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A functional expression is introduced that relates scattered

X-ray intensities from a still or a rotation snapshot to the

corresponding structure-factor amplitudes. The new approach

was implemented in the program nXDS for processing

monochromatic diffraction images recorded by a multi-

segment detector where each exposure could come from a

different crystal. For images containing indexable spots, the

intensities of the expected reflections and their variances are

obtained by profile fitting after mapping the contributing pixel

contents to the Ewald sphere. The varying intensity decline

owing to the angular distance of the reflection from the

surface of the Ewald sphere is estimated using a Gaussian

rocking curve. This decline is dubbed ‘Ewald offset correc-

tion’, which is well defined even for still images. Together with

an image-scaling factor and other corrections, an explicit

expression is defined that predicts each recorded intensity

from its corresponding structure-factor amplitude. All diffrac-

tion parameters, scaling and correction factors are improved

by post-refinement. The ambiguous case of a lower point

group than the lattice symmetry is resolved by a method

reminiscent of the technique of ‘selective breeding’. It selects

the indexing alternative for each image that yields, on average,

the highest correlation with intensities from all other images.

Processing a test set of rotation images by XDS and treating

the same images by nXDS as snapshots of crystals in random

orientations yields data of comparable quality, clearly

indicating an anomalous signal from Se atoms.
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1. Introduction

The availability of free-electron lasers (FELs) as a source of

ultrabright X-ray pulses of femtosecond duration has provided

a new approach for collecting diffraction data that makes

extremely small and radiation-sensitive samples accessible to

structural studies. It is expected that this new X-ray source will

strongly contribute to our knowledge of the large group of

biological objects such as membrane proteins that are difficult

to grow as macroscopic crystals.

Destruction of the irradiated object by a single pulse is

much slower than the pulse duration, so that data can be

collected at room temperature before the sample deteriorates

owing to radiation damage. As a consequence many diffrac-

tion snapshots are required, each from a different sample in a

random orientation, to yield a complete data set. For crys-

talline samples diffraction data are partially recorded on still

images, which presents a challenging task to processing that

traditional crystallographic programs were not designed to

handle.

This has led to the development of new software suites:

(i) CrystFEL (White et al., 2012, 2013), which uses MOSFLM
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(Leslie & Powell, 2007; Powell et al., 2013) or DirAx

(Duisenberg, 1992) for reflection indexing and merges indi-

vidual intensity measurements (Kirian et al., 2010, 2011) to

estimate the integrated intensity of each unique reflection, and

(ii) the cctbx.xfel (Sauter et al., 2013; Hattne et al., 2014) and

cctbx.spotfinder (Zhang et al., 2006) components within

the Computational Crystallography Toolbox (cctbx). These

programs rely on the Monte Carlo method for estimating

reflection intensities, thereby assuming that other factors such

as fluctuations in the incident-beam intensity, wavelength and

spectrum as well as the irradiated volume of the specimen

‘integrate out’ upon averaging (White et al., 2012; Kirian et al.,

2011). It has recently been demonstrated (Barends et al., 2014)

that a de novo crystal structure can be determined from X-ray

free-electron laser data analyzed by CrystFEL. The data

comprise about 60 000 indexed images out of 2.4 million

snapshots from a lysozyme heavy-atom derivative that gives a

strong anomalous signal from two Gd atoms per asymmetric

unit (Barends et al., 2014).

Another complication that is not encountered in traditional

data collection by the rotation method is the ambiguity in the

choice of unit-cell basis vectors in cases where the lattice

symmetry is higher than the crystal symmetry. The problem

arises because the reflections recorded by each snapshot are

indexed independently and their partial intensities are too

inaccurate for any decision-making based on correlations

involving different exposures (White et al., 2012). To circum-

vent this problem, CrystFEL generates a perfectly twinned

data set of higher symmetry by merging all snapshots, which

renders the subsequent structure solution more difficult.

Recently, new methods for breaking the indexing ambiguity

have been described (Brehm & Diederichs, 2014) and the

detour via artificially twinned data sets appears to no longer

be necessary.

Some of the problems in processing FEL snapshots had

already been encountered more than 35 years ago when trying

to solve the first virus crystal structures. Often, on account of

radiation damage, the crystal had to be replaced after a single

exposure covering only a small rotation range. This resulted in

many partially recorded reflections and their complete inten-

sities had to be estimated. A solution to this problem, the

‘post-refinement’ method, was developed (Schutt & Winkler,

1977; Rossmann et al., 1979; Harrison et al., 1985; Rossmann,

1985) to derive complete intensities from refined estimates for

the fractions of observed intensity, the ‘partiality’. For rotation

images the partiality of each reflection can always be calcu-

lated as a function of orientation, the unit-cell metric, the

mosaic spread of the crystal and a model of the reflection

profile. The idea of the ‘post-refinement’ method is to improve

these parameters after all images have been processed by

using symmetry-related, fully recorded reflections for refer-

ence.

As an alternative to the processing of snapshots by Monte

Carlo integration, the software package nXDS has been

developed that resumes the old ‘post-refinement’ idea, now

enriched by a model for the recorded snapshot intensities as

a function of their corresponding structure-factor amplitudes

and also including the correct treatment of stills. The unique

reflection intensities and diffraction parameters for all crystals

are refined simultaneously to minimize the discrepancy

between observed and expected spot centroids and recorded

intensities. The indexing ambiguity is resolved by a method

reminiscent of ‘selective breeding’. It selects the indexing

alternative for each image that yields, on average, the highest

correlation with symmetry-related reflection intensities from

all other images. The implementation of nXDS is derived from

the standard XDS package (Kabsch, 2010a,b) in its present

version, which includes the handling of multi-segment detec-

tors.

2. Description of the diffraction experiment

Any right-handed orthonormal laboratory coordinate system

{l1, l2, l3} can be chosen with its origin at the intersection point

of the beam and the crystal. This reference system serves to

specify the following.

(i) The monochromatic incident-beam wavevector S0

(wavelength �, |S0| = 1/�) pointing from the X-ray source

towards the crystal.

(ii) The fixed rotation axis m2 passing through the origin of

the laboratory system. During X-ray exposure the crystal is

uniformly rotated by some angle �’ around this axis. Still

images are treated as a limiting case where �’ = 0 and the

concept of a rotation axis loses its meaning.

(iii) The right-handed set of unit-cell basis vectors {b1, b2,

b3} of the single crystal and the associated reciprocal basis

fb�1; b�2; b�3g such that any reciprocal-lattice point can be

expressed as p�0 ¼ hb�1 þ kb�2 þ lb�3 where h, k, l are integers.

(iv) The right-handed orthonormal detector system {D1, D2,

D3} imagined to be fixed in the instrument and translated by

the origin vector D0.

The detector consists of one or several rectangular, planar

X-ray-sensitive segments. Their position and orientation is

specified with respect to the detector system, which renders the

specification independent of any detector movements. For a

well calibrated instrument this greatly reduces the number of

parameters that need to be refined during data processing.

A right-handed orthonormal segment system {d01, d02, d03} and

an origin vector d00 are specified for each segment with respect

to the detector coordinate system. The X-ray-sensitive area

consists of identical pixels of sizes QX, QY (mm) along d01 and

d02, respectively.

