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A new indexing method is presented which is capable of

indexing multiple crystal lattices from narrow wedges of

diffraction data. The method takes advantage of a simplifica-

tion of Fourier transform-based methods that is applicable

when the unit-cell dimensions are known a priori. The efficacy

of this method is demonstrated with both semi-synthetic multi-

lattice data and real multi-lattice data recorded from crystals

of �1 mm in size, where it is shown that up to six lattices can

be successfully indexed and subsequently integrated from a

1� wedge of data. Analysis is presented which shows that

improvements in data-quality indicators can be obtained

through accurate identification and rejection of overlapping

reflections prior to scaling.
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1. Introduction

A fundamental limitation of conventional macromolecular

crystallography is the necessity of obtaining one or more

crystals of sufficient size and quality to record a reasonably

complete data set. The development of microfocus beamlines

has allowed data to be collected from smaller crystals than

ever before [see the recent reviews of the history and

capabilities of microfocus beamlines by Evans et al. (2011) and

Smith et al. (2012)]. Frequently, particularly in the cases of

viruses and membrane proteins, only small, poor-quality

crystals may be available and it may only be possible to collect

a highly incomplete data set over a small oscillation range for

each individual crystal before the diffraction quality is affected

by radiation damage.

While an individual crystal may only give an incomplete

partial data set, a complete data set may be obtained by

merging data from many tens or hundreds of crystals (Grimes

et al., 1998; Wang et al., 2012; Hanson et al., 2012) (although in

certain circumstances very incomplete data sets may suffice;

see, for example, Hadfield et al., 1995). The advent of serial

femtosecond crystallography using X-ray free-electron lasers

(XFELs) has recently encouraged further interest in the

development of serial crystallography using synchrotrons

(Gati et al., 2014; Rossmann, 2014; Stellato et al., 2014).

For crystals as small as a few micrometres in size it may not

be possible to resolve individual crystals using the beamline

on-axis viewing system, in which case grid-scan analysis (Song

et al., 2007; Cherezov et al., 2009; Bowler et al., 2010; Aishima

et al., 2010; Axford et al., 2012) may be necessary to identify

sample locations prior to data collection. Such grid scans

usually score the diffraction quality by the number and

intensity of diffraction spots, suggesting positions where these

are maximized. While this is generally a reliable procedure,

in cases where the samples are substantially smaller than the

beam it is likely that positions will be selected where multiple
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samples are illuminated, such that multiple independent

diffraction patterns will be visible in the resulting data.

Unfortunately, indexing methods in the more commonly used

integration packages can become unreliable when multiple

similarly strong lattices are visible in narrow wedges of data.

In XDS (Kabsch, 2010b) indexing generally works well

when there is a single dominant lattice (Kabsch, 1993);

however, it may work less well or not at all when two or more

equally strong lattices are present. Within MOSFLM (Leslie

& Powell, 2007) it is now possible to index as many as four

independent lattices (Powell et al., 2013); however, this

requires the use of at least two images well spaced in rotation

and may also require careful adjustment of parameters. For

the multi-lattice indexing in LABELIT (Sauter & Poon, 2010)

it is assumed that one main lattice may be assigned which

identifies (by default) at least 40% of the reflections.

Paithankar et al. (2011) described the application of the

GrainSpotter program (Sørensen et al., 2012; Schmidt, 2014)

to multi-lattice macromolecular crystallography, but Grain-

Spotter does not currently appear to be in widespread use

within the macromolecular crystallography community.

Here, we present a new indexing method to address this

challenge of indexing multiple similarly strong lattices within

narrow wedges of data. The algorithms for these methods have

been developed within the DIALS framework (Waterman et

al., 2013), which builds on cctbx (Grosse-Kunstleve et al., 2002)

and dxtbx (Parkhurst et al., 2014) to offer tools for the analysis

of X-ray diffraction data. In the context of indexing diffraction

patterns, this offers spot finding, refinement, handling

of Bravais lattice constraints (Grosse-Kunstleve et al., 2004)

and tools for exporting the results to, for example, XDS. The

methods presented here are therefore implemented in the

program dials.index.

2. Notation

For clarity, the following notation will be used in this manu-

script for the mathematical operations. A more complete

description, including a discussion of the various coordinate

frames used, may be found in Appendix A and also in the

description by Parkhurst et al. (2014) of the experimental

models used by dxtbx. Throughout this manuscript we use the

term ‘sweep’ to refer to a contiguous sequence of rotation

images measured with a constant wavelength, distance and

dose per image. A ‘wedge’ typically refers to a small sweep, i.e.

one that samples a small part of reciprocal space.

�: X-ray wavelength.

h: Miller indices h, k, l; h0 is its real-valued approximation.

U, B and A: crystal orientation matrix, reciprocal-space

orthogonalization matrix and setting matrix, respectively,

where A = UB = (a* b* c*) and a*, b*, c* are the reciprocal-

space unit-cell vectors.

A�1: indexing matrix, where A�1 = (a b c)T and a, b, c are the

real-space unit-cell vectors.

’: rotation angle around the goniostat rotation axis.

R: goniostat rotation matrix.

dx, dy: basis vectors for coordinates in the detector plane.

d0: vector from the origin of the laboratory frame to the origin

of coordinates for the detector plane.

D: detector projection matrix, where D = d�1 = (dx dy d0)�1

(Bricogne, 1987).

xpx, ypx and xmm, ymm: detector pixel coordinates and coordi-

nates in millimetres in a virtual detector plane, respectively.

v: virtual detector coordinates, where v = (xmm, ymm, 1).

s0, s1: incident and scattered beam vector.

r’: reciprocal-lattice vector on the surface of the Ewald sphere

at rotation angle ’, where r’ = RAh.

r: reciprocal-lattice vector in Cartesian reciprocal space (i.e.

fixed with respect to the laboratory frame), where r = Ah.

