time.

In contrast, the human mind can formulate expert knowledge

specific for particular problems, providing a capacity to guide

more efficient searches, although with more limited processing

speed. The power of the human contribution can be multiplied

through the efforts of a greater number of individuals. The

term ‘crowdsourcing’, which combines the two domains of
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human and electronic computing, was coined in 2006 (Howe,

2006) and since then has seen its definition broadened to a

wide range of activities involving a network of people. From

a scientific point of view, crowdsourcing can be seen as a

community-driven system that distributes a problem into

multiple discrete tasks performed by humans.

Over the past few years, approaches that combine the

power of a computer algorithm with collective intelligence

have flourished and have proved to be successful in solving

difficult problems in diverse scientific fields (Khatib, Cooper et

al., 2011; Luengo-Oroz et al., 2012; Good & Su, 2013; Lakhani

et al., 2013). One of the leading initiatives is Foldit (Cooper et

al., 2010), a multiplayer game for protein structure prediction

that was recently used to determine the structure of M-PMV

protease with the help of a large gaming community (Khatib,

DiMaio et al., 2011). EyeWire, another scientific crowd-based

game developed at MIT, made news headlines for involving

more than 70 000 players to map the brain network and

discover neural pathways. Similar projects have been applied

to classify RNA families (Gardner et al., 2011) and biological

pathways (Kelder et al., 2012).

A challenging problem that might benefit from crowd-

sourcing is the phase problem in X-ray crystallography. In a

diffraction experiment, the observed diffraction pattern allows

measurement of the amplitudes of the reflection structure

factors (as the square root of the intensities) but not their

phases. The amplitudes and phases are both needed to

reconstruct an electron-density map (by Fourier synthesis) so

that a model of the crystallized molecule can be obtained.

Indeed, retrieving the phase information constitutes a major

problem in determining a molecular crystal structure. Most

macromolecular crystal structures present in the PDB

(Bernstein et al., 1977; Berman et al., 2002) have seen their

corresponding phases retrieved via experimental methods that

utilize the scattering power of heavy atoms or anomalous

scattering atoms to perturb the intensities (Hendrickson, 1991;

Rupp, 2009; Smith & Hendrickson, 2012) or by molecular

replacement in cases where the structure of a homolog already

exists (Rossmann, 1990; Blow, 2006; Rupp, 2009; Scapin,

2013). However, there are scenarios where phase information

is difficult to obtain. Methods based on heavy atoms are not

always successful, particularly if the accuracy or resolution of

the diffraction data is poor.

On the other hand, many efforts have been made to solve

the phasing problem ab initio, with success in a somewhat

limited range of problems. So-called direct methods are most

successful when the resolution is at least 1.2 Å and when the

number of non-H atoms is not much greater than one or two

thousand (Miller et al., 1994; Sheldrick, 1998). Prospects for

applying direct methods to obtain phases in situations where

the resolution limit is more typical of macromolecular crystals

(where the image would not show atomic detail) have led

to concepts for improving electron-density maps and corre-

sponding phases based on various complex objective functions

(Baker et al., 1993; Colovos et al., 2000; Holton et al., 2000;

Terwilliger, 2001; Lunina et al., 2003). A number of studies

have also aimed at obtaining phases ab initio using only low-

resolution diffraction data, as reviewed by Lunin et al. (2012).

These latter include diverse target functions relying on

electron-density histograms (Harrison, 1988; Lunin, 1988;

Lunin et al., 1990), map connectivity (Lunin et al., 1999, 2000)

or other measures of statistical likelihood (Lunin et al., 1998;

Petrova et al., 1999). Regardless of the particular approach,

most attacks on the phase problem can be viewed as having

two subproblems. One concerns how a high-dimensional space

(i.e. of phases) can be efficiently searched, while the other

concerns how a good solution can be recognized. In the

present work, we aimed to test the utility of collective human

intelligence in the latter subproblem (i.e. recognition). To

perform this effectively required considering what kind of

approach to the first subproblem (i.e. searching) would be

most amenable to being coupled to human-driven recognition

and selection.

One powerful search-optimization technique is the genetic

algorithm (here abbreviated as GA), which mimics the

Darwinian evolutionary process in nature (Goldberg, 1989).

The GA starts with a population of randomly generated

candidate solutions (or individuals) and allows them to evolve

using computational machinery that relies on random

mutations, genetic crossovers and selection. One advantage

compared with other optimization algorithms such as

gradient-based minimization or simulated annealing (Kirk-

patrick et al., 1983; Polak, 1997) is that the GA iteratively

evolves a whole population of solutions rather than a single

solution. This behavior potentially favors the simultaneous

exploration of multiple good solutions (or partially good

solutions) during the process. Secondly, the stochastic nature

of the GA makes it less prone to becoming trapped in local

optima compared with gradient-based optimization methods.