Expressing the segment origin d00 in terms of {d01, d02, d03}, the

location x0 of a segment pixel x, y with respect to the detector

system is given by

x0 ¼ xQXd01 þ yQY d02 þ d00

¼ ðx� x00ÞQXd01 þ ðy� y00ÞQY d02 þ F 0d03: ð1Þ

Thus, the laboratory coordinates x of the same pixel x, y are

x ¼ D0 þ ðD1jD2jD3Þx
0

¼ ðx� x0ÞQX d1 þ ðy� y0ÞQY d2 þ Fd3; ð2Þ

where
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d� ¼ ðD1jD2jD3Þd
0
�; ð� ¼ 1; 2; 3Þ ð3Þ

and

x0 ¼ x00 �D0 � d1=QX ;

y0 ¼ y00 �D0 � d2=QY ;

F ¼ F 0 þD0 � d3: ð4Þ

The segment plane is found at a distance |F | from the crystal. F

has a negative sign if d3 points towards the crystal.

For accurate integration, the spot shape and extent are

modelled as Gaussian distributions involving two parameters:

the standard deviations of the reflecting range (mosaicity), �M,

and the combined effects of beam divergence and mosaicity,

�D.

3. Processing steps of nXDS

The program package nXDS was developed for automatic

determination of scaled and fully corrected reflection inten-

sities from monochromatic X-ray diffraction images, each

from a different crystal in a random orientation. nXDS uses

many ideas, routines and the overall structure of the rotation

data-processing program XDS (Kabsch, 2010a,b) and includes

numerous new routines for the efficient evaluation of a large

number of snapshots. The algorithms developed for integra-

tion, scaling and post-refinement are described in the

following.

The snapshots are processed by nXDS in seven steps,

named XYCORR, INIT, COLSPOT, POWDER, IDXREF,

INTEGRATE and CORRECT, which are called in succession

by nXDS. Information is communicated between the steps

by files, which allows the repetition of selected steps with a

different set of input parameters without rerunning the whole

program.

3.1. XYCORR

If necessary for the detector being used, this step computes

lookup tables of spatial corrections for each detector pixel. In

subsequent data-processing steps, when the true coordinates

of a pixel with respect to the laboratory coordinate system

are needed, the correction values for the X and Y coordinates

are retrieved from the tables and added to the pixel’s array

coordinates in the data image. This step is essentially the same

as that used by XDS.

3.2. INIT

Three lookup tables are determined here that are required

by the subsequent processing steps for classifying pixels in

the data images as untrusted, background or belonging to a

diffraction spot. This step is virtually the same as that used by

XDS.

3.3. COLSPOT

Strong diffraction spots occurring in the data images are

located and their centroids are saved in a file. Compared with

the corresponding step in XDS a simplification resulted for

snapshots from the fact that there are no neighbouring images

with contributions to the same spot.

3.4. POWDER

The origin of the detector system can often be found from

a powder pattern generated from the spots located in the

previous step. An incorrectly specified origin could lead to a

misindexing of reflections, a risk that is particularly high for

processing snapshots. As the use of multi-segment detectors

can prevent direct recognition of the powder circles, the

following method was devised.

A plane with the incident-beam vector S0 as its normal is

constructed from a second vector t = (1, 1, 1). To assure that t

is non-collinear with S0, one of its components is reset to 0,

namely the component corresponding to the maximum abso-

lute value of the components of S0. If this is not unique, the

first occurrence of the maximum is taken. For example, t =

(1, 0, 1) if the y coordinate is the first occurrence of the

absolutely largest component of S0. A right-handed ortho-

normal system {t1, t2, t3} can then be defined by

t1 ¼ t� S0=jt� S0j; t2 ¼ S0 � t1=jS0 � t1j; t3 ¼ S0=jS0j:

ð5Þ

Now, for a spot located at pixel coordinates x, y in the

COLSPOT step a scattering vector S can be calculated,

x ¼ ðx� x0ÞQXd1 þ ðy� y0ÞQY d2 þ Fd3;

S ¼ x=�jxj; ð6Þ

which intersects the powder plane at unit distance at coordi-

nates

S � t1=S � t3; S � t2=S � t3: ð7Þ

In the ideal case the scattering vectors mark a set of concentric

rings: the powder pattern. The centre of the rings should be at

the tip of the incident beam, which is the image centre. Often

the centre of the powder rings is instead found to be offset

from its ideal position, which can be interpreted to result from

an incorrect value for the origin of the detector coordinate

system D0.

3.5. IDXREF

For each snapshot this step tries to find a crystal lattice that

explains the observed diffraction spots by assigning indices to

them and refines all parameters. The step returns a list of the

successfully processed images and the indexed spots as well as

the corresponding diffraction parameters. These parameters

are refined for accurate prediction and integration of all

reflections that are expected to occur in each snapshot.

Short real-space lattice vectors are determined by the

method of Steller et al. (1997). Extraction of a reduced cell,

Bravais lattice determination and indexing of the observed

spots is performed as described by Kabsch (1993). The

computational methods were taken from XDS, with the

exception of the refinement procedure, which had to be

adapted for handling stills as well, where the concept of a

rotation axis has no meaning. This is achieved by using a
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different refinement target function. Instead of a rotation

angle about a fixed camera axis, the smallest angle is used by

which a reciprocal-lattice point could reach the Ewald sphere

by some unrestricted rotation. A closed analytical expression

for this angle is derived below and it is subsequently shown

how it is used in the refinement procedure.

3.5.1. Rotating a reciprocal-lattice point to the Ewald
sphere. We would like to find the smallest rotation that moves

a reciprocal-lattice point onto the Ewald sphere. Let p�0 denote

any arbitrary reciprocal-lattice vector and S0 denote the

incident-beam wavevector of length 1/� (� is the wavelength)

pointing from the X-ray source towards the crystal. Diffrac-

tion occurs along the wavevector S when the crystal is rotated

so that p�0 is changed into p* on the Ewald sphere satisfying

the Laue equations

S ¼ S0 þ p�; S2
¼ S2

0 ¼) p�2 ¼ �2S0 � p
� ¼ p�20 : ð8Þ

The distance vector D ¼ p� � p�0 depends on the rotation used

and thus is not unique.

Extending earlier work (Kabsch, 1988b), a unique rotation

can be found for a given S0, p�0 that yields the shortest distance

vector D ¼ p� � p�0, provided jp�0 j < 2|S0| and jp�0 � S0j <

jp�0jjS0j.

The unique rotation can be obtained by minimizing the

function

f ðDÞ ¼ D2
þ �1½ðS0 þ p�0 þ DÞ

2
� S2

0� þ �2½ðp
�
0 þ DÞ

2
� p�20 �;

ð9Þ

where the two constraints on the solution are enforced by the

Lagrange multipliers �1, �2. At the minimum the gradient of

f(D) must vanish and the matrix of second derivatives must be

positive definite,

1

2

@f

@�
¼ Dþ �1ðS0 þ p�0 þ DÞ þ �2ðp

�
0 þ DÞ

¼ 0 ¼) p� ¼
p�0 � �1S0

1þ �1 þ �2

;