3. Methods

Indexing methods conventionally take a list of spot centroid

positions (whether three-dimensional centroids or two-

dimensional image centroids and frame numbers) and some

description of the experimental geometry to (i) convert the

spot positions to the laboratory frame, (ii) convert these

positions to the corresponding set of reciprocal-space vectors

{rj} and (iii) analyse the set of vectors {rj} for periodicity and

hence find the reciprocal-lattice basis vectors and the corre-

sponding set of integer Miller indices {hj}. In mathematical

terms the first two steps are common to all indexing methods

as follows (Pflugrath, 1997).

A sequence of diffraction images are analysed to find a list

of candidate Bragg reflections using a spotfinding routine. This

returns a list of spot centroids in the form of xpx, ypx pixel

coordinates in the detector plane and image numbers (which

may be non-integral for three-dimensional spotfinding), which

are then mapped to xmm, ymm positions in the detector coor-

dinate system (1) and a rotation angle ’. Consequently, these

are mapped onto the surface of the Ewald sphere to give the

scattered beam wavevector, s1, normalized to length 1/� (2–4),

where � is the wavelength, such that the end point of the

vector is on the surface of the Ewald sphere with radius 1/�.

The reciprocal-lattice vector in diffracting condition, r’, is

obtained as the difference between the diffracted wavevector

s1 and the incident beam vector s0 (5). The reciprocal-lattice

vector in Cartesian reciprocal space, r, is obtained by rotating

the vector r’ by the angle �’ about the vector defined by the

rotation axis of the goniometer (6).

ðxpx; ypxÞ7!ðxmm; ymmÞ; ð1Þ

v ¼ ðxmm; ymm; 1Þ; ð2Þ

D ¼ dx dy d0

� ��1
; ð3Þ

s1 ¼
1

�

Dv

jjDvjj
; ð4Þ

r’ ¼ s1 � s0; ð5Þ

r ¼ R�1r’: ð6Þ
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Analysis of the set of reciprocal-lattice vectors {rj} to deter-

mine the basis vectors may use a variety of algorithms. In XDS

(Kabsch, 1988) the set of short difference vectors {rj � rk} are

calculated to build up low-order multiples of lattice vectors on

a histogram, which is subsequently analysed to determine a

unique basis. Other methods rely on the Fourier transform

relationship between real and reciprocal space to provide a

route for simultaneously determining both the unit-cell and

crystal-orientation parameters from a set of observed spot

centroids (Bricogne, 1986; Otwinowski & Minor, 1997; Steller

et al., 1997; Campbell, 1998). Methods have been developed

utilizing both one-dimensional (Steller et al., 1997; Powell,

1999; Sauter et al., 2004) and three-dimensional (Campbell,

1998; Otwinowski et al., 2012) fast Fourier transforms (FFT) to

identify the likely directions and magnitudes of the reciprocal-

lattice vectors.

These published Fourier methods utilize the knowledge that

the maxima of the function

FðxÞ ¼
P

j

cosð2�rj � xÞ; ð7Þ

where x represents a point in direct space, are the solutions

giving integer triples, hj, to the set of equations

hj ¼ A�1rj; ð8Þ

where

A�1
¼

a

b

c

0
@

1
A ð9Þ

and a, b and c are the initially unknown unit-cell basis vectors.

The vectors x that give the maximum values of F(x) corre-

spond, therefore, to these real-space unit-cell basis vectors

or some linear combination thereof. A three-dimensional fast

Fourier transform may be used to calculate this function on a

relatively coarse three-dimensional uniform grid, which is then

searched to find the approximate maxima of (7) (Campbell,

1998; Otwinowski et al., 2012). Alternatively, the maxima may

be found by carrying out a series of one-dimensional FFTs

after projecting the reciprocal basis vectors onto various

directions covering a hemisphere of reciprocal space (Steller et

al., 1997).

The methods described above simultaneously determine

both the direction and magnitude of the basis vectors.

However, if the unit-cell dimensions are known then the

magnitudes of the basis vectors are also known, leaving only

the directions of the basis vectors to be determined. From the

knowledge of the magnitude of the basis vectors, we know that

each local maximum of (7) must lie on the surface of a sphere

whose radius is determined by the magnitude of the basis

vectors. Therefore, we propose to perform a two-dimensional,

rather than a three-dimensional, search for maxima of (7) by

varying the direction of x only, i.e.

F½xð ; �Þ� ¼
P

j

cos½2�rj � xð ; �Þ�; ð10Þ

where

xð ; �Þ ¼ jjxjjûu ;�; ð11Þ

||x|| is set equal to the length of one of the real-space unit-cell

vectors and ûu ;� defines a unit vector with spherical coordi-

nates  , �. The search directions  , � are chosen to be evenly

spaced within a hemisphere, using a method similar to that

described by Steller et al. (1997). The resulting set of vectors

are sorted by decreasing value of F(x), and vectors that are

approximately collinear with a vector higher in the list are

eliminated. The top 30 vectors in this reduced list are analysed

to find suitable combinations of basis vectors which are

consistent (within user-defined relative length and absolute

angular tolerances) with the known unit cell (Hattne et al.,

2014). This gives a set of candidate crystal setting matrices

which are further analysed to choose the one which is most

consistent with the set of observed centroids, i.e. the one which

indexes as many observed centroids as possible. Although this

relatively simple metric appears to work well in this study,

work is ongoing to devise a more robust metric that takes

into account the quality of the fit between the calculated and

predicted centroids, such as that described by Sauter et al.

(2004). The unit-cell dimensions of the primitive setting of the

unit cell are used in the search for the initial set of candidate

basis vectors, although the algorithm should be equally

applicable in the case of the reduced basis, reference setting or

some other nonstandard setting.

Each reciprocal-lattice vector is then expressed in terms of

the reciprocal basis vectors according to

h0 ¼ A�1r: ð12Þ

The nonintegral Miller indices h0 are rounded to give the

integer Miller indices h. Only those reflections are used where

the norm of the difference between the integer and real-

valued Miller indices, i.e. ||h0 � h||, is less than some tolerance

(in this work a tolerance of 0.3 was used).