Genetic algorithms have been applied in previous studies to

various crystallographic problems, including phase optimiza-

tion and ab initio phasing. In these studies, the objective

functions have included the MABS figure of merit (Webster &

Hilgenfeld, 2001; Abdurahman & Purwanto, 2008), agreement

with noncrystallographic symmetry constraints (Miller et al.,

2001) and the skewness of the electron-density distribution

(Uervirojnangkoorn et al., 2013). Here, we hypothesize that

human intelligence can be used as a replacement to a

programmatic fitness function and integrated into a conven-

tional GA workflow.

Along these lines, we designed CrowdPhase, an online

multiplayer game seeking to solve the phase problem for low-

resolution situations. The power of CrowdPhase resides in the

stochastic exploration of a high-dimensional search space by

combining a GA with a collaborative human effort. Our use of

a GA to search phase space follows closely upon earlier work

by others (Webster & Hilgenfeld, 2001; Zhou & Su, 2004;

Immirzi et al., 2009), while the use of human pattern-

recognition abilities to drive the search represents a new area

of exploration. We provide a proof of concept by obtaining ab

initio phases for two simplified test problems, one containing

only two atoms and a second consisting of a short self-

assembling polypeptide that forms a hexameric �-barrel or

‘cylindrin’ (Laganowsky et al., 2012).
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2. Materials and methods

2.1. Data sets

To establish the proof of concept of CrowdPhase, we

generated synthetic structure-factor data for two test

problems, so the true phases would be known for the purposes

of monitoring and evaluation. The first test problem consisted

of two atoms in the unit cell (chosen arbitrarily from the PDB;

entry 3sqp, bacterial pyocyanin; Kasozi et al., 2011). When

contoured appropriately, this test case was intended to

represent a low-resolution spherical model. Alternatively, a

two-atom test case could represent a heavy-atom difference

Fourier problem. The second data set corresponds to one of

the crystal forms of a 66-amino-acid �-barrel structure

(referred to as cylindrin) comprised of six strands packed

tightly around a threefold axis of symmetry (PDB entry 3sgn;

Laganowsky et al., 2012). In the second data set, the structure

factors were expanded from the cubic space group I213, where

the cylindrin assembly sits on a threefold axis of symmetry, to

P1 using a custom-written script, thereby giving four compact

shapes within a P1 unit cell. Data sets were subsequently cut

to 25 and 18 Å resolution for the two-atom and cylindrin cases,

respectively, giving 37 and 67 reflections with independent

phases (in P1). Test cases were constructed at low resolution in

order to provide initial trials suited for human visual analysis.

This, and the modest cell sizes, assured limited numbers of

variables (i.e. phases) for searching in order to provide initial

trials favorable for the GA-based search optimization (see

x2.5).

2.2. Definition of the starting population

Upon starting a GA run, a first population of solutions (also

called individuals) is initialized. In this initial population, all
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Figure 1
Schematic of the CrowdPhase procedure. The CrowdPhase core is built on a genetic algorithm that is adapted for human intervention. (i) The GA
initiation, where a population of N individuals is randomly generated. Each individual is represented as a genome made up of a sequence of genes
(pictured as white blocks), each representing a reflection phase. Each gene is itself encoded as a binary 9 bit string. (ii) The population is iteratively
evolved through successive rounds of tournaments. During each tournament, individuals are represented in the GUI as electron-density maps from
which players are asked to choose two. (iii) CrowdPhase accepts the player’s selection and applies the stochastic genetic operators (mutation and
crossing over) to this pair, thereby generating one new individual for the next generation. (iv) The population is iteratively replaced by new generations
until the termination criteria are met. As a final step, players are asked to choose which map looks the fittest among the last generation, providing
CrowdPhase with its final solution.



individuals share an identical set of experimental structure-

factor amplitudes but different randomly generated phase sets.

To adapt the phase problem to the GA formalism, we modeled

each individual as a genome, where the phase of one reflection

is represented by a gene. In the same vein, the expressed

phenotype for a given genome derives from its electron-

density map in real space. Each phase can take a discretely

sampled value between 0 and 359, modeled as a 9 bit binary

string encoded in binary-reflected Gray code. With this

encoding, two successive codes (i.e. adjacent angular phase

values) differ in only one bit position (Fig. 1), enabling smooth

transitions between similar phase values by flipping one bit in

the string.