1

2

@2f

@�@�
¼ ð1þ �1 þ �2Þ1 ¼) 1þ �1 þ �2 > 0: ð10Þ

The Lagrange multipliers are adjusted so that the constraints

are satisfied. At a vanishing gradient of f, the Laue equations

are satisfied if

p�20 ¼ �2S0 � p
�
¼ 2

�1S2
0 � S0 � p

�
0

1þ �1 þ �2

; ð11Þ

which implies

1

1þ �1 þ �2

¼
p�20

2ð�1S2
0 � S0 � p

�
0Þ
: ð12Þ

Conservation of the length of the reciprocal-lattice point

implies that

p�20 ¼ p�2 ¼
ðp�0 � �1S0Þ

2

ð1þ �1 þ �2Þ
2 ¼
ðp�0 � �1S0Þ

2p�40

4ð�1S2
0 � S0 � p

�
0Þ

2 ; ð13Þ

which leads to a quadratic equation for �1,

�2
1 � 2�1

S0 � p
�
0

S2
0

þ
4ðS0 � p

�
0Þ

2
� p�40

ð4S2
0 � p�20 ÞS

2
0

¼ 0: ð14Þ

The solution is

�1 ¼
S0 � p

�
0

S2
0

�
p�20

2S2
0

S2
0p�20 � ðS0 � p

�
0Þ

2

S2
0p�20 �

1
4 p�40

� �1=2

: ð15Þ

From

1

1þ �1 þ �2

¼
p�20

2ð�1S2
0 � S0 � p

�
0Þ
¼ �

S2
0p�20 �

1
4 p�40

S2
0p�20 � ðS0 � p

�
0Þ

2

� �1=2

ð16Þ

it can be concluded that the positive sign refers to the

minimum of D2, while the negative sign corresponds to the

maximum distance from the Ewald sphere. Using the abbre-

viations

A ¼
1

1þ �1 þ �2

¼
S2

0p�20 �
1
4 p�40

S2
0p�20 � ðS0 � p

�
0Þ

2

� �1=2

B ¼
�1

1þ �1 þ �2

¼ ðAS0 � p
�
0 þ p�20 =2Þ=S2

0; ð17Þ

the closest point p* on the Ewald sphere reachable by a

rotation of p�0 is

p� ¼ Ap�0 � BS0; D ¼ p� � p�0; S ¼ S0 þ p�: ð18Þ

Obviously, the vectors D, S, p* all lie in the plane defined by

p�0; S0. We conclude that p�0 reaches the Ewald sphere at p* by

the shortest path if it is rotated about an axis parallel to the

plane normal and passing through the origin of reciprocal

space. The rotation axis is identical to the ‘�-axis’ (Schutt &

Winkler, 1977) defined for each reflection to be perpendicular

to both the incident-beam and diffracted-beam wavevectors.

In the case of the rotation method the crystal is forced to

rotate about a fixed axis m2 which has a component � on

the ‘�-axis’. � is called the reflecting-range expansion factor

(Kabsch, 2010b) because the angle to rotate a reflection to the

Ewald sphere about m2 increases (by 1/�).

Finally, the angular deviation of the reciprocal-lattice point

p�0 from the Ewald sphere can be defined as the vector

� ¼ radD=jp�0 j; rad ¼ 180	=	: ð19Þ

3.5.2. Initial refinement. For each image, let j enumerate

the n strong spots with observed centroids Xj
0, Yj

0, detector

segment identifying number sj and reflection indices hj, kj, lj.

To each j, we denote the reciprocal-lattice point

p�0j ¼ hjb
�
1 þ kjb

�
2 þ ljb

�
3 , from which a diffracted beam wave-

vector Sj, an angular deviation from the Ewald sphere �j and

reflecting-range expansion factors �j can be determined as

described in the previous section. With the detector segment

recording the strong spot at distance Fsj , orientation d
sj

1 ; d
sj

2 ; d
sj

3

and origin X
sj

0 ;Y
sj

0 , the residuals between the calculated and

observed spot centroids are (segment specified in the labora-

tory system)
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�j
X ¼ X

sj

0 þ Fsj Sj � d
sj

1 =Sj � d
sj

3 � X 0j ;

�j
Y ¼ Y

sj

0 þ Fsj Sj � d
sj

2 =Sj � d
sj

3 � Y 0j : ð20Þ

The goal of the refinement procedure is to find the detector

parameters, incident-beam direction and unit-cell basis

vectors that minimize the target function

E ¼ wX

Pn
j¼1

ð�j
XÞ

2
þ wY

Pn
j¼1

ð�j
YÞ

2
þ w�

Pn
j¼1

�2
j =½

1
3 ð�j�
=2Þ2 þ �2

M�:

ð21Þ

The positional part of the target function pushes the calculated

spot positions towards the observed centroids, while the

angular part minimizes the angular deviations from the Ewald

sphere. The variance for the angular part is expected to

increase with the size of the rotation range.

The residuals are expanded to first order in the parameter

changes so that E becomes a quadratic function of these

changes. Minimization then leads to a system of normal

equations whose solution is used to update the parameters.

During refinement, the cell metric obeys constraints imposed

by the lattice symmetry by choosing an appropriate set of free

parameters for representing the allowed changes of the basis

vectors (details not shown).

The minimization procedure is repeated keeping the same

set of weights wX, wY, w� until convergence is reached. New

weights are then determined so that

wX ¼ 1=
Pn
j¼1

ð�j
XÞ

2;

wY ¼ 1=
Pn
j¼1

ð�j
YÞ

2;

w� ¼ 1=
Pn
j¼1

�2
j =½

1
3 ð�j�’=2Þ2 þ �2

M�: ð22Þ

Refinement continues with the new weights until convergence

is reached again. The whole refinement procedure is termi-

nated upon convergence of the weights wX, wY, w�.

3.6. INTEGRATE

Starting with the refined diffraction parameters for the

successfully indexed data images, this step determines the

recorded reflection intensities by two-dimensional profile

fitting and saves the results on file for subsequent processing

by the CORRECT step. No correction factors are applied

except for compensating missing parts in the reflection profile

owing to overlap with bad pixels or closely neighbouring

reflections.

Similar to the integration procedure as implemented in

XDS (Kabsch, 2010b), analysis of each image consists of

determination of the reflection spot size and the mosaicity and

refinement of the diffraction parameters using the strong

spots. This is followed by determination of a two-dimensional

reflection reference profile and integration by profile fitting

for all expected reflections, including the weak reflections

3.6.1. Mapping image pixels to the Ewald sphere. As

described earlier (Kabsch, 1988b, 2010b) and implemented in

the program XDS (Kabsch, 2010a), it is useful to represent the

intensity distribution in a reflection-specific coordinate system

{e1, e2, e3} so that all reflections appear as if they had followed

the shortest path through the Ewald sphere and were recorded

on the surface of the sphere. This eliminates reflection-specific

differences in the intensity profile caused by the oblique

incidence of the diffracted beam on a flat detector segment or

by crystal rotation around a fixed axis for a rotation data

image.

For a reciprocal-lattice point p�0 the nearest point S on the

Ewald sphere is obtained as described above, so that a

reflection-specific coordinate system can be defined as

e1 ¼ S� S0=jS� S0j;

e2 ¼ S� e1=jS� e1j;

e3 ¼ ðSþ S0Þ=jSþ S0j: ð23Þ

It has its origin at the terminus of the diffracted-beam wave-

vector S and therefore could move depending on the specific

path of p�0 through the Ewald sphere. The unit vectors e1 and

e2 are tangential to the Ewald sphere, while e3 is perpendicular

to e1 and p* = S � S0.