The unit-cell and crystal-orientation parameters are then

refined using the positions of the indexed reflections (x3.3).

Once refinement has converged, any remaining unindexed

reflections may be analysed for further lattices. In subsequent

iterations, joint refinement of the crystal lattices is performed.

This process may be repeated until either an insignificant

number of unindexed reflections remain or no further lattices

can be identified. If at any stage refinement does not converge,

the most recently identified lattice is discarded and only those

lattices which were refined successfully are reported.

3.1. Assigning indices to reflections in the presence of
multiple lattices

Initially, each reflection is assigned a potential Miller index

as described above for the case of a single lattice. The

reflection is assigned to the lattice that gives the Miller index

with the smallest norm ||h0 � h||. A further check is made to

ensure that two reflections are not assigned to the same lattice

with the same Miller index. If this is the case, then the one that

gives the smallest value of the norm ||h0 � h|| is used and the

remaining reflections are rejected as outliers.
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3.2. Spotfinding

Spotfinding was performed using dials.find_spots (unpub-

lished work), which is based on the algorithms described by

Kabsch (2010a). This determines spot centroids in three

dimensions, as well as estimates of the centroid variances,

which are a valuable input to the refinement step (x3.2).

dials.find_spots provides options to filter the initial list of

strong spots based on the minimum number of contiguous

pixels within the spot, the minimum and maximum resolution

limits, the maximum peak-to-centroid separation (for example

to reject split peaks) and the rejection of spots that are close to

an ice ring or within an untrusted region of the detector (for

example behind the beamstop shadow).

3.3. Refinement

Refinement was performed with dials.refine (unpublished

work) which includes a completely general approach to the

refinement of the experimental geometry. This refinement

minimizes via weighted least squares the discrepancy between

the observed spot centroids and the central impacts calculated

from the current model of the unit cell, crystal orientation,

beam direction and detector position and orientation. Para-

meters that affect the shape of the spot, such as the mosaic

spread, are not refined at this stage.

3.4. Outlier rejection

Even for the case of a single lattice, outlier rejection can be

important for accurate refinement of the crystal and experi-

mental parameters. In the presence of multiple lattices, outlier

rejection becomes critical for correctly assigning reflections

to the separate lattices (Sauter & Poon, 2010). While Sauter &

Poon (2010) propose a more elaborate statistical treatment of

outliers, in this work we simply provide user-configurable

parameters to control the maximum acceptable deviations

between the observed and calculated spot position in x and y

in the detector frame and in the rotation angle ’. This is

similar to the behaviour of the equivalent XDS parameters

(MAXIMUM_ERROR_OF_SPOT_POSITION= and

MAXIMUM_ERROR_OF_SPINDLE_POSITION=), which

have default values of three pixels and 2�, respectively (http://

xds.mpimf-heidelberg.mpg.de/html_doc/xds_parameters.html).

3.5. The importance of accurate experimental geometry for
indexing

The mapping of the positions of diffraction maxima from

image to reciprocal space is necessarily sensitive to the accu-

racy of the experimental description. For many single-lattice

data sets, particularly spanning many degrees of rotation,

assumptions may be made about the initial experimental

geometry, for example assuming that the beam is perpendi-

cular to the rotation axis and that this axis is coincident with

the fast or slow direction on the detector. In most cases the

deviation from these assumptions will be small and well within

the radius of convergence of the indexing algorithms.

Hattne et al. (2014) demonstrated using XFEL still shots

that poorly determined detector geometry can adversely affect

both the indexing success rate and the quality of the integrated

data, particularly at high resolution. Similarly, in the case of

narrow wedges of synchrotron rotation data there is much less

unique information to use in the refinement of the geometry.

Combined with the presence of multiple lattices, which make

outlier rejection more challenging, indexing methods become

much less tolerant of errors in the recorded geometry. This

is ideally addressed by (i) storing an accurate model of the

experimental geometry in the image headers or (ii) having a

good-quality and complete rotation data set recorded from a

test crystal using the same experimental geometry. In many

cases the latter of these is more easily achieved as a user, so

dials.index allows the input of this refined geometric infor-

mation from a previous processing run.

In some cases it may be found after the experiment is

complete that the geometry recorded in the image headers is

insufficiently accurate. In this situation it may be necessary

to make some assumptions about the initial experimental

geometry as above and attempt to discover, for example, a

more accurate estimate of the beam centre (Sauter et al.,

2004). Of course, once the initial indexing is successful full

refinement may proceed as described above.

3.6. Integration with XDS

The resulting crystal and experimental geometry para-

meters were exported in XDS format and the separate lattices

were integrated individually using XDS. Standard XDS

practices were followed including, for example, running the

INTEGRATE step a second time using the GXPARM.XDS

output by the CORRECT step and the refined values for beam

divergence and mosaicity as input (http://strucbio.biologie.

uni-konstanz.de/xdswiki/index.php/Optimisation).

3.7. Identification of overlapping reflections

Ideally, overlapping reflections would be identified prior to

integration in order that they can be excluded during deter-

mination of the spot profile model and taken into account

during calculation of the background around each reflection.

As XDS does not currently support integration of multiple

lattices, analysis of overlapping reflections is performed after

integration of the individual lattices with XDS, allowing

overlapping reflections to be excluded from subsequent

scaling.

In order to identify overlapping reflections, the extent of the

reflections in detector/rotation space is first calculated as a

bounding box that fully encloses each reflection’s peak region.