2.3. Successive generations

Each new generation is produced from the previous

generation by a series of parental choices made by game

players. A game player chooses two parents from the current

generation that he or she judges to be highly ‘fit’, based

on electron-density appearance. The genomes of these two

chosen individuals are then recombined (by random cross-

over) and randomly mutated to give one new individual in the

next generation. This procedure continues until the next

generation is fully populated (i.e. with the same number of

new individuals as in the previous generation).

2.4. The weighted r.m.s. phase error

For problem testing and player evaluation, known (correct)

phases are calculated and used for comparison. The error for

an individual is taken as the r.m.s. phase difference, weighted

by structure-factor amplitudes,

weighted r:m:s: ¼

Pn
i¼1

Fið�i ��t
iÞ

2

Pn
i¼1

Fi

2
664

3
775

1=2

; ð1Þ

where n is the number of reflections or individuals, Fi is the

amplitude of structure factor i, �i is the phase of structure

factor i for the individual in question and �t
i is the true phase

for structure factor i.

In (1), stronger reflections will contribute more to the total

r.m.s. phase error than weaker ones. Theoretically, the

weighted r.m.s. (WRMS) phase error can take values in the

range (0, 180�), where 0� would be associated with an indivi-

dual having the same phases as the true solution and 180�

would correspond to the Babinet representation of the true

solution. The expected WRMS phase-error value for random

phases is 90�.

2.5. Genetic algorithm parameters

Parameters of the GA are set before the initiation of a run.

They include the number of genes (or phases) n, the size of the

population N, the tournament size t, the crossover rate c and

the mutation rate m. Since the behavior of the search is highly

dependent on these parameters, benchmarks on data sets with

known phases were performed to determine suitable values.

In particular, we noted that the genome size n had a strong

impact on the width of the WRMS phase-error distribution

across the population. As might be expected, the standard

deviation of the WRMS phase-error distribution for a whole

population is inversely correlated to the number of reflections

encoded. In other words, for larger genomes the standard

deviation of the WRMS phase error is smaller. From our

observations in test cases, we judged that an average human

evaluator was able to discriminate two individuals if their

mutual WRMS phase errors differed by at least 5�. We found

that this condition was generally satisfied when the number of

genes n was no greater than about 70. The algorithm para-

meter t defines the number of individuals (out of N total) that

are randomly sampled to create a single ‘tournament’ selec-

tion, from which the two individuals judged to be fittest will be

chosen. We found that presenting only a subset of the total

individuals to a user in each tournament reduces the perceived

difficulty of the selection task without substantially degrading

the algorithm performance. Thus, N tournaments, each

involving t individuals sampled from the population, will be

necessary to create a new generation. Other important para-

meters are related to the genetic operators: the crossover and

the mutation. We use a uniform crossover probability, where

each gene locus is tested against the crossover rate c, with the

outcome of the test defining which parent will contribute to

the offspring at each locus (Fig. 1). For the subsequent

mutation step, each bit of each gene is tested against the

mutation rate m; if the test succeeds, the corresponding bit is

flipped. In general, a combination of N = 120, t = 12, n � 50,

c = 0.15 and m = 0.15 during automatic benchmarks kept the

standard deviation of WRMS phase-error values across the

population higher than 5� (preventing premature conver-

gence). This yielded fast convergence to good solutions when

accurate selection conditions were tested (e.g. in automatic

trials where the computer was used to make perfect fitness

evaluations). The last parameter, called the termination

criterion, is defined as a maximum number of iterations (or

generations) before stopping the evolutionary process. In this

work, we set the number of generations to 20 for all GA runs.

2.6. Cross-correlation method

We developed a calculation, largely inspired by Thomas &

Schmid (1995) and similar to Lunin & Lunina (1996), to

untangle the origin, enantiomorph and Babinet ambiguities

that have to be considered before allowing a genetic crossover

between the phase sets belonging to two selected individuals.

Let I1 and I2 be the two individuals to merge, F(h)1 and F(h)2

their respective structure factors and R(h) their cross-

correlation spectrum:

RðhÞ ¼
FðhÞ1FðhÞ�2
jFðhÞ1FðhÞ2j

where

FðhÞ ¼ jFðhÞj expði�Þ
FðhÞ

�
¼ jFðhÞj expð�i�Þ

jFðhÞ1FðhÞ2j ¼ jFðhÞ1jjFðhÞ2j

8<
: :