Diffraction along wavevector S0 in the neighbourhood of S

is recorded at pixel X0, Y0 in the detector plane. This pixel is at

a distance D from the crystal. With the detector at a distance

F, an orientation d1, d2 and an origin X0, Y0 of the detector

plane, we have

D ¼ ½ðX 0 � X0Þ
2
þ ðY 0 � Y0Þ

2
þ F2
�
1=2;

S0 ¼ ½ðX 0 � X0Þd1 þ ðY
0 � Y0Þd2 þ Fd3�=ð�DÞ; ð24Þ

The corresponding coordinates "1, "2, "3 in the reflection-

specific system on the Ewald sphere are then

"1 ¼ e1 � ðS
0
� SÞ=jSj;

"2 ¼ e2 � ðS
0 � SÞ=jSj;

"3 ¼ e3 � ðp
�
0 � p�Þ=jp�j: ð25Þ

In the case of a rotation image, a reciprocal-lattice point p�0
needs a larger angle "3/|e1�m2| to reach the Ewald sphere

because the movement is restricted by the fixed rotation axis

m2. The reflecting-range expansion factor � = e1�m2 corrects

for this effect. It is closely related to the reciprocal Lorentz

correction factor for rotation images,

L�1 ¼ jm2 � ðS� S0Þj=ðjSj � jS0jÞ ¼ j� � sin ffðS; S0Þj: ð26Þ

The reflection-specific coordinate system defined above sets

up a one-to-one correspondence between the points of a

region R of the "1"2 plane tangential to the Ewald sphere and

a region R0 of the X0Y0 plane of the detector segment. The

Jacobian of the transformation is

J ¼
@ð"1; "2Þ

@ðX 0;Y 0Þ
¼
@"1

@X 0
@"2

@Y 0
�
@"1

@Y 0
@"2

@X 0
: ð27Þ

From

@"i

@X 0
¼ ei �

@�S0

@X 0
;

@"i

@Y 0
¼ ei �

@�S0

@Y 0
ði ¼ 1; 2Þ ð28Þ

one finds
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J ¼ e1 �
@�S0

@X 0

� �
e2 �

@�S0

@Y 0

� �
� e1 �

@�S0

@Y 0

� �
e2 �

@�S0

@X 0

� �

¼ ðe1 � e2Þ �
@�S0

@X 0
�
@�S0

@Y 0

� �
: ð29Þ

Using

@�S0

@X 0
¼

d1

D
�
ð�S0ÞðX 0 � X0Þ

D2
;

@�S0

@Y 0
¼

d2

D
�
ð�S0ÞðY 0 � Y0Þ

D2

ð30Þ

one finds

@�S0

@X 0
�
@�S0

@Y 0
¼

F

D3
�S0 ð31Þ

and the Jacobian reduces to the simple expression

J ¼
F

D3
ð�S0Þ � ð�SÞ: ð32Þ

Thus, if the region R0 of the X0Y0 plane of the detector covers a

single pixel, the corresponding area R in the "1"2 plane is the

mean value of |J| times the pixel area,

R ¼
RR
R

d"1 d"2 ¼
RR
R0
jJj dX 0 dY 0

’ jJj
RR
R0

dX 0 dY 0 ¼ jJjR0: ð33Þ

3.6.2. Intensity recorded by a detector pixel. Because of

crystal mosaicity and beam divergence, the intensity of a

reflection is smeared around the diffraction maximum.

Following earlier work (Kabsch, 1988b, 2010b), the fraction

of the total reflection intensity found in the volume element

d"1d"2d"3 at "1, "2, "3 is modelled as the product of two

functions:

!ð"1; "2; "3Þd"1d"2d"3 ¼ !12ð"1; "2Þd"1d"2 � !3ð"3Þd"3: ð34Þ

The first function !12("1, "2) describes the expected intensity

profile of the reflections mapped to their specific "1, "2 plane

tangential to the Ewald sphere. Initially, Gaussians are

assumed with the parameter �D modelling the combined

effects of beam divergence and mosaicity as

!12ð"1; "2Þ ¼
expð�"2

1=2�2
DÞ

ð2	Þ1=2 �D

�
expð�"2

2=2�2
DÞ

ð2	Þ1=2 �D

: ð35Þ

�D is estimated from the observed variance in intensity of

scattered rays for the strong reflections and provides infor-

mation on the spot width. In a second step the initial Gaussian

form for !12 is replaced by the superposition of the profiles of

all strong reflections and is used for definition of the final

integration region included in profile fitting of all reflections

predicted to occur in the diffraction image.

The second function, the rocking curve !3("3), models the

dependency of the reflection intensity on the angular distance

from the surface of the Ewald sphere as a Gaussian with the

mosaicity �M of the crystal as the standard deviation. An

estimate of �M is found as described previously (Kabsch,

2010b). If � = radjDj=jp�0j is the angular deviation of the

reciprocal-lattice point p�0 from the Ewald sphere, the fraction

of intensity recorded on the image, i.e. the partiality of the

reflection, is

q ¼
R"
�"

!3ð"3 � �Þ d"3 ¼
R"
�"

exp½�ð"3 � �Þ
2=2�2

M�

ð2	Þ1=2 �M

d"3: ð36Þ

The integration extends over the rotation range �’ of the

spindle during exposure of the image multiplied by the

reflecting-range expansion factor �, which corrects for the

increased path length of the reflection through the Ewald

sphere when rotated around a fixed axis, i.e. " = ���’/2. Using

the dimensionless variables t = �/21/2�M and z = "/21/2�M the

partiality of the reflection can also be given in terms of the

error function erf:

qðt; zÞ ¼
Rz
�z

exp½�ðt � z0Þ
2
�

ð	Þ1=2
dz0 ¼ ½erfðt þ zÞ � erfðt � zÞ�=2:

ð37Þ

Together with the above expression for the Jacobian J, the

expected fraction of reflection intensity recorded by pixel

X0, Y0 in the detector plane is, according to our model,

RR
R

!12ð"1; "2Þ d"1 d"2

R"
�"

!3ð"3 � �Þ d"3 ’ !12ð �""1; �""2Þj
�JJjR0q:

ð38Þ

Here, !12ð �""1; �""2Þ and �JJ denote mean values in the region R of

the "1"2 plane that maps to the region R0 of the pixel at X0, Y0

in the plane of the detector.

3.7. CORRECT

After resolving possible indexing ambiguities, the raw

intensities of the (reindexed) reflections as obtained from the

previous step are scaled and corrected by a modified post-

refinement procedure and then saved in the final reflection

output file for subsequent structure-solution software

packages.

As described below, the new concept of the Ewald offset

correction factor as a replacement for partiality links raw

intensities to structure-factor amplitudes, rendering classical

post-refinement applicable even to still snapshots.

3.7.1. Correction factors. A reflection intensity ÎI, as

recorded on a snapshot and returned from the INTEGRATE

step, is proportional to the ‘true’ intensity I (the squared

structure-factor amplitude),

ÎI ¼ C I; C ¼ ĈC T; ĈC ¼ Q L P A O: ð39Þ

The correction factor C consists of a factor ĈC that is not

affected by possible indexing ambiguities and a factor T that

accounts for different scale and resolution fall-off between the

snapshots.

ĈC is a product of factors modelling the Ewald offset

correction (Q), Lorentz factor (L), polarization (P), air

absorption (A) and sensor-thickness correction (O). These

corrections are functions only of the diffraction parameters of

the snapshot that recorded the reflection.