In DIALS, the bounding box is created using a profile model

as used in XDS and described by Kabsch (2010a): the XDS

�b and �m parameters are used to specify the size of each

reflection on the detector and in rotation, respectively. The

profile model assumes a Gaussian spot profile in a reciprocal-

space coordinate system local to each reflection. The extent

of the spot in this coordinate system is taken as N� standard

deviations from the origin. The bounding box is then calcu-
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lated by mapping the spot profile back into detector/rotation

space and finding a three-dimensional box that fully encloses

it. A mask is created for each reflection that specifies, for each

pixel in the bounding-box region, which pixels are part of the

peak and which are background. Overlapping reflections are

then found in a two-stage procedure: the bounding boxes are

first processed to extract a list of pairs of potentially over-

lapping reflections and these pairs are then checked to

determine whether the peak regions overlap.

A space-partitioning algorithm is used to extract a list of

overlapping bounding boxes. The algorithm uses a k-d tree

to recursively partition the space along each dimension and

query the number of objects intersecting a given range. Since

the list of bounding boxes is used both to construct the tree

and to provide the list of query ranges, an optimization is

performed to allow these steps to be performed in a single

pass. The algorithm has a time complexity of O(NlogN), where

N is the number of reflections. Each pair of potential overlaps

is then analysed to determine whether their peak regions

overlap. This is performed by iterating over the pixels in the

intersection between the bounding boxes of two reflections; a

pair of reflections which contains one or more pixels that are

labelled as peak in both reflections are marked as overlapping.

3.8. Resolution of indexing ambiguities

For several space groups, the Bravais lattice contains two

or four symmetry elements that are not in the space group,

resulting in alternative indexing possibilities (Dauter, 1999).

For these space groups it is necessary to ensure that indexing

is consistent across all crystals when merging data from

multiple crystals to form a single data set. Programs such as

POINTLESS (Evans, 2006) can typically resolve indexing

ambiguities by comparing data from each crystal against a

reference data set (which may be one of the data sets being

scaled together). However, as the wedges of data being scaled

together become narrower (e.g. 1�) this approach may no

longer work reliably. If available, a more complete but low-

resolution data set may be used as a reference, or calculated

structure factors may be used if the structure is already

known.

Brehm & Diederichs (2014) introduced an elegant way of

breaking the indexing ambiguity in XFEL data sets, which

may comprise many thousands to hundreds of thousands of

very incomplete partial data sets taken from still shots.

The approach rests upon a comparison of pairs of images.

Regardless of the fact that still shots from two randomly

oriented crystals will share only a few common Miller indices,

the correlation coefficient between those shared structure-

factor intensities will be highest if the two images have been

indexed with the same sense. An implementation of algorithm

2 of Brehm & Diederichs (2014) was developed in the context

of cctbx.xfel (Sauter et al., 2013), and in x4.2 we demonstrate

the application of the algorithm to synchrotron data in space

group I23.
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Table 1
Data-reduction statistics for the semi-synthetic multi-lattice data sets, including overlapping reflections.

Values in parentheses are for the outer resolution shell. Rmeas, Rp.i.m. and CC1/2 are calculated as defined by Diederichs & Karplus (1997), Weiss (2001) and Karplus
& Diederichs (2012), respectively. The number of rejected reflections refers to the reflections identified as outliers during scaling.

Data set 12 � one-lattice 6 � two-lattice 4 � three-lattice 3 � four-lattice 2 � six-lattice

Resolution range (Å) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.87–1.30 (1.35–1.30)
No. of reflections: total/unique 225096/51437 224218/51438 223517/51438 222939/51432 222303/51514
No. of rejected reflections 70 832 1352 1733 1977
Completeness (%) 98.1 (99.3) 98.1 (99.3) 98.1 (99.3) 98.0 (99.3) 98.0 (99.4)
Multiplicity 4.4 (4.3) 4.4 (4.3) 4.3 (4.3) 4.3 (4.3) 4.3 (4.3)
Rmeas (%) 3.0 (8.8) 3.3 (10.6) 3.6 (12.5) 4.1 (14.1) 6.9 (25.4)
Rp.i.m. (%) 1.4 (4.1) 1.5 (4.9) 1.7 (5.8) 1.9 (6.6) 3.3 (11.9)
hI/�(I)i 34.8 (15.8) 27.8 (11.7) 23.9 (9.3) 19.4 (7.4) 12.3 (4.4)
CC1/2 (%) 99.8 (99.3) 99.8 (98.9) 99.8 (98.3) 99.7 (98.1) 99.3 (93.5)

Table 2
Data-reduction statistics for the semi-synthetic multi-lattice data sets, excluding overlapping reflections prior to scaling, using N� = 3, where N� is the
number of standard deviations used to calculate the reflection mask.

Values in parentheses are for the outer resolution shell.

Data set 12 � one-lattice 6 � two-lattice 4 � three-lattice 3 � four-lattice 2 � six-lattice

Resolution range Å) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.87–1.30 (1.35–1.30)
No. of reflections: total/unique 225096/51437 207352/51242 187700/50804 167348/50193 111993/46119
No. of rejected reflections 70 75 177 162 130
Fraction of overlaps (%) – 6.3–9.4 15.0–18.0 22.7–30.9 45.3–55.1
Completeness (%) 98.1 (99.3) 97.7 (99.0) 96.8 (98.0) 95.7 (96.0) 87.8 (85.3)
Multiplicity 4.4 (4.3) 4.0 (3.9) 3.7 (3.5) 3.3 (3.1) 2.4 (2.1)
Rmeas (%) 3.0 (8.8) 3.2 (10.4) 3.3 (11.8) 3.5 (12.8) 4.0 (21.4)
Rp.i.m. (%) 1.4 (4.1) 1.5 (5.0) 1.6 (6.0) 1.8 (6.8) 2.2 (12.9)
hI/�(I)i 34.8 (15.8) 31.1 (13.0) 27.8 (10.6) 32.4 (10.3) 20.7 (6.4)
CC1/2 (%) 99.8 (99.3) 99.9 (99.0) 99.9 (98.5) 99.9 (98.2) 99.8 (92.4)



