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The visual inspection of crystallization experiments is an

important yet time-consuming and subjective step in X-ray

crystallography. Previously published studies have focused on

automatically classifying crystallization droplets into distinct

but ultimately arbitrary experiment outcomes; here, a method

is described that instead ranks droplets by their likelihood of

containing crystals or microcrystals, thereby prioritizing for

visual inspection those images that are most likely to contain

useful information. The use of textons is introduced to

describe crystallization droplets objectively, allowing them to

be scored with the posterior probability of a random forest

classifier trained against droplets manually annotated for the

presence or absence of crystals or microcrystals. Unlike multi-

class classification, this two-class system lends itself naturally

to unidirectional ranking, which is most useful for assisting

sequential viewing because images can be arranged simply by

using these scores: this places droplets with probable crystal-

line behaviour early in the viewing order. Using this approach,

the top ten wells included at least one human-annotated

crystal or microcrystal for 94% of the plates in a data set of 196

plates imaged with a Minstrel HT system. The algorithm is

robustly transferable to at least one other imaging system:

when the parameters trained from Minstrel HT images are

applied to a data set imaged by the Rock Imager system,

human-annotated crystals ranked in the top ten wells for 90%

of the plates. Because rearranging images is fundamental to

the approach, a custom viewer was written to seamlessly

support such ranked viewing, along with another important

output of the algorithm, namely the shape of the curve of

scores, which is itself a useful overview of the behaviour of the

plate; additional features with known usefulness were adopted

from existing viewers. Evidence is presented that such ranked

viewing of images allows faster but more accurate evaluation

of drops, in particular for the identification of microcrystals.
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1. Introduction

The development and widespread deployment of robotics for

high-throughput crystallization in the last decades has led to

experimenters typically being confronted with evaluating very

large numbers of crystallization trials, which is challenging

even though the images are electronically captured

(McPherson & Gavira, 2014). While such a high throughput

facilitates the efficient and automated sampling of chemical

space for crystallizing conditions, by itself it does not answer

the question of whether the protein crystallizes; this requires

crystals to be both present and reliably identified, although

experienced practitioners can apparently also infer this from

precipitation behaviours, but presumably less reliably so
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(Newman et al., 2012). Thus, if a crystallization experiment is

considered to be an assay of the suitability of a protein

preparation for structural studies, a quick yet robust assess-

ment of the presence of crystallinity can be hugely beneficial

in identifying the gene construct or protein preparation that is

most likely to crystallize. Robotic imaging of droplets offers an

opportunity to do this, and we present an algorithm that seeks

to exploit it.

A significant body of research exists on accurately identi-

fying crystals from robotically captured images. Early work

used edge detection solely to detect crystals (Ward et al., 1988;

Zuk & Ward, 1991), which was later extended to the auto-

classification of experimental outcomes into various numbers

of classes, for example ‘clear’, ‘precipitate’ or ‘crystalline

behaviour’, with information derived from a diverse range of

texture-analysis methods and/or edge detection, using off-the-

shelf machine-learning algorithms. While Wilson (2002) and

Bern et al. (2004) used only edge-based features, most work

focused on texture analysis, either on its own or in combina-

tion with edge-based features, including grey-level occurrence

matrices (GLCMs; Spraggon et al., 2002; Zhu et al., 2004;

Cumbaa & Jurisica, 2010) and spectral methods such as

Fourier transform (Walker et al., 2007) and wavelet modelling

(Buchala & Wilson, 2008; Liu et al., 2008; Watts et al., 2008).