Ewald offset correction. The recorded intensities of the

reflections of the same image would be directly comparable if
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they simultaneously obeyed the Laue equations, i.e. � = 0 for

all reflections. The idea is to correct the intensity by the esti-

mated decline owing to the angular distance of the reflection

from the surface of the Ewald sphere. Using the dimensionless

variables t = �/21/2�M and z = "/21/2�M (" = ���’/2) this leads to

the definition of the Ewald offset correction

Qðt; zÞ ¼ qðt; zÞ=qð0; zÞ ¼ 1
2 ½erfðt þ zÞ � erfðt � zÞ�=erfðzÞ;

Qðt; 0Þ ¼ lim
z!0

Qðt; zÞ ¼ expð�t2Þ; ð40Þ

which is well defined even for still images (z = 0). Q(t, z) can

be calculated for each reflection from the incident-beam

wavevector So, the reciprocal basis fb�1; b�2; b�3g, the mosaicity

�M and the oscillation range �’.

Lorentz factor. Assuming an infinitely thin Ewald sphere,

the Laue equations can be satisfied for a reciprocal-lattice

point by a variation in the wavelength or the direction of the

incident beam relative to the crystal. For an ideal crystal the

scattered intensity is sharply concentrated around the direc-

tion of the diffraction maximum with a solid angle much

smaller than the finite aperture of a detector pixel. Conse-

quently, only integrated intensities can be observed: these are

related to their squared structure factors by the Lorentz

correction. Explicit forms of the corrections are available (see,

for example, Zachariasen, 1945) for all conceivable methods

of recording sharp diffraction maxima.

(i) Rotation method. For a fixed wavelength but a variable

direction of incidence (accomplished by rotation of the crystal

around a fixed axis and a fixed incident beam), the correction

factor is

L ¼ 1=j� sinð2�Þj ¼ jSjjS0j=jm2 � S� S0j; 2� ¼ ffðS; S0Þ:

ð41Þ

For the special case that the rotation axis is perpendicular to

both the incident and diffracted beams, i.e. � = 1, the Lorentz

correction simplifies to

L ¼ 1=j sinð2�Þj: ð42Þ

Still snapshots can be considered as a limiting case in which

all reflections move infinitesimally through the Ewald sphere

along their shortest routes.

(ii) Laue method. For a variable wavelength but a fixed

direction of the incident beam, the correction factor is

L ¼ 1=ð2 sin2 �Þ: ð43Þ

(iii) Powder method. For a fixed wavelength but a variation

of the incident beam with two degrees of freedom (accom-

plished by mosaic crystals), the correction factor is

L ¼ 1=ð4 sin �Þ: ð44Þ

Lorentz correction is always a simple function of resolution

and therefore does not affect the agreement among intensities

of symmetry-related reflections.

Polarization. The intensity of scattering from the crystal is

proportional to the polarization factor

P ¼ hsin2 ’i; ’ ¼ ffðE0; SÞ; ð45Þ

where E0 denotes the electrical field vector of the incident

beam and S the diffracted beam wavevector. If n denotes the

polarization plane normal and p the probability of finding the

field vector E0 in this plane,

P ¼ hsin2 ’i ¼ p sin2 ’1 þ ð1� pÞ sin2 ’2;

’1 ¼ ffðS0 � n; SÞ;

’2 ¼ ff½ðS0 � nÞ � S0; S�: ð46Þ

For an unpolarized incident beam, the electrical field vector

E0 is found with equal probability pointing along S0 � S or

(S0 � S) � S0, so that

’1 ¼ 	=2; ’2 ¼ 	=2� 2�; 2� ¼ ffðS; S0Þ: ð47Þ

This leads to

P ¼ ½1þ cos2
ð2�Þ�=2: ð48Þ

The chosen parametrization allows description of the effect of

polarization for most data-collection scenarios (Kahn et al.,

1982). Values for the two parameters n and p are provided by

the user (not refined).

Air absorption. The recorded intensity is reduced from its

‘true’ value owing to air absorption of the diffracted beam by

the factor

A ¼ expð��DÞ; ð49Þ

where � denotes the fraction of intensity loss per millimetre

and D is the distance (in millimetres) between the crystal and

the position of the reflection spot on the detector segment. � is

a wavelength-dependent input constant (not refined).

Sensor-thickness correction. The recorded intensity is

increased owing to the effect of the oblique incidence of the

diffracted beam on a sensor of finite thickness. Let � denote

the thickness of the sensor and  the fraction of intensity loss

per millimetre. If the diffracted beam makes an angle ! with

the segment normal, the probability of a photon penetrating

the sensor undetected is exp(��/cos!). Thus, the correction

O ¼
1� expð��= cos!Þ

1� expð��Þ
ð50Þ

accounts for the oblique incidence of the diffracted beam.

Values for � and  are provided by the user and are not refined.

Scaling and temperature factor. Using the parameters g and

B, the factor

T ¼ g expðBjp�0 j
2
Þ ð51Þ

puts the ‘true’ intensity for reciprocal-lattice point p�0 on the

same scale as the observed one in the data image. The values

of g and B adjust differences in beam intensity and in crystal

disorder and volume in a resolution-dependent way. This

correction factor is obtained by comparison of symmetry-

equivalent reflections from different images and therefore

depends on a consistent indexing choice. For resolving

possible indexing ambiguities, correlations between equiva-

lent reflection pairs from different snapshots must be

computed (Brehm & Diederichs, 2014). To manage a
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potentially large number of snapshots and reflections, an

efficient solution was implemented in nXDS.

3.7.2. Efficient calculation of correlation factors. A

procedure was developed for calculating correlation factors

in which the number of operations is proportional to the total

number of recorded reflections of the compared snapshots.

The procedure consists of two parts: initialization of the data

structures and calculation of the correlation factor between

the unique intensity estimates from the compared snapshots.

Initialization.

(i) For the given space group and unit-cell parameters all

possible unique reflections within a given resolution range are

generated. A prime number is determined that is slightly

larger than twice the number of possible unique reflections

and is used to allocate space for a hash table of this size.

(ii) For each possible unique reflection a positive 64-bit

integer is constructed from its unique indices and assigned a

definite address in the table using the technique of hash-key

transformations with quadratic probing to resolve key colli-

sions (Wirth, 1976).

(iii) For each reflection from the snapshots the unique

indices are determined and coded by their hash-table address,

which is saved as an auxiliary reflection attribute. Thus, two

reflections are symmetry-related only if they have identical

hash-table addresses.

(iv) Four auxiliary arrays of the size of the hash table are

allocated: two for each data set to be compared. They are

needed for calculating unique intensities and their variances

for the reflections of the two data sets.

Correlation.

(i) Unique intensities and variances are estimated from

symmetry-related reflections of the first snapshot by updating

the contents of their associated hash addresses in the first two

auxiliary arrays.

(ii) For the intensity data from the second snapshot the

procedure is repeated, this time updating the second two

auxiliary arrays only if there is a positive entry from the first

snapshot at the same hash address in the first two auxiliary

arrays.

(iii) Pairs of corresponding unique reflection intensities are

obtained easily by scanning the second two auxiliary arrays for

a positive contents.

Thus, the total number of operations for calculating the

correlation factor between one snapshot and all others is only

proportional to the total number of recorded reflections of the

snapshots.

3.7.3. Indexing alternatives. For a given space group and

unit-cell parameters, a reciprocal cell basis in some reference

orientation (Kabsch, 1988a) is first defined and serves as a

reference basis. As each image is indexed and integrated

independently, it often happens that the reflection indices

refer to different (reduced) cells. The problem is to find for

each image the set of possible reindexing transformations that

allow the reflections to be described in terms of a rotated

version of the reference basis.