4. Results and discussion

4.1. Semi-synthetic multi-lattice data sets

Assessing the accuracy of the indexing method with

multiple lattices present is straightforward if the correct

orientation matrices are known a priori. To meet this

requirement, semi-synthetic multi-lattice data sets were

created by the pixel-wise addition of small wedges of data

recorded from a crystal of bovine pancreatic trypsin (�0.1 �

0.1 � 0.2 mm in size) on beamline I04 at Diamond Light

Source at arbitrary ’ and � offsets of a mini-kappa gonio-

meter. Each wedge of data was recorded over a total range of

10� with 0.1� and 0.1 s per image, with a relatively low trans-

mission (5%) to minimize the effects of radiation damage. The

data were recorded at a wavelength of 0.97949 Å at a distance

of 214 mm on a PILATUS2 6M detector. A total of 12 data

sets were recorded (a–l) and combined to create data sets with

two, three, four and six lattices visible by adding the intensity

at pixel x, y on image z from, for example, data sets a, e and i

for the pixel at x, y on image z for data set aei. For a given

number of lattices each of the original image sets was used

only once. For each and every permutation of data sets, the

orientations of all crystals were successfully identified and

refined using the methods described in this paper. Each lattice

was integrated individually using XDS (Kabsch, 2010b) before

the 12 integrated partial data sets were scaled together using

AIMLESS (Evans & Murshudov, 2013). It is important to

note that by default AIMLESS adjusts the intensity standard

deviations automatically as �0(I) = SdFac[�(I)2 + SdB � I +

(SdAdd � I)2]1/2: this was applied here.
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Figure 1
Merging statistics, including overlapping reflections, as a function of resolution for (a) Rmeas (solid lines) and Rp.i.m. (dashed lines), (b) completeness
(solid lines) and multiplicity (dashed lines), (c) mean intensity over sigma and (d) CC1/2 as a function of resolution. Red, green, blue, cyan and magenta
lines represent individual sweeps, two lattices, three lattices, four lattices and six lattices, respectively. Points on the abscissa represent the centre of each
resolution shell.



Data were integrated to the corners of the detectors

(�1.0 Å), but the resolution was truncated at 1.3 Å (the

resolution of the inscribed circle on the detector) for subse-

quent analysis. Scaling was performed both with and without

the identification of overlapping reflections; data-reduction

statistics are presented in Tables 1 and 2. Figs. 1 and 2 show

data-reduction statistics as a function of resolution, whilst

Fig. 3 shows the fraction of overlapping spots as a function

of resolution. Data-reduction statistics were calculated using

phenix.merging_statistics (Adams et al., 2010).

It is important to note that as a result of combining images

from different orientations to create semi-synthetic multi-

lattice data sets, the background will be between two and

six times higher for the multi-lattice data sets than for the

original single-lattice data sets. This is reflected in the standard

deviation correction parameters applied to the measurements

by AIMLESS, which had a relatively wide range of values for

the 12 individual data sets a–l: SdFac from 0.49 to 0.79, SdB

from �2.55 to 8.95 and SdAdd from 0.0277 to 0.0798. These

were generally increased when determined for the six-lattice

data, although the interpretation of the values is complicated

by the interdependence of the parameters. The change in the

mean values for these parameters from single lattice to six-

lattice processing was SdFac increasing from around 0.57 to

0.75, SdB decreasing slightly from 3.04 to 2.84 and SdAdd

remaining constant at around 0.047. The increase in SdFac

explains, at least in part, the reduction in mean I/�(I) as the

number of lattices increases in Tables 1 and 2. In reality, for a
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Figure 2
Merging statistics, excluding overlapping reflections, as a function of resolution for (a) Rmeas (solid lines) and Rp.i.m. (dashed lines), (b) completeness
(solid lines) and multiplicity (dashed lines), (c) mean intensity over sigma and (d) CC1/2 as a function of resolution. Overlapping reflections calculated
using N� = 3, where N� is the number of standard deviations used to calculate the reflection mask. Red, green, blue, cyan and magenta lines represent
individual sweeps, two crystals, three crystals, four crystals and six crystals, respectively. Points on the abscissa represent the centre of each resolution
shell.



true multi-lattice data set the background will be similar, or

potentially even lower if the extra crystals displace solvent in

the beam.

4.1.1. Overlapping reflections. One potential concern when

faced with the presence of multiple lattices is the effect of

overlapping reflections on the quality of the reduced data.

In order to address this concern, we examined the fraction of

overlapping reflections as a function of resolution (Fig. 3)

using a value of N� = 3, where N� is the number of standard

deviations used to calculate the reflection mask (x3.7). In

contrast to Paithankar et al. (2011), we observe that the

overlap fraction increases with resolution, which we attribute

to the more sophisticated identification of integrated pixels

based on the XDS profile model in comparison to the fixed

reflection spot size assumed by Paithankar and coworkers.

Similarly to Buts et al. (2004), we observe that excluding

overlapping reflections from scaling dramatically reduces the

number of observations rejected as outliers (Tables 1 and 2).

We note that there is an improvement in several data-quality

indicators [in particular Rmeas, Rp.i.m. and hI/�(I)i] when

excluding overlapping reflections from scaling, at the cost of a

reduction in completeness and multiplicity (Tables 1 and 2 and

Figs. 1 and 2).

Inspection of the diffraction images suggests qualitatively

that many of the overlaps identified through the procedure

described above in fact only involve the overlap of a few pixels

from each reflection (see, for example, Fig. 4). This was

confirmed by a histogram of the fraction of overlapping pixels

(Fig. 5), indicating that the majority of overlapping reflections

overlap only in the tails of the peak region. This suggests

that reducing the number of standard deviations, N�, used to

calculate the reflection mask profiles would ensure that only

pairs of reflections that are overlapping in the central peak

region are rejected, with minimal impact on data quality.