More recently, Lekamge et al. (2013) used time-series infor-

mation by calculating GLCMs from the difference images of

consecutive inspections. There was also a general trend that

started with deriving features globally from the whole droplet

(Spraggon et al., 2002; Wilson, 2002), which shifted to identi-

fying local features from subsections of an image (Bern et al.,

2004; Zhu et al., 2004; Kawabata et al., 2006; Pan et al., 2006;

Liu et al., 2008), but later returned again to global features

(Walker et al., 2007; Buchala & Wilson, 2008; Watts et al., 2008;

Cumbaa & Jurisica, 2010; Lekamge et al., 2013). A variety of

machine-learning techniques have been used, including the

naı̈ve Bayes classifier (Wilson, 2002), support vector machines

(Kawabata et al., 2006; Pan et al., 2006; Buchala & Wilson,

2008) and neural networks (Spraggon et al., 2002; Walker et al.,

2007; Buchala & Wilson, 2008; Watts et al., 2008), but the

majority of recent work has favoured decision tree-based

methods (Bern et al., 2004; Liu et al., 2008; Cumbaa & Jurisica,

2010; Lekamge et al., 2013). It is notable that in all of this body

of work it has not been much explored how to present the

output of the computations to experimenters most effectively.

In contrast to GLCM or spectral methods, textures can also

be modelled by the joint distribution of filter response cluster

centres, otherwise known as textons (Leung & Malik, 2001).

Julesz (1981) first proposed that textons were linked to human

perception by using second-order statistics of local primitive

elements, which were later refined by Leung & Malik (2001)

with Gaussian derivative filters for operation on grey-level

images. The approach is based on the argument that textures,

by definition, contain repeating elements which correlate

similarly to certain defined image motifs; hence, they have
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Figure 1
Counting patterns in a droplet. Examples of droplets with crystal (a) and crystalline precipitate (d). (b) and (e) show the artificial colouring of the
respective droplets based on textons, where similar textures are coloured with the same colours; the associated frequency histograms of texton
occurrences in the droplets are shown in (c) and ( f ).



been termed ‘response to image filters’. Thus, for a series of

textures, the vectors of filter responses can be reduced to only

a few prototypes, while the remaining are noisy variations

of these prototypes. Textons have since been used in many

application areas, including the identification of brain tumours

(Islam et al., 2013), the identication of skin regions for gesture

detection (Medeiros et al., 2013), the classification of malig-

nant mass regions in mammograms (Li et al., 2012), the

classification of different real-world textures (Varma &

Zisserman, 2005), the diagnosis of Alzheimer’s disease

(Morgado et al., 2013), the decription of iris images for ethnic

classification (Qiu et al., 2007) and counterfeit detection (Wei

et al., 2008), as well as three-dimensional face recognition

(Zhong et al., 2007). However, they have not yet been used for

analysing crystallization experiments.

Identifying the droplet in the image (‘segmentation’) is

important to avoid interpreting noise from regions outside the

droplet. Approaches to the problem include edge detection

(Spraggon et al., 2002; Wilson, 2002; Bern et al., 2004), deriving

masks from wavelet transforms (Watts et al., 2008), using

plate-specific features (Pan et al., 2006; Cumbaa & Jurisica,

2010) or simply using the centre or regions of an image

(Kawabata et al., 2006; Liu et al., 2008). A more robust algo-

rithm was developed by Vallotton et al. (2010), which trans-

forms the image from Euclidean to polar coordinates centred

at a point in the droplet, allowing a shortest-path algorithm to

be used to trace the droplet boundary, resulting in a robust

method with no constraints on the droplet shape, for example

having to be close to a perfect circle.

Here, we revisit the problem of crystal recognition, both

using recent techniques of texture analysis and drop identifi-

cation and reconsidering how the results can be most usefully

presented to allow quick identification of the propensity of

a protein preparation to crystallize. Rather than classifying

drops into discrete categories of experimental outcomes,

which has consistently been insufficiently accurate in all

reports, we circumvent the question by instead ranking drops

based on their precipitation behaviour, thereby rearranging

the viewing order in an experimentally meaningful way, as

opposed to the common top-left to bottom-right viewing

sequence of droplets that is merely an artefact of the image

numbering. This is in the spirit of Liu et al. (2008), who sought

to identify harvestable crystals greater than 10 mm, but our

algorithm additionally identifies droplets with microcrystals

and showers of crystals, which are equally interesting to the

question of crystallizability. We show the enrichment of

crystal-containing images early in the viewing order and how

crystals and microcrystals are found more efficiently and

accurately when viewed in rank order.