This set of reindexing transformations is determined for

each image using the following procedure. From the reciprocal

basis vectors used for indexing the reflections of the image in

the INTEGRATE step, a reduced cell and its reciprocal cell

are determined. The three reciprocal vectors thus obtained are

considered as reflections that need to be indexed with respect

to a rotated version of the reciprocal reference basis. Possible

indices of the reduced-cell reciprocal vectors with respect to

the reference basis are found by simply testing all possibilities

involving indices absolutely smaller than 4. For each assign-

ment of indices a residual error for the best superposition with

the reference basis is determined (Kabsch, 1976, 1978) and

is used as a measure of the quality of the indexing. Index

assignments related by symmetry of the reference cell are

omitted, so that a list of symmetry-independent interpreta-

tions remains. This list is sorted by increasing r.m.s. of the

superposition with the reciprocal reference cell. Entries in the

list with an r.m.s. larger than some multiple of that of the first

item are omitted.

The list may be empty if no reasonable interpretation is

found for the basis vectors of the image. In this case the image

is omitted from further calculations.

3.7.4. Resolving the indexing ambiguity. Ideally, only one

symmetry-independent solution remains, identified using

the above procedure solely by geometrical considerations.

However, for merohedral and pseudo-merohedral crystals,

where the lattice symmetry is higher than the symmetry of the

point group, more than one choice for the reindexing trans-

formation exists. In nXDS the indexing ambiguity can be

resolved by using one of two methods. Both methods rely

on correlation factors between intensities that have been

corrected by ĈC for various effects as described above. Note

that the scaling corrections T are not needed here.

Comparison with a reference. For each snapshot all possible

reindexing transformations are tested and the indexing choice

yielding the largest correlation factor with the given reference

data set is selected. Here, symmetry-equivalent reflection

intensities from the snapshot as well as from the reference

data are merged separately prior to calculation of the corre-

lation factor. Moreover, an initial scaling factor is determined

at little additional computational effort that puts the inten-

sities from each snapshot on the level of the reference.

Selective breeding. If no external reference data set is

available, a solution is found by a method that is reminiscent

of the technique of selective breeding. The method initiates a

cyclic procedure with some arbitrary indexing transformation

from the list of possibilities assumed by each snapshot. For

each cycle the following steps are carried out.

(i) For each snapshot all of its possible indexing choices are

tested in succession, with the reindexed reflection intensities

treated as a hypothetical reference data set. The mean value of

the correlation factors with all other snapshots is calculated,

and the running number of the reindexing choice yielding the

largest correlation factor is saved. If several choices result in

the same value for the correlation maximum, the first one in

the list is selected.

(ii) At the end of the cycle the list of optimal indexing

choices just determined is used and replaces the previous

selection. For some snapshots the new running number of the
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reindexing choice may differ from that of the previous cycle.

If none of the snapshots needs to be assigned to a different

indexing choice than before, the cyclic procedure terminates.

This procedure usually terminates within ten cycles. The

moderate amount of storage needed is proportional to the

number of snapshots and to the size of the hash table. In

addition one array is needed that keeps the hash-table address

of the unique indices for each reflection of the whole set of

images. This speeds up the computation of correlation factors

between all pairs of snapshots. Within each cycle these

computations can be carried out very efficiently and in parallel

by a team of processors.

3.7.5. Scaling. We assume that all reflections have been

consistently indexed. The reflection intensities of each image

are still on different scales owing to differences in the intensity

of the incident beam or irradiated crystal volume. Determi-

nation of the scale factors by the method described here is

based on intensity estimates for the unique reflections occur-

ring on each image,

�II ¼
P
�

ÎI�ĈC�=�̂�
2
�

�P
�

ĈC2
�=�̂�

2
�; ���2 ¼ 1

�P
�

ĈC2
�=�̂�

2
� ; ð52Þ

where � enumerates the symmetry-equivalent reflections and

ÎI� and �̂�� the recorded intensities on the same image and their

estimated standard deviations, respectively. ĈC� denotes the

correction factors as described above. A scaling correction

factor for each image is determined by least-squares mini-

mization using common unique reflections with a positive

intensity that occur in more than one image.

Let h enumerate the nh different unique indices of the

reflections involved in scaling and l enumerate the nl images

from which the reflections come. Let j enumerate the n unique

reflections included. To each j, we denote intensity �IIj > 0,

variance ���2
j , unique reflection index hj and image lj. The goal

of the scaling procedure is to find factors gl > 0 and mean

intensities Ih > 0 by minimizing the target function (Hamilton

et al., 1965)

 ðg; IÞ ¼
Pn
j¼1

ð�IIj � glj
Ihj
Þ

2

���2
j

: ð53Þ

To guarantee success of the solution method for a large set of

snapshots and possibly large variations in their scaling factors,

the target function is modified by using logarithms,

�ðG; JÞ ¼
Pn
j¼1

wjðĴJj �Glj
� Jhj
Þ

2; ð54Þ

defining ĴJj ¼ ln �IIj, wj ¼
�II2

j = ���2
j , Gl = lngl and Jh = lnIh. This

target function is quadratic, with a constant matrix of second

derivatives and positive diagonal elements:

@�ðG; JÞ

@Gl

¼ �2
Pn
j¼1

wjðĴJj �Glj
� Jhj
Þ�llj
;

@�ðG; JÞ

@Jh

¼ �2
Pn
j¼1

wjðĴJj �Glj
� Jhj
Þ�hhj

;

@2�ðG; JÞ

@Gl0@Gl

¼ �ll02
Pn
j¼1

wj�llj
;

@2�ðG; JÞ

@Jh0@Jh

¼ �hh02
Pn
j¼1

wj�hhj
: ð55Þ

Therefore, unique directional minimizers can be defined by

equating the gradients to zero:

�GGl ¼
Pn
j¼1

wj½ĴJj � Jhj
ðGÞ��llj

=
Pn
j¼1

wj�llj
;

JhðGÞ ¼
Pn
j¼1

wjðĴJj �Glj
Þ�hhj

=
Pn
j¼1

wj�hhj
: ð56Þ

The target function is monotonically reduced by a cyclic

procedure of alternating minimizations along the J and G

directions. The procedure is initiated at Gl = 0, Jh(G = 0). In

each following cycle new scaling factors are found as

G0l �Gl ¼ cð �GGl �GlÞ; ð57Þ

with the step size c chosen to maximize the reduction of the

target function. Expansion of the quadratic target function at

the point �GG; JðGÞ yields

�½G; JðGÞ� ¼ �½ �GG; JðGÞ� þ
Pn
j¼1

wjðGlj
� �GGlj
Þ

2

�½G0; JðGÞ� ¼ �½ �GG; JðGÞ� þ
Pn
j¼1

wjðG
0
lj
� �GGlj
Þ

2
ð58Þ

and the resulting reduction in the target function is

�½G; JðGÞ� ��½G0; JðGÞ� ¼ ½1� ð1� cÞ
2
�
Pn
j¼1

wjðGlj
� �GGlj
Þ

2:

ð59Þ

Moving from G to G0 changes the mean logarithmic intensities

by

JhðG
0
Þ � JhðGÞ ¼ �

Pn
j¼1

wjðG
0
lj
�Glj
Þ�hhj

�Pn
j¼1

wj�hhj

¼ c½Jhð
�GGÞ � JhðGÞ�: ð60Þ

Expansion of � at point G0, J(G0) yields

�½G0; JðGÞ� ¼ �½G0; JðG0Þ� þ
Pn
j¼1

wj½Jhj
ðGÞ � Jhj

ðG0Þ�2: ð61Þ

Using the abbreviations

a ¼
Pn
j¼1

wjð
�GGlj
�Glj
Þ

2; b ¼
Pn
j¼1

wj½Jhj
ð �GGÞ � Jhj

ðGÞ�2; ð62Þ

the reduction in the target function at completion of one cycle

is

�½G; JðGÞ� ��½G0; JðG0Þ� ¼ 2ac� ða� bÞc2: ð63Þ
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A finite value for the reduction requires a > b, which leads

to an optimal step size c = a/(a� b), so that the target function

is reduced by �[G, J(G)] � �[G0, J(G0)] = ac.