ð2Þ

If developing (2), and considering that the amplitudes of both

F(h)1 and F(h)2 are the same, then R can be written as
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RðhÞ ¼ exp½ið2�hx���Þ� with �� ¼ �1 � �2; ð3Þ

where �1 and �2 are the phases for F1 and F2. Subsequently,

the cross-correlation function (CCF) will be formulated as

CCFð�1;�2Þ
¼ FT�1RðhÞ ð4Þ

and

ð�x;�y;�zÞ ¼ arg max½CCFð�1;�2Þ
�; ð5Þ

where the CCF is the inverse Fourier transform of R(h) and

(�x, �y, �z) are the coordinates of the peak in the map

produced by the CCF. The equation used here for the corre-

lation function is similar in purpose to but slightly different in

form compared with the translation-function equations typi-

cally used to establish relative shifts (Colman et al., 1976; Read

& Schierbeek, 1988; Tong, 2006). At least in cases where good

correspondence exists between the two functions, the result is

not likely to be sensitive to the particular choice of the form of

the correlation function used. From the (�x, �y, �z) coor-

dinates obtained from the calculation, the shifts to be applied

to the phases of the individual I2 to match the phase origin of

I1 can be calculated. The required phase shift has the form

exp[2�i(h�x)]. Note that the test cases in this study were

constructed in P1, so all possible relative origin shifts are

relevant for comparison. For cases involving space groups with

higher symmetry, only shifts corresponding to equivalent

origins need to be checked.

The same procedure can be successively applied to inves-

tigate which of the enantiomorph and Babinet copies for the

individual I2 is the best to use during the recombination. By

our procedure, we implicitly assert that at low resolution the

user will not be able to discrimi-

nate between correct and incor-

rect hands of an electron-density

map; at much higher resolutions,

this assertion would have to be

re-examined. Furthermore, the

visual examination in our

graphical user interface is based

on a molecular contour envelope,

and numerical negation of the

map (i.e. the Babinet opposite)

produces the same contours. We

therefore treat Babinet inver-

sions as essentially indistinguish-

able in the present study.

Particularly when the solvent

content is much higher or much

lower than 50%, Babinet inver-

sions rendered at appropriate

contour levels might be distin-

guishable, a possibility not inves-

tigated here.

The enantiomer and the

Babinet versions of I2 translate

into phases equal to ��2 and �2 +

�, respectively. The decision on

which phase modification, i.e. enantiomer, Babinet, neither or

both, should be applied to individual I2 depends on which

of the following four cross-correlation peaks has the largest

value: arg max[CCF(�1,�2)] (if this is the largest, then no phase

modification), arg max[CCF(�1,��2)] (if this is the largest, then

negate �2), arg max[�CCF(�1,�2)] (if this is the largest, then

add � to �2) or arg max[�CCF(�1,��2)] (if this is the largest,

then negate �2 and add �).

After modifying one phase set (if required), I1 and I2 will be

able to mate and generate a new individual according to the

genetic operators earlier defined. Which of the two individuals

being mated is chosen as the reference and which is modified

by the shift (including a possible change in hand and sign) is

arbitrary, so the new individual resulting from the mating also

has arbitrary hand and sign.

2.7. Map generation and the GUI

For each individual, an electron-density map is generated

via a direct summation of the Fourier terms. All data sets used

in this work were treated in the P1 space group. The maps are

drawn with a contour level of 1.5� and surfaces are subse-

quently rendered by the marching cubes algorithm (Lorensen

& Cline, 1987). The final coordinates of the surfaces are

exported to files in Wavefront .obj format. These files are

then interpreted with a customized JavaScript engine as three-

dimensional objects in the HTML5 canvas element, allowing

any modern web browser to display them with no additional

plugin. Within the CrowdPhase GUI, the maps can be rotated

separately or all at once for easier comparison (Fig. 2).
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Figure 2
Screenshot of the graphical user interface. A tournament displays a set of electron-density maps randomly
sampled from the total population, which is different for each player. The status bar at the bottom of the
screen displays information about the genetic algorithm status: the current generation, its average phase
error, the progress bar until next generation and the player’s score and level.



2.8. Access to the CrowdPhase gaming system

The URL for CrowdPhase is http://www.crowdphase.com.

3. Results

CrowdPhase relies on users at two decisional steps of the

genetic algorithm workflow, namely tournament selection and

termination. To attract players who may have no crystallo-

graphic background, we present the program as a multiplayer

game platform, allowing users to interact with the GA via a

GUI in an intuitive way (Fig. 1). Within this framework, an ab

initio phasing puzzle can be seen as a game, and the tourna-

ment selection of two parents, here two electron-density maps

judged to have desirable features, to propagate a new indivi-

dual constitutes one round or tournament of the game. As

diagrammed in the flowchart in Fig. 1, many players partici-

pating simultaneously populate each new generation, one

after the other, until a termination condition is met and game

play ends. We used CrowdPhase to solve two low-resolution

puzzles: a case of two (distantly separated) atoms at 25 Å

resolution and a small six-stranded �-barrel (PDB entry 3sgn)

at 18 Å resolution. For simplicity, the structure factors were

expanded from their original space group to P1, resulting in 37

and 67 structure factors for the two-atom and the �-barrel

cases, respectively (see x2 for details).