2. Methods

Our approach entails first objectively characterizing crystal-

lization droplets by describing and quantifying with textons
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Figure 2
(a) The filter bank as proposed by Varma & Zisserman (2005) consists of edge (top three rows, left half) and bar (top three rows, right half) filters at six
orientations and three scales, and two rotationally symmetric filters (Gaussian and Laplacian of Gaussian; bottom row). (b) Example of the filter
response of a pixel, where only the maximum response of the edge and bar filters at each scale are kept, resulting a response vector with eight numbers.



the textural patterns that are are found in each droplet

(Fig. 1), which yields a numerical descriptor in the form of a

histogram of occurrence of different textons in the droplet.

The frequency numbers are subsequently used as input to a

random forest classifier, although not to classify the drops,

which would entail selecting a classification threshold, but

instead to obtain the posterior probability that is output by the

classifier, which is used as a score to rank the droplets. The

algorithms are described in detail in the following sections.

2.1. Texture-analysis method

2.1.1. Textons and filter banks. Image filters are integral to

the texton method, since textons are filter response cluster

centres. Varma & Zisserman (2005) proposed a filter bank that

is rotationally invariant, which contains edge filters and bar

filters (at six orientations and three scales each), a Gaussian

and a Laplacian of Gaussian filter (see Fig. 2a). An image

is filtered with all 38 filters in the filter bank, but only the

maximum filter response for the edge and bar filters at each

scale is recorded, resulting in a vector with eight (three edge,

three bar, two Gaussians) rotation-invariant filter responses

per pixel. An example of the final filter response vector is

shown in Fig. 2(b). We chose this filter bank as it was shown

by Varma and Zisserman to be the best filter bank when

compared with the filter bank proposed by Leung & Malik

(2001) and a ‘Gabor-like’ filter bank designed by Schmid

(2001). This filter bank was used at half the scale originally

proposed, which was found to be suitable for the precipitation

patterns within our droplet images.

The texton method involves (i) building a texton dictionary

containing unique texture prototypes and (ii) comparing the

filter response of each pixel in a new image to this dictionary

to find the closest texton and label the pixel with the corre-

sponding texton label. The conventional way of building this

dictionary is by taking a fixed number of textons from

each class of textures and combining them to form the final

dictionary. However, precipitation behaviour yields a conti-
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Figure 3
Process of generating the texton dictionary. 100 droplets with a wide range of patterns were selected; clusters of filter responses (textons) in these images
were combined to form a dictionary of 1317 entries; to remove redundancy, the dictionary entries are clustered again and reduced to 239; selected textons
corresponding to crystals were added to the dictionary to form the final dictionary with 300 textons.



nuum of patterns which are difficult to classify objectively

by eye, and since no labelled data set is available in the

community, we took a different approach to generate this

dictionary, as outlined in the following section.

2.1.2. Building the texton dictionary. To ensure that crystal-

related textons are well represented, we used separate sets

of 52 arbitrarily selected crystal-containing images and 100

precipitation images to cover a wide range of patterns (images

are shown in Supplementary Figs. S1 and S21). We found that

these images were sufficient to produce the final dictionary

and additional images did not give rise to new clusters. All

images were scaled down by a factor of four for computational

efficiency without compromising the final performance (data

not shown). The final effective resolution of the images being

filtered is around 4.5 mm per pixel length. Fig. 3 shows a

diagram of this process.

For the set of 100 precipitation images, unlike most texton-

generation schemes which use k-means clustering, for each

image filter responses for all pixels were clustered using

Gaussian mixture models with variational Bayes model

selection (Corduneanu & Bishop, 2001), where no parameter

selection was required, and the number of clusters arising

from each image was determined by the data alone. Each

image generally produced eight to 15 clusters. The resulting

cluster centres (textons) of each image were concatenated and

subsequently clustered again using Dirichlet process means

(DP means; Kulis & Jordan, 2011) with � = 0.5, where � is the

Euclidean distance threshold to start a new cluster, resulting

in a dictionary with 239 entries. This cluster-and-cluster-again

approach was required because the first clustering method was

not configured to remove inter-image redundancy of patterns

found in the selected images. Clusters were formed indepen-

dently for each image; thus, similar patterns (for example clear

regions) in different images will produce similar or over-

lapping cluster centres (textons). These redundant textons are

pruned by the second clustering method, DP means, which

clusters nearby points for a single representation but allows

far-away single data points to form a new cluster with some

penalty, rather than grouping them into the nearest cluster.