For the gradient, we have

@�½G; JðGÞ�

@Gl

¼
2

c

� �Pn
j¼1

wjðGlj
�G0lj Þ�llj

;
@�½G; JðGÞ�

@Jh

¼ 0:

ð64Þ

Since the target function is non-negative, the procedure

generates a bounded monotonically decreasing sequence

converging to the minimum of the target function at vanishing

gradient. As shown above, this also implies convergence of the

sequence of scaling factors.

Obviously, the solution thus obtained is not unique because

the target function does not change its value if one adds

an arbitrary constant to the logarithmic scaling factor Gl

and subtracts an appropriate constant vector from Jh. This

amounts to just changing the common scale of all images in the

original problem, which is of no importance as we are only

interested in the relative scale.

It may happen that several sets of images exist that are not

connected by common measurements. In this case the target

function could be thought of consisting of a sum of the same

type of target functions, one for each unconnected subset of

images. Now there is an arbitrary common factor for each

subset. Apparently, the presence of arbitrary common factors

for each subset of images does not prevent convergence of the

cyclic solution procedure described here.

3.7.6. Post-refinement. As mentioned above, the diffraction

parameters of each image are refined in the IDXREF and

INTEGRATE steps to minimize deviations between the

observed and the predicted locations of the strong spots and

to minimize their angular distance from the Ewald sphere. The

angular part of the target function takes care of the fact that

reflections can be visible only if they are close to the Ewald

sphere. In addition, the distribution of � angles thus obtained

provides an initial guess for the crystal mosaicity �M.

However, the angular part of the initial refinement target

cannot account for the fact that very strong reflections can still

be observed even if they are farther away from the Ewald

sphere than the weaker reflections. This leads to a systematic

bias in the initial parameter refinement so that strong reflec-

tions will be predicted to be closer to the Ewald sphere than

they really are.

These deficiencies can be overcome when all images have

been processed and intensity estimates for the recorded

reflections are included in the refinement, which explains why

this approach has been dubbed ‘post-refinement’. The original

idea (Schutt & Winkler, 1977; Rossmann et al., 1979; Harrison

et al., 1985; Rossmann, 1985) is extended here to handle still

snapshots as well when fully recorded, measured reflections

are not available for comparison and the notion of ‘partiality’

loses its meaning. Its role is assumed by the Ewald offset

correction Q defined above that is applicable for rotation

images as well as stills. The ‘post-refinement’ variant

implemented here considers the possible unique reflection

intensities as free parameters that are to be refined along with

the diffraction parameters of each snapshot (Bolotovsky et al.,

1998).

The goal of the refinement procedure is the minimization of

the target function

E ¼ wX

Pn
j¼1

wjð�
j
XÞ

2
þ wY

Pn
j¼1

wjð�
j
Y Þ

2
þ wI

Pn
j¼1

½ðÎIj � CjIhj
Þ=�̂�j�

2:

ð65Þ

Here again, j enumerates the n recorded reflections from all

snapshots, �X
j , �X

j the residuals between the calculated and

observed spot centroids (see x3.5.2) and ÎIj; �̂�j the recorded raw

intensity and its standard deviation. If a spot j is strong enough

so that a centroid could be determined then wj = 1, otherwise

wj = 0.

Each spot j is associated with a reciprocal-lattice point p�0j

close to the Ewald sphere. For each observation a correction

factor Cj can be computed from the diffraction parameters

that relates the recorded intensity ÎIj to a unique reference

intensity Ihj
, where hj denote the unique indices of the

reciprocal-lattice points p�0j.

The target function E depends on private parameters for

each snapshot and global parameters and constants.

(i) Private parameters.

S0, the incident-beam wavevector.

fb�1; b�2; b�3g, the reciprocal cell basis vectors.

g, the scaling factor for intensities.

B, the isotropic temperature factor.

�M, the mosaicity.

detector parameters.

(ii) Global parameters.

Ih, the squared structure-factor amplitudes for the possible

unique reflections h (up to some global constant irrelevant in

this context).

(iii) Global constants.

n and p, the polarization plane normal and the degree of

polarization.

�, the fraction of intensity loss per millimetre in air.

�, the thickness of the detector sensor.

, the fraction of intensity loss per millimetre in the sensor.

m2 and �’, the rotation axis and oscillation range (�’ = 0

for ‘stills’).

Each refinement round starts with the determination of the

unique reflection intensities Ih, keeping the current parameter

values constant. Minimization of the target function yields

Ih ¼
Pn
j¼1

�hhj
ÎIjCj=�̂�

2
j

�Pn
j¼1

�hhj
C2

j =�̂�
2
j : ð66Þ

The weights are then calculated as

wX ¼ 1=
Pn
j¼1

wjð�
j
XÞ

2;

wY ¼ 1=
Pn
j¼1

wjð�
j
Y Þ

2;

wI ¼ 1=
Pn
j¼1

½ðÎIj � CjIhj
Þ=�̂�j�

2
ð67Þ

research papers

Acta Cryst. (2014). D70, 2204–2216 Kabsch � nXDS 2213



and are kept throughout the refinement round. The whole

procedure is terminated upon convergence of the weights wX,

wY, wI.

During a refinement round the diffraction parameters for

each snapshot are corrected iteratively to minimize the target

function until convergence is reached. The residuals are

expanded to first order in the parameter changes so that E

becomes a quadratic function of these changes. Minimization

then leads to a system of normal equations whose solution is

used for updating the parameters. The gradients of �X
j , �Y

j

and Cj are computed from analytic expressions (not shown).

Fortunately, these calculations are independent for each

snapshot and can be performed in parallel by a team of

processors. Moreover, the memory requirements are almost

negligible even when the refinement of detector parameters is

included.

4. Example of data processing with nXDS

As an example to demonstrate the quality of data processed

by nXDS in comparison to conventional data reduction by

XDS, 20 000 consecutive rotation images were collected at

100 K from a crystal of a selenomethionine-labelled double

mutant of the RNA-processing factor SCAF8 (Becker et al.,

2008). Each image covers a rotation range �’ of 0.02	 and

is treated by nXDS as a snapshot taken from a randomly

oriented crystal. The images were collected on beamline

X10SA at the Swiss Light Source, Villigen, Switzerland at a

wavelength of 0.9779 Å, slightly above the Se K edge. The

images were recorded by a PILATUS 6M pixel detector

(Dectris AG, Baden, Switzerland) located at 300 mm distance.

The crystal has P43 space-group symmetry, which is lower than

the 422 lattice symmetry, implying a twofold indexing ambi-

guity.