Scaling was repeated excluding overlapping reflections

calculated using N� = 2. The resulting merging statistics were

similar to those obtained using N� = 3, but with higher values

of completeness and multiplicity, particularly for the six-lattice
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Table 3
Data-reduction statistics for the semi-synthetic multi-lattice data sets, excluding overlapping reflections prior to scaling, using N� = 2, where N� is the
number of standard deviations used to calculate the reflection mask.

Values in parentheses are for the outer resolution shell.

Data set 12 � one-lattice 6 � two-lattice 4 � three-lattice 3 � four-lattice 2 � six-lattice

Resolution range (Å) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.85–1.30 (1.35–1.30) 43.87–1.30 (1.35–1.30)
No. of reflections: total/unique 225096/51437 218529/51377 211277/51253 202828/51134 176631/50568
No. of rejected reflections 70 192 439 289 575
Fraction of overlaps (%) — 2.1–3.4 5.4–6.2 8.5–11.7 18.8–23.4
Completeness (%) 98.1 (99.3) 97.9 (99.2) 97.7 (99.0) 97.5 (98.8) 96.2 (97.4)
Multiplicity 4.4 (4.3) 4.3 (4.2) 4.1 (4.0) 4.0 (3.8) 3.5 (3.3)
Rmeas (%) 3.0 (8.8) 3.2 (10.4) 3.5 (12.1) 3.5 (12.9) 4.9 (23.9)
Rp.i.m. (%) 1.4 (4.1) 1.5 (4.9) 1.6 (5.8) 1.7 (6.3) 2.5 (12.4)
hI/�(I)i 34.8 (15.8) 30.9 (13.0) 30.8 (11.8) 26.7 (9.9) 24.2 (8.0)
CC1/2 (%) 99.8 (99.3) 99.9 (99.0) 99.8 (98.6) 99.9 (98.5) 99.8 (93.7)

Figure 3
Fraction of overlaps as a function of resolution for two (red), three (green), four (blue) and six (cyan) crystals. Solid lines represent the mean values for
the resolution shells; the error bars represent the minimum and maximum values in each resolution shell. Overlap fractions calculated using (a) N� = 3
and (b) N� = 2, where N� is the number of standard deviations used to calculate the reflection mask.



data set (Table 3 and Fig. 6). The choice of an optimal value of

N� to be used in the identification of overlapping reflections

is likely to involve a compromise between data quality and

completeness. A more advanced approach would require the

modification of integration software such that it is aware of

the presence of multiple lattices, enabling the exclusion from

background determination and profile fitting of pixels

belonging to overlapping reflections (Fry et al., 1993). Alter-

natively, peak deconvolution procedures during integration

such as those described by Bourgeois et al. (1998) or Schreurs

et al. (2010) may work well in such cases.

4.1.2. Very narrow wedges. It is widely recognized that the

robustness of current indexing algorithms can be increased by

using data from images that are widely separated in reciprocal

space (for example, separated by a rotation of 90�), particu-

larly for more problematic cases (Steller et al., 1997; Sauter et

al., 2004; Powell et al., 2013; Winter et al., 2013). Therefore, this

can make the indexing of multiple lattices from narrow wedges

of data (e.g. 1� rotation images or XFEL still shots) especially

challenging.

In order to further test our multi-lattice indexing algorithm,

we ran dials.index using just the first 1� of images for the semi-

synthetic multi-lattice data sets described above. In all cases,

from the two-lattice data sets to the six-lattice data sets, all 12

lattices were successfully identified and the crystal orientation

refined to within less than 0.05� of the orientation obtained

from the full 10� of single-lattice data.

We then tested the performance of the algorithm using just

the first image from each sweep and found that all six lattices

were successfully identified from a single image of each six-

lattice data set. This result demonstrates the applicability of

the algorithm to very narrow wedges of data and potentially

also to XFEL data, where the nature of the current sample-

delivery systems can result in multiple lattices being present in

the beam simultaneously (Hattne et al., 2014; Sawaya et al.,

2014).

4.1.3. Comparison to existing methods. In order to assess

the performance of our methods in comparison to existing

research papers

2660 Gildea et al. � Multi-lattice indexing Acta Cryst. (2014). D70, 2652–2666

Figure 4
Two overlapping reflections from a semi-synthetic multi-lattice trypsin
data set on four consecutive rotation images. Blue squares represent the
bounding box in image space of a reflection. Green dots indicate pixels
that are part of the peak region according to the values of �m

and �b obtained from XDS (N� = 3). Images were generated using
dials.image_viewer, which is derived from cctbx.image_viewer (Sauter et
al., 2013).

Figure 5
(a) Histogram of the fraction of overlapping pixels for the semi-synthetic
six-lattice trypsin data set; (b) as for (a) but averaged across all data sets
with the same number of lattices for two (red), three (green), four (blue)
and six (cyan) crystals.



methods, indexing was attempted with the recent imple-

mentation of multi-lattice indexing in iMosflm (Powell et al.,

2013). When provided with the first 1� of images from the six-

lattice data sets, iMosflm identified five lattices (only two of

which had the correct unit cell) for one of the data sets and five

lattices (only one of which had the correct unit cell) for the

second data set. When indexing was attempted using only the

first image of each data set, iMosflm identified four lattices (of

which three had the correct unit cell) for the first data set and

only one lattice (with an incorrect unit cell) for the second

data set.

Whilst XDS itself does not implement multi-lattice

indexing, it is possible to extract the list of unindexed spots

from the output of XDS indexing and use these as input to a

subsequent run of the IDXREF step in order to attempt

indexing of a further lattice (http://strucbio.biologie.

uni-konstanz.de/xdswiki/index.php/Indexing). Using this

approach, we attempted indexing with XDS using just the first

image of each of the six-lattice data sets. For one of the data

sets (acegik) XDS was able to successfully identify all six

lattices. However, for the other data set (bdfhjl) XDS appar-

ently identified five lattices, but on further inspection an

incorrect unit cell was chosen by XDS in spite of the known

unit cell and symmetry being provided as input.