Such properties of DP means are desirable because a far-away

point in this case is not an outlier, but an actual texture seen

in the training data set, and hence should be kept; this is in

contrast to the first clustering stage, which sought to identify

commonly occurring motifs, and hence single far-off data

points corresponded to noise.
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Figure 4
Calculating the texton distribution from an image. Given a new image, each pixel is filtered with the filter bank and its filter response is compared with
the texton dictionary generated previously. The label of the closest match in the dictionary is used to label the pixel. The final feature vector for each
image is the frequency histogram of all texton labels in the dictionary.

1 Supporting information has been deposited in the IUCr electronic archive
(Reference: NJ5198).



For the set of 52 crystal-containing images, filter responses

for each image were similarly clustered with Gaussian mixture

models with variational Bayes model selection. Crystal-related

cluster centres for each image were selected and clustered by

DP means with similar parameters as described previously.

The resulting textons were added to the dictionary, producing

the final texton dictionary with 300 entries. For the purpose of

visual representation, the dictionary was arranged so that the
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Figure 5
Examples of clusters of precipitation patterns. The clusters had visually consistent precipitation behaviour, indicating that the features produced can
group similar precipitation patterns together.

Figure 6
Overview of the image-processing pipeline. An image is first passed through a fault-detection system. If the droplet is not faulty, the droplet is segmented,
corrected for lighting and shadow effects, and its boundaries are extended radially. Features are derived using the texton method (see x2.2) and are used
to score the image with a random forest classifier.



first entry is the texton with the lowest magnitude, and all

subsequent entries were sorted by their distance with respect

to this texton. The dictionary is available with the software

distribution.

2.1.3. Generating features with the texton dictionary. To

evaluate textures in an image, the image is similarly filtered

with the filter bank. The filter response of each pixel is

compared with entries in the texton dictionary, and the texton

label of the closest match as calculated by Euclidean distance

is used to label the pixel. The frequency histogram of the 300

textons is the final numerical descriptor of the image. This

process is illustrated in Fig. 4.

2.1.4. Validation of textons as a quantifier of droplet
content. The precipitation patterns of 1400 images randomly

selected from 28 crystallization plates were clustered to

examine whether the method is able to discriminate droplets

based on their patterns. Hierarchical clustering with Ward’s

minimum variance method (Gordon, 1987) was used, where

clusters are merged to minimize the variance within clusters.

The distance between droplets, d(x, y) was calculated using the

�2 distance between their histogram,

dðx; yÞ ¼
1

2

Pn
i¼1

ðxi � yiÞ
2

xi þ yi

; ð1Þ

where xi and yi are the normalized bin counts of the ith feature

of droplets x and y, respectively, n = 300 in this case and the

distance is weighted inversely by the sum of the bin counts.

The resulting 50 clusters were manually inspected and found

to have visual consistency; examples of these clusters are

shown in Fig. 5.

2.2. Image-processing pipeline

Full analysis of droplets involves four main steps, as illu-

strated in Fig. 6, each of which is described in detail in the

following sections: (i) fault detection, (ii) droplet segmenta-

tion, (iii) droplet pre-processing and (iv) calculation of texton

distribution. Each new droplet image is first converted to

greyscale and contrast-adjusted

so that its grey levels cover the

full spectrum of 0–255 and is

passed through a fault-detection

system, which identifies whether a

droplet is acceptable or faulty

(empty well, incomplete dispen-

sing or camera faults). Faulty

droplets are removed and are not

further processed. For acceptable

droplets, the droplet boundary is

determined automatically and the

segmented droplet is processed to

correct for lighting and shadow

effects around the boundary, and

extra pixels are padded to extend

the droplet radially. Finally, the

texton distribution is calculated

as described in the previous

section. The pipeline was imple-

mented in MATLAB with the

Image Processing Toolbox and

Statistics Toolbox.