3.1. Control runs with automated decision making

As an initial step, we wanted to test whether the GA could

reach good phase solutions if driven by an objective target

function. We used an automatic version of the GA imple-

mented in CrowdPhase with no human intervention. Two

objective functions were investigated for both puzzles: one

was the WRMS phase error, to simulate the behavior of

omniscient users, while the second was a single numerical

descriptor of the electron-density distribution asymmetry,

the skewness. Positively skewed maps tend to reflect higher

quality maps than those having a negative skew (Lunin, 1993),

and skewness has been demonstrated to be useful for

improving the quality of maps in the PHENIX Autosol wizard

(Terwilliger et al., 2009). More recently, the skewness of the

electron-density distribution, coupled to a genetic algorithm,

proved to significantly improve low-resolution experimental

starting phases (Uervirojnangkoorn et al., 2013). The skewness

of each individual is displayed alongside its electron-density

map in the CrowdPhase GUI (Fig. 2).

The automated (nonhuman) GA runs were initiated with

the parameters N = 120, t = 12, c = 0.15, m = 0.15 and a

maximum number of 20 generations as the termination

criterion. In each tournament (i.e. a presentation of a subset of

the current population), the two individuals with the highest

calculated fitness scores were subjected to the genetic opera-

tors (crossover and mutation) to create a new individual for

the next generation. At the end of a run, we assessed the

generated solutions. For quality assessment, we used the

average WRMS phase error of the whole population for each

generation (Fig. 3).

As expected, the GA simulation runs with the omniscient

phase-error-based fitness function converged steadily towards

solutions with better phases. The threshold for success, which

we set at 30� for the population WRMS phase error, was met

after 11 and 16 generations for the two-atom and the poly-

peptide cases, respectively. The best individuals in the terminal

generation had a WRMS phase error of 15� for the two-atom

puzzle and 25� for the polypeptide assembly (Fig. 3). These

results constitute a positive control showing that the GA will

operate properly with the given parameters when it is guided

by sufficiently accurate selection. We noted that for both

puzzles the standard deviation never dropped below 5�, which

reflects the degree of genetic diversity maintained by our

choice of GA parameters, as discussed earlier in x2.

The second test, which involved the skewness as a sole

objective function, behaved differently. In the early steps

(generations 1–3) the quality of the maps seemed to improve

slightly, with a decrease in the WRMS phase error of 3 and 5�

for the two-atom test and the cylindrin polypeptide test,

respectively (Fig. 3). However, further generations during

these GA runs failed to converge towards better solutions;

their global WRMS phase errors stagnated until the final

generation. This shows that the skewness cannot be used

reliably as a sole fitness function for ab initio phasing of
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Figure 3
Control cases for performance of the genetic algorithm when run under
defined fitness functions. (a) Results of running the genetic algorithm on
the two-atom case with automatically defined fitness functions. The
histogram represents the evolution of the average WRMS phase error for
each generation. The two curves illustrate the results of using the WRMS
phase error (green) and the skewness (grey) as the fitness function. (b)
The same control experiment as in (a), but applied to the second test case,
a small polypeptide assembly.



low-resolution macromolecular data sets. These observations

further motivated our idea to adapt the traditional GA

workflow in order to employ human decisions as a fitness

function in CrowdPhase (Fig. 1). However, since we noted

slight improvements during the first steps of the test using only

skewness as a fitness function, all CrowdPhase experiments in

our studies were started with a single initial automatic itera-

tion using skewness.

3.2. Program features and game operation

3.2.1. Initiation of the game. The procedure initiates with a

starting population of N randomly generated individuals (i.e.

random phase sets) and standard GA parameters. The choice

of these values is described in x2, as is the rationale for

operating with a total number of reflection phases (or genes,

n) less than about 70.

3.2.2. The fitness function and the tournament selection.

The next step, as depicted in Fig. 1, is the iterative tournament

selection, where the fittest individuals are chosen and mated

to build a new generation. This is the first level of human

commitment compared with a classic GA procedure. A tour-

nament can be seen as a genetic roulette where t individuals

are randomly sampled from the population, and the two

individuals from this group that are judged to be fittest will

mate to give birth to a new individual for the next generation.