The processing results are summarized in Table 1. The

upper part refers to the evaluation of the images by XDS as

conventional rotation data. The lower part shows the corre-

sponding quantities as obtained from nXDS. Here, reflections

were only included if their Ewald offset correction was larger

than 0.7. A total of 356 854 reflections in the resolution range

15–2 Å were integrated by XDS, so that for each unique

reflection almost eight symmetry-related reflections are

available. Because contributions to each reflection are also

recorded by adjacent images, it is not surprising that nXDS

found almost ten times more reflections, which is consistent

with the correspondingly higher multiplicity of observations.

After merging symmetry-related reflection intensities one

might expect that the mean signal-to-noise ratio hI/�(I)i

would come out about the same regardless of whether the

images were processed by XDS or nXDS. This is not the case:

the mean signal-to-noise ratio is higher by a factor of almost

three for the results from XDS. The lower accuracy of nXDS

presumably results from two-dimensional instead of three-

dimensional profile fitting and the lack of other corrections

not carried out yet by this version of nXDS. The nearly perfect

correlation factors CC1/2 (Karplus & Diederichs, 2012)

between intensities of symmetry-related reflections obtained

from processing by both programs reflect the excellent quality

of the data images. The presence of anomalous scatterers

is clearly indicated in both processing results by the highly

significant value for the anomalous correlation CCano. Finally,

the reflection intensities obtained from both programs are in

excellent agreement, showing a correlation coefficient of 98%.

Data processing was carried out by a 12-core machine with

16 GB memory running under Linux. Making use of the

hyperthreading capability, up to 24 threads were employed for

processing the images stored on a local disk. Elapsed wall-

clock times for each step are listed in Table 2. COLSPOT uses

a very fast spot-finding procedure but spends most of its time

waiting for the next image to arrive. On average only three out

of 24 threads were active. COLSPOT is a time-consuming step

in nXDS because each image had to be analyzed for diffrac-

tion spots since the knowledge that the images comprise a

rotation data set was not used. In contrast, XDS only requires

spots from a small fraction of the images for recognizing the

crystal lattice and for accurate refinement of the diffraction

parameters. For the same reason, the IDXREF step in nXDS

takes much longer than in XDS. In the INTEGRATE step

nXDS is somewhat faster than XDS because of the reduced
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Table 3
Consistent indexing by selective breeding.

Generation Replaced misfits

1 10045
2 9740
3 6380
4 114
5 0

Table 1
Comparison of data processing with XDS and nXDS.

Resolution (Å) 15–2 15–6 6–4 4–2.1 2.1–2

XDS
Reflections 356854 12414 31981 264002 48457
Multiplicity 7.8 7.7 7.8 7.8 7.7
hI/�(I)i 38.6 90.9 83.3 35.6 12.2
CC1/2 (%) 100.0 100.0 100.0 100.0 99.2
CCano (%) 76 98 96 71 34

nXDS
Reflections 3409453 56009 231474 2610196 511774
Multiplicity 74.6 37.9 57.4 76.8 82.7
hI/�(I)i 16.9 24.9 30.2 16.8 6.7
CC1/2 (%) 99.9 99.8 99.9 99.8 97.2
CCano (%) 41 84 72 38 18

Table 2
Wall-clock times (s) for processing with XDS and nXDS.

Step XDS nXDS Comments

XYCORR 1 1
INIT 172 124
COLSPOT 82 1864 I/O limited
POWDER — 7
IDXREF 3 1206
INTEGRATE 2022 1704
CORRECT 24 43 Using a reference

808 Using selective breeding



overhead in control when only single images are involved.

Compared with XDS, the CORRECT step of nXDS takes

longer because of the much larger number of reflections.

Furthermore, additional computations are required by the

selective breeding procedure when no reference data set is

available. According to Table 2, the breeding procedure

required about 14 min to resolve the twofold indexing ambi-

guities for 20 000 snapshots and a total of 3.4 million reflec-

tions.

Details of the procedure are shown in Table 3 as the number

of misfitting snapshots. In the first two generations both

indexing alternatives are nearly randomly distributed. A

small fluctuation towards one choice builds up in the third

generation and quickly dominates the population. After five

generations a homogeneous population is obtained.

Phasing of single anomalous diffraction data was performed

for the XDS and nXDS processed data sets using the

SHELXC/D/E program suite (Sheldrick, 2010). The results

are summarized in Table 4. In brief, the marker-atom structure

factors were estimated from pre-merged data using SHELXC.

Subsequently, the selenium substructure was determined in

a search of 100 trials for ten putative sites while applying a

high-resolution cutoff at 2.5 Å. For both data sets, SHELXD

identified 14 positions, of which seven showed significantly

higher occupancy when compared with the less significant

positions. This is in good agreement with the expected eight

selenium positions (Becker et al., 2008). Phases were further

improved by density modification using SHELXE; eight sites

were refined to significant occupancy and the phases obtained

resulted in excellent electron-density maps with high pseudo-

free correlation coefficients CCfree (Table 4) and the correct

enantiomorphic setting. Peak heights at the eight heavy-atom

sites are highly significant and are well above the largest noise

peak. Although phasing for both data sets was unambiguous,

the data set processed with nXDS showed slightly lower

correlation coefficients, Patterson figures of merit (PATFOM)

and heavy-atom peak heights.

5. Conclusion

This study describes a new approach for processing a large set

of snapshots from randomly oriented crystals that does not

rely on the Monte Carlo method of integration. Instead, the

concept of the Ewald offset correction factor was devised to

overcome difficulties arising from the use of partiality for

modelling reflection intensities recorded by snapshots. The

new approach has been implemented in the program nXDS

that has borrowed many ideas and routines from the rotation

data-processing package XDS as well as from the powerful

post-refinement technique that has been in widespread use for

several decades.

The implemented Ewald offset correction relies on a

Gaussian model for the rocking curve, assuming a sufficiently

large crystal whose shape transform can be ignored. In this

case the exact functional form of the curve is not critical for

reflections sufficiently close to the Ewald sphere. In the test

data set, a reflection was only included if its Ewald correction

factor was larger than 0.7.

As shown for the test case with fine-sliced rotation images

of excellent quality, nXDS delivers results almost approaching

those obtained by XDS and is able to retrieve the anomalous

signal from a selenomethionine-labelled protein crystal. The

source of the lower accuracy of nXDS is not yet clear. It could

result from two-dimensional instead of three-dimensional

profile fitting and the omission of information from weak

contributions to reflections further away from the Ewald

sphere that are used only by XDS. In fact, a small improve-

ment in overall data quality by 0.9% in hI/�(I)i and 2.9% in

CCano was observed upon the inclusion of weaker contribu-

tions when the minimum required Ewald offset correction was

lowered from 0.8 to 0.7.

So far, no ‘real’ FEL data have been processed by nXDS.

These data typically vary for each snapshot in wavelength,

bandwidth and crystal parameters. Although nXDS allows

some of these to change for each snapshot, program modifi-

cations are likely to become necessary when the incident-

beam bandwidth can no longer be substituted by a mean

wavelength or if the shape transform of the crystals cannot be

ignored. Presently, nXDS can only accept images that XDS

can read. Work is in progress to adapt the package to also

handle the detectors used at FEL beamlines and to make

nXDS and its documentation available from the internet.

I thank Anton Meinhart for providing the crystal and

analysis of the anomalous phasing power of the XDS and

nXDS processed data, Ilme Schlichting for measuring the test

data sets, discussions and support of this work, and Bruce

Doak for reading the manuscript. I am grateful to Kay

Diederichs and Michael Junk for inspiring communications

about resolving the indexing ambiguity and scaling.
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