Whilst this is not intended to be a rigorous comparison of

the robustness of different indexing algorithms and imple-

mentations, it serves to demonstrate that the availability of a

variety of algorithms can be beneficial to the user community

as each algorithm has a its own set of strengths and weak-

nesses.
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Figure 6
Merging statistics, excluding overlapping reflections, as a function of resolution for (a) Rmeas (solid lines) and Rp.i.m. (dashed lines), (b) completeness
(solid lines) and multiplicity (dashed lines), (c) mean intensity over sigma and (d) CC1/2 as a function of resolution. Overlapping reflections calculated
using N� = 2, where N� is the number of standard deviations used to calculate the reflection mask. Red, green, blue, cyan and magenta lines represent
individual sweeps, two crystals, three crystals, four crystals and six crystals, respectively. Points on the abscissa represent the centre of each resolution
shell.



4.2. Polyhedra microcrystal data

Polyhedra are naturally formed protein microcrystals

produced by cypoviruses and baculoviruses, in which virus

particles are embedded as part of an infectious cycle targeting

insects (Chiu et al., 2012). The polyhedra protect the virus

particles against hostile conditions and allow them to survive

for long periods prior to ingestion and particle release within

the insect gut. These crystals typically only grow within the

insect cells to a few micrometres in size (with the maximum

size depending on the virus species). Early synchrotron studies

used powder diffraction to show that although their biological

structure varies substantially, with little similarity in their

amino-acid sequences, they form virtually identical crystal

lattices in space group I23 with very similar unit-cell dimen-

sions (a ’ 100 Å; Anduleit et al., 2005). Recent studies have

successfully used microfocus beamlines at third-generation

synchrotron sources to obtain molecular structures from single

crystals (Coulibaly et al., 2007, 2009; Ji et al., 2010). The crystals

studied to date have typically been on the order of 5–12 mm,

but Axford et al. (2014) have recently reported high-quality

data obtained from crystals of only 4–5 mm in size.

Data for a previously unstudied polyhedrin were collected

on the I24 beamline at Diamond Light Source from crystals on

the order of 1 mm in size (Fig. 7) using an X-ray beam with a

cross-section of �4 � 4 mm at the sample. Individual crystals

could not be resolved with the beamline on-axis viewing

system; therefore, data were collected at locations identified

using grid scans (Aishima et al., 2010) with the help of the

DISTL software (Zhang et al., 2006). Diffraction was extre-

mely weak (Fig. 8) and therefore required very long exposures

per frame, and as a result only 1� of data could be collected per

crystal. 420 data sets (20 � 0.05� images) were collected, but

automated data processing using the XDS pipeline within xia2

proved problematic, with few data sets processing successfully

(160 out of 420).

Analysis of the number of spots per data set found using

dials.find_spots compared with the number expected based on

the unit-cell dimensions gave a clear indication of the presence

of multiple lattices (Fig. 9). dials.index was used in multi-

lattice mode on the output of dials.find_spots, identifying a

total of 997 lattices, of which 768 were integrated successfully

with XDS, representing a significant improvement compared

with that obtained using XDS via xia2. The majority of sweeps

were found to have more than one lattice present, with up to
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Figure 7
A TEM image of polyhedrin crystals from a polyhedrosis virus as used in
x4.2. Typical crystal size is <1 mm.

Figure 8
An illustration of the strength of diffracted intensities and spot size for
the crystals in x4.2: the intensities of the pixels surrounding spots whose
total intensities (using simple summation of raw pixel counts) are at the
90th percentile (a) and the 10th percentile (b), based on spots identified
by dials.find_spots for a single sweep of data. Images were prepared using
phenix.image_viewer (Echols et al., 2012).



five lattices successfully integrated in some cases (Fig. 10). The

space group I23 can be indexed in one of two ways; hence,

it was necessary to ensure that all lattices were indexed in a

consistent manner. This was achieved using the algorithm of

Brehm & Diederichs (2014) as described in x3.8, which showed

a clear separation of the two indexing modes (Fig. 11).

4.3. Applications

4.3.1. xia2. While the algorithms described above are useful

in isolation, when faced with data sets consisting of many

tens or even hundreds of sweeps some level of automation

becomes critical. The dials.index tool and associated spot-

finding and refinement commands have been incorporated

into xia2 (Winter, 2010) and used with XDS for integration.

While this works well for data sets with single lattices visible

on the images, the design of xia2 is such that processing

multiple lattices is currently not possible: for sweeps with

multiple lattices only the first lattice identified will be

processed. Work is ongoing to redesign this aspect of xia2 to

offer the user an automated tool for processing multi-lattice

data.

4.3.2. Diamond Light Source. As these algorithms are not

yet fully integrated into xia2, they have been added to the

automatic processing scripts that are running following data

collection on Diamond MX beamlines (Winter & McAuley,

2011) to provide the user with feedback about (i) whether the

data can be indexed and (ii) the number of lattices present.

While the former of these may be used to provide data via

XDS to BLEND (Foadi et al., 2013), the latter provides useful
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Figure 9
An excess number of observed spots over those predicted suggests the
presence of multiple lattices: (a) histogram of the number of predicted
centroids to a resolution of 4 Å per 1� wedge of data for 10 000 random
orientations, (b) histogram of the number of spots found in x4.2 to a
resolution of 4 Å per 1� wedge of data.

Figure 11
Application of algorithm 2 of Brehm & Diederichs (2014) to the data in
x4.2. Points are coloured according to the assigned indexing mode.
Identification and rejection prior to scaling of sweeps that have poor
correlation with either indexing mode may improve the quality of the
final merged data set.

Figure 10
Histogram of the number of successfully integrated lattices per sweep for
the data in x4.2.



feedback on the sample density and can guide subsequent

sample preparation.