In CrowdPhase, the fitness function is the players’ pattern-

recognition capabilities (Fig. 1). To enable systematic display

and selection of electron-density maps, we implemented the

tournament play within a user-friendly web interface that

displays a rectangular array of electron-density maps, one for

each of the t individuals randomly sampled from the popula-

tion (Fig. 1). Each map can be seamlessly rotated and

manipulated via the GUI (Fig. 2).

Multiple tournament rounds are independent of each other;

different players participating simultaneously see different

sets of maps during their separate tournaments. Upon the

submission of a player’s two best candidates, the web server

recombines the two individuals into a new one for the next

generation, after addressing the crystallographic ambiguities

inherent to the merging of different phase sets (see x2). The

total number of tournaments required to complete a new

generation is the same as the number of individuals in the

population, N. The web interface displays the number of new

individuals that have been generated for the next generation

in real time via a progress bar (Fig. 2). At present, no attempt

is made to balance the number of new individuals that are

generated by different players. When the next generation has

been populated, CrowdPhase generates electron-density maps

for this new generation of individuals.

3.2.3. Termination and final selection. Successive genera-

tions are produced until the algorithm meets the termination

criterion (Fig. 1). At the termination point, human intelligence

is involved in the final selection stage of the GA workflow

(Fig. 1). Players are invited to vote for the best individual from

the final population. The final solution is taken to be the

individual with the most votes.

3.2.4. Training and user guidance. Test applications (where

the correct phases are known) make it possible to train and

monitor player performance. In order to ‘gamify’ the tour-

nament selection and engage the players in a competition, a

scoring system was implemented to evaluate the correctness

of a player’s tournament selections. In addition, participating

players are ranked according to their accumulating score via

the interface (Fig. 2).

Because CrowdPhase is intended for players that may have

no crystallographic background, it is crucial to train the users

before they participate in blind (and probably more compli-

cated) cases. With this in mind, for the two test problems that

we examined in the present study, we defined two levels for

the players. Level 0 is for players who are still practicing. Their

tournament choices were not used to drive the GA. Players

are then required to reach a threshold score in order to level

up to level 1, where their decisions drive the GA. As a score,

we took the log base two of two times the probability that

individuals chosen randomly would be poorer than the indi-

viduals chosen by the player. Note that this scheme tends to

give a score of 0 if the user’s choices are effectively random or

uninformed, since the chance that a randomly chosen indivi-

dual would be poorer would be 1/2, and the log2 of twice this

value is 0. Good choices by a user produce positive values.
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Figure 4
Performance of human crowdsourcing on two low-resolution phasing test
cases. Plots showing the evolution of WRMS phase error during a game.
In both the two-atom (a) and the cylindrin polypeptide (b) cases, the
human-powered GA drove convergence towards solutions with much
lower phase errors than random (pink). For comparison, the trend of the
automatic GA using the WRMS phase error as a fitness function is also
shown (green). The skewness for the whole population features an
inverse correlation to the average WRMS phase error across the
generations (grey).



Under this scheme, we set the threshold at a cumulative score

of 5 for a player to advance to level 1. In these first experi-

ments, the training stage for each user was seamless with the

active phasing stage; the user’s choices began to contribute

to new generations as soon as the score threshold was first

passed. In addition to providing feedback scores during

training, the user is also able to examine for comparison a set

of maps with high phase error and a set of maps with low phase

error. This seems to help users recognize features correlated

with improved phases. These maps do not represent indivi-

duals from the evolving GA population, but rather represent

an independent source of study and training. Again, because

these test cases involve synthetic data, maps with known

amounts of phase error can be calculated.

Finally, we added the skewness of the electron-density

distribution as a complementary guide during the tournament

selection. The skewness value for each individual is reported

alongside its electron-density map by the user interface.

3.3. Crowdsourcing performance on test problems

3.3.1. First game: the two-atom problem. This game

involved a crowd of 26 people, mostly composed of under-

graduate students who did not have any prior training in X-ray

crystallography. Upon joining the project, players were

introduced to the concept of CrowdPhase and were subse-

quently invited to play the game. Of the 26 users, 18

successfully passed to level 1; the other eight players did not

participate actively or make a substantive attempt to advance.