5. Availability

DIALS is available for download from http://sourceforge.net/

projects/dials and the source code is available under a non-

restrictive open-source BSD license. The program dials.index

also includes an implementation of the one-dimensional FFT

indexing methods of Steller et al. (1997) derived from the

open-source components of LABELIT (Sauter et al., 2004)

and an implementation of three-dimensional FFT indexing

methods (Bricogne, 1986; Campbell, 1998), both of which do

not require prior knowledge of the unit cell.

The original trypsin images and the semi-synthetic multi-

lattice images are publicly available at http://zenodo.org/

record/10820 (Gildea & Winter, 2014).

6. Conclusions

New indexing algorithms have been presented which aid the

analysis of microcrystal X-ray diffraction data by overcoming

some of the key indexing challenges, namely handling narrow

sweeps of data containing spots from multiple crystal lattices.

These algorithms have been developed within the DIALS

framework but may be applied with other integration software

such as XDS. In dealing with experimental data where

multiple lattices are present it was demonstrated that the

treatment of overlapping peaks was necessary to obtain good-

quality data; however, doing so required the development of

additional tools within the DIALS framework. Given the

similarities between the serial crystallography discussed here

and XFEL data collection, it is only fitting that the algorithms

may be shared: we anticipate that the indexing algorithms

presented here may be equally applicable to XFEL data.

APPENDIX A
A1. Coordinate frames

A1.1. The diffractometer equation. We use the vector h to

describe a position in fractional reciprocal space in terms of

the reciprocal-lattice basis vectors a*, b* and c*,

h ¼

h

k

l

0
@

1
A ¼ ha	 þ kb	 þ lc	: ð13Þ

The special positions at which h, k and l are integer define the

reciprocal-lattice vectors for which (hkl) are the Miller indices.

The basic diffractometer equation relates a position h to a

position r’ in Cartesian reciprocal space. This space is defined

so that its axes coincide with the axes of the laboratory frame.

The distinction is necessary because distances in reciprocal

space are measured in units of Å�1. However, for convenience

it is often acceptable to refer to either Cartesian reciprocal

space or the real-space laboratory frame as the ‘laboratory

frame’, when the correct choice is clear by context. The

diffractometer equation is

r’ ¼ RAh; ð14Þ

where R is the goniostat rotation matrix and A is the crystal

setting matrix, while its inverse A�1 is referred to as the

indexing matrix. The product Ah may be written as r, which is

a position in the ’-axis frame, a Cartesian frame that coincides

with the laboratory frame at a rotation angle of ’ = 0. This

makes clear that the setting matrix does not change during the

course of a rotation experiment (notwithstanding small ‘mis-

set’ rotations).

For an experiment performed using the rotation method, we

use ’ to refer to the angle about the actual axis of rotation,

even when this is effected by a differently labelled axis on the

sample-positioning equipment (such as an ! axis of a multi-

axis goniometer).

A2. Orthogonalization convention

Following Busing & Levy (1967), we may decompose the

setting matrix A into the product of two matrices, conven-

tionally labelled U and B. We name U the orientation matrix

and B the reciprocal-space orthogonalization matrix. These

names are in common, but not universal, use. In particular,

some texts (for example, Paciorek et al., 1999) refer to the

product (i.e. our setting matrix) as the ‘orientation matrix’.

Of these two matrices, U is a pure rotation matrix and is

dependent on the definition of the laboratory frame, whilst B

is not dependent on this definition. B does depend, however,

on a choice of orthogonalization convention, which relates h

to a position in the crystal-fixed Cartesian system. The basis

vectors of this orthogonal Cartesian frame are fixed to the

reciprocal lattice via this convention.

Although there is no single unique way that A may be

decomposed into a pair UB, it is always possible to extract

the unit-cell dimensions irrespective of the orthogonalization

conventions, since ATA = BTB , which is the reciprocal metric

matrix. The symbolic expression of B is simplest when the

crystal-fixed Cartesian system is chosen to be aligned with

the crystal real-space or reciprocal-space axes. For example,

Busing & Levy (1967) use a frame in which the basis vector i is

parallel to reciprocal-lattice vector a*, while j is chosen to lie

in the plane of a* and b*. Unfortunately, this convention is

then disconnected from the standard real-space orthogonali-

zation convention, usually called the PDB convention (Protein

Data Bank, 1992). This standard is essentially universal in

crystallographic software for the transformation of fractional

crystallographic coordinates to positions in orthogonal space,

with units of Å. In particular, it is the convention used in cctbx

(Grosse-Kunstleve et al., 2002). The convention states that

the orthogonal coordinate x is determined from a fractional

coordinate u by

x ¼ Ou; ð15Þ

where the matrix O is the real-space orthogonalization matrix.

This matrix transforms to a crystal-fixed Cartesian frame that

is defined such that its basis vector i is parallel to the real-

space lattice vector a, while j lies in the (a, b) plane. The

elements of this matrix made explicit in a compact form are
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O ¼

a b cos � c cos �
0 b sin � �c sin � cos 		

0 0 c sin � sin 		

0
@

1
A: ð16Þ

It is desirable to specify our reciprocal-space orthogonaliza-

tion convention in terms of this real-space orthogonalization

convention. Giacovazzo (2002) derives relationships between

real and reciprocal space. Of particular interest from that text,

we have

x ¼ MTx0

x	 ¼ M�1x	0: ð17Þ

By analogy, equate x*0 with h and B with M�1. Also equate MT

with O and x0 with u. We then see that

B ¼ ðO�1
Þ

T
¼ FT; ð18Þ

where F is designated the real-space fractionalization matrix.

A3. Orientation matrix

The matrix U ‘corrects’ for the orthogonalization conven-

tion implicit in the choice of B. As the crystal-fixed Cartesian

system and the ’-axis frame are both orthonormal Cartesian

frames with the same scale, it is clear that U must be a pure

rotation matrix. Its elements are clearly dependent on the

mutual orientation of these frames.
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