Players were aware that the correct phases were for a two-

atom structure. Similarly to the control experiments, but now

with gamers directing the evolution of the GA via the

CrowdPhase web interface, the initial random population was

evolved over 20 generations (one automatically driven by the

skewness followed by 19 driven by human players). The

progression of the average WRMS phase error for each

generation is shown in Fig. 4(a). Overall, the WRMS phase

error of each generation substantially decreased, reaching a

global WRMS phase error of 45� at the termination step. The

fittest individual of the population exhibited a WRMS phase

error of 26�. Upon termination, users were asked to choose the

best individual from the 20th generation through a vote

system. The outcome of the termination step classified the

map of the fittest individual at the top of this list, with a total

of four votes. Other individuals (maps) receiving votes had

WRMS phase errors of 29 and 37�. The average skewness was

also monitored for each generation (Fig. 4), and increased

systematically over the generations, although as noted earlier

the skewness alone was not a sufficiently specific criterion to

drive the system to a good overall set of phases. Fig. 5(a)

illustrates the electron-density map calculated with the phases

of the optimal solution overlaid with a map calculated with

perfect phases. The interpretation of the final model as two

compact density features is clear. The map correlation coef-

ficient is 0.91.

3.3.2. Second game: the cylindrin polypeptide case. This

puzzle represents a more realistic application to crystallo-

graphic problems. The unit crystal contains a small but bona

fide protein complex. The solvent content is about 78%,

providing a favorable case for recognizing molecular bound-

aries in the unit cell. This game involved only 17 initial players

ranging from scientists to non-experts, of which 11 partici-

pated actively and reached level 1. The users were given no

prior information about their target, other than the general

concept that the correct solution would likely correspond to

a relatively smooth molecular boundary. The same game

procedure was followed as for the first test case. The evolution

of the average WRMS phase error and the skewness for each

of the 20 generations are reported in Fig. 4(b). The WRMS

phase error in this case did not improve as rapidly as in the

first puzzle. However, at the termination step the best indivi-

dual in the final generation had a WRMS phase error of 49�.

The users voted for the fittest individual, and that consensus

choice had a WRMS phase error of 54�. Other choices

featured WRMS phase errors ranging from 49 to 58�, which is
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Figure 5
Overlay of electron-density maps calculated from the final crowdsourced
phase solutions and the true phases for the two test cases. The maps were
generated with phases obtained from the CrowdPhase solutions (purple)
and the correctly phased structure factors (blue). The two-atom case is
shown in (a) and the cylindrin polypeptide case is shown in (b). Atomic
models from the respective PDB entries are shown overlaid on the maps.



better than the global phase error of the last generation. The

map calculated from this optimal solution had a correlation of

0.85 compared with the map of the true solution. An overlay

showing general agreement of the electron-density map

generated through CrowdPhase with the correct model is

pictured in Fig. 5(b).

4. Discussion

As we go further into the social networking era, a picture of

how difficult tasks can be tackled by a collaborative intelli-

gence is emerging. Crowdsourcing in science is on the rise,

with its feasibility having been demonstrated by several recent

projects (Cooper et al., 2010; Gardner et al., 2011; Khatib,

DiMaio et al., 2011; Kelder et al., 2012; Luengo-Oroz et al.,

2012; Good & Su, 2013; Lakhani et al., 2013). Our work is the

first attempt to bring the crystallography and crowdsourcing

fields together, and aims initially at ab initio low-resolution

phasing. Crowdsourcing relies on the division of a problem

into elementary and independent tasks, and we designed

CrowdPhase with this in mind, using a genetic algorithm as the

engine for exploring the high-dimensional space of unknown

phases. The parallelizable nature of the tournament selection

step makes the GA an ideal candidate for distributive work,

and indeed GA-based algorithms have proven to be useful

in previous crystallographic search procedures (Webster &

Hilgenfeld, 2001; Zhou & Su, 2004; Immirzi et al., 2009;

Uervirojnangkoorn et al., 2013). The novelty here resides in

the combination of an efficient search procedure with a non-

algorithmic (i.e. human) selection criterion. The crowd-

sourcing format aims to overcome the limited speed of the

human brain by harnessing the power of many users working

in parallel.

Two simple games were developed as benchmarks to eval-

uate performance with non-expert players. One trial involved

only two atoms, and a second one used a polypeptide oligomer

that forms a compact �-barrel. The effectiveness of the

phasing method was evaluated using common measures such

as mean phase error or the map correlation coefficient (Lunin

& Woolfson, 1993). As a positive control, we showed that

when the phase error was used directly as the fitness function

in an automated run, the GA parameters selected were

adequate for good convergence towards solutions with low

phase error. This demonstrated that the overall approach can

succeed under conditions of sufficiently good selection.

With similar GA parameters set in CrowdPhase, but basing

the fitness function on human intuition, relatively small groups

of players succeeded in finding good phase solutions. Indeed,

players were able to generate individuals corresponding to

interpretable maps even before reaching 20 generations in the

first puzzle. Likewise, in the second case the GA run

converged towards a solution with a phase error and map

correlation coefficient significantly better than random.

However, for the second case we note that our target success

threshold of 30� was not satisfied after 20 generations. The

discrepancy between the final results obtained for the two

puzzles can be explained by the fact that the two-atom maps

represent two discrete and well defined objects (which was

prior information given to the players), as opposed to the

connected density blobs encountered in the second case. This

also illustrates that in cases where the correct result is not

known in advance, making good choices for the GA para-

meters (such as the number of generations before termina-

tion) will present an important challenge. Also, the genome

size (i.e. the number of reflections to phase) in the cylindrin

polypeptide problem was almost twice the number as for the

two-atom problem (67 versus 37), which affects the efficiency

of the GA in both the automatic (Fig. 3b) and the human-

powered (Fig. 4b) test. For this puzzle, either decreasing the

genome size to 50 phases or extending the termination

criterion could have been beneficial to the convergence. In

Fig. 4, the slopes of both curves are not as monotonic as when

the WRMS phase error was used as the fitness function in the

automatic runs (Fig. 3). This illustrates that players are not

perfect in their judgment, and also suggests that performance

might be better if users were subjected to more extended

training before using their choices to drive the GA. Also,

players who join a game in progress can negatively impact

the phase-error evolution while they are still improving. In

Figs. 4(a) and 4(b), the small fluctuations during the early

generations in both puzzles highlights that even after our

rudimentary practice phase, players still often falter and make

poor choices. Overall, we noted a broad range of skill levels

by different players, further emphasizing the value of player

training for the performance of the CrowdPhase system.

Additionally, our results highlight that the map skewness

can be useful for improving the phasing during initial itera-

tions from random starting phases, although it cannot be used

effectively as a sole fitness function (Fig. 3). Nonetheless, as

seen in Fig. 4, the average skewness of the population seemed

to improve in parallel with the average WRMS phase error

during the two experiments. This discrepancy shows that the

skewness is not a sufficiently specific target function by itself.

This is consistent with previous studies showing that in low-

resolution electron-density maps the electron-density histo-

gram quality does not necessarily correlate with the phasing

quality (Lunin et al., 2012).

Our initial proof-of-concept study suggests multiple direc-

tions for further development and improvement. The first

obvious area would be in extending the number of reflections

(and consequently the resolution). Because our control

experiment indicated that the GA had difficulty converging to

good phase sets when the number of reflections was large, we

anticipate that the most fruitful way of reaching higher reso-

lution will be to begin at low resolution and then add reflec-

tions extracted from higher resolution bins. The ability of the

GA approach to obtain phases by extension will be tested in

future studies. In order to apply the procedure to real crys-

tallographic problems, additional issues will have to be dealt

with, including experimental measurement errors, the

presence of a nonzero bulk-solvent density and dealing with

unobserved low-resolution reflections.

Other improvements or variations could help to reduce the

search space and the complexity of the task. For instance, as
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in Uervirojnangkoorn et al. (2013), instead of beginning with

purely random phases we could choose initial phases for the

strongest reflections according to probability distributions

implied by preliminary experimental data (e.g. SIR). Another

improvement could be made at the level of the Fourier

transform implementation. For simplicity, electron-density

maps are currently generated with a direct summation of the

Fourier terms. Implementing an FFT (Ten Eyck, 1973) would

substantially speed up the calculation of electron-density

maps. For the current experiments, user selection rather than

map calculation was limiting, but this could change at higher

resolution. In the future, we would also like to assess the

performance of GA variants within our framework. Those

include the geographical niche theory (Li et al., 2012), or

adaptive approaches where genetic operators see their values

vary along the process depending on the population variance

(Ye et al., 2010) or on probability matrices (Law & Szeto,

2007). As another variation on the human selection scheme,

we envision that it might be useful for users to have the option

to visualize enantiomeric or Babinet (i.e. negated) copies of

individual maps while making their selections.

Finally, the user training could be improved. One way of

improving the overall performance might be to define more

player levels than the two initially implemented (0 and 1), so

that greater control could be exerted over the use of player

selections depending on their skill levels. These levels could

also be used to control which players are able to advance to

more complex puzzles or to restrict particular players to a

limited number of tournament selections in each generation.

In addition, in future work it will be important to train users

on training problems that are different from the test problems

(i.e. to use cross-validation) so that a truer sense can be gained

about how the program can be expected to perform on truly

unknown problems.

In summary, our work takes the first tentative steps towards

‘gamification’ of the phase problem, and lays the foundations

for bringing crowdsourcing into the field of crystallography.

Future developments should enable applications to more

complex problems, including real blind cases where phases are

not known. If those studies are successful, crowdsourcing

could become a viable strategy for phasing in certain types of

crystallographic problems.
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