2.2.1. Well segmentation and
fault detection. Errors owing

to inaccuracies of the droplet-

dispensing robots may result in

empty subwells, unusually small

droplets (where either the protein

or reservoir solution was not

added) or droplets sitting at the

edge of the subwell. Errors in the

imaging system may also produce

images where the subwells are

partially out of the field of view

of the camera. To identify these

failed droplets, background

images were obtained for each
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Figure 7
Comparison of droplet segmentation with DroplIT (Vallotton et al., 2010; middle column) and the modified
version (right column). DroplIT may under-segment the droplet, especially if the well frame has the
characteristics in (a) and (b). (c) and (d) show more difficult examples where the droplet boundaries are
almost invisible at certain parts. However, droplets are still segmented, and useful information can be found
within the segmented region.



of the subwells by taking the average of that subwell for all

wells from an empty plate. This should be performed for every

type of plate since it is plate-specific; in this case, we generated

background images for the 3-Well Crystallization Microplate

(SWISSCI), which is most commonly used at the SGC Oxford.

This background image is rigidly registered to a new image by

searching for the x and y translation that minimizes the pixel-

to-pixel difference, giving the location of the well relative to

the image. The area outside the well (the well frame) is

masked and the remaining pixels are intensity-normalized to

have a mean intensity of 0 and a standard deviation of 1. The

following statistical descriptors are calculated from the

gradient image of the normalized image: mean, standard

deviation, skewness, kurtosis and the distribution of the

absolute gradients at fixed 50 bin centres ranging from 0 to 50.

These 54 features are used with the area, centroid, eccentricity

(ratio of difference between foci and the major axis length),

major and minor axis length of the segmented droplet

(described next) as inputs to a random forest classifier which

predicts whether a droplet image is good or faulty. The clas-

sifier used here was trained with 11 326 images (5225 faulty

and 6101 non-faulty images) and has an accuracy of over 94%.

The majority of inaccurate classification occurs in experiments

set up with detergent leading to the much lower contrast of the

droplet boundary in such droplets (Fig. 7d).

2.2.2. Droplet segmentation. To segment the droplet, the

well frame location as identified in the rigid registration step is

used in a modified version of DroplIT (Vallotton et al., 2010).

DroplIT identifies closed contours around a point where the

average pixel intensity along the contour of its gradient image

is extremal. Images are transformed to the polar coordinates

and the circular shortest path is computed. In contrast to the

original method, which uses thresholds to identify the well

frame, the well frame location is used instead to more reliably

remove strong edges from the well frame and thus improve

droplet segmentation. Comparisons of segmentation with the

original and modified method are shown in Fig. 7.

2.2.3. Pre-processing droplet: shadow correction. Shadows

in drops cause artificial textures to be detected; they arise from

lighting conditions and droplet morphology, and are some-

times enhanced by the presence of PEG in solution. To correct

for shadows, a non-uniform gamma correction is applied over

the droplet, which increases the intensity of darker pixels

around the edge. Corrected pixel intensities Iijnew
are calcu-

lated as

Iijnew
¼ 255�

Iij

255

� ��ij

; ð2Þ

where 255 is the maximum intensity in a grey-scale image, Iij is

the original pixel value at row i and column j, and

�ij ¼
jimLPijj

max jimLPj
; ð3Þ

where imLP is the low-pass filtered image (with Gaussian low-

pass filter, � = 1) of the droplet. The � value for each pixel

is directly weighted by its original intensity. Lower � values

result in a higher intensity boost for darker pixels. Fig. 8 shows

the process and outcome of gamma correction.

2.2.4. Pre-processing droplet: droplet-boundary extension.

Filter responses at the edge of droplets will be dominated by
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Figure 8
Gamma correction to correct for shadows around droplets. The droplet (a) is filtered with a low-pass filter, resulting in a blurred image as shown in (b).
The normalized values of the low-pass filtered image are then used as � values, resulting in the corrected image in (c). (d) and (e) show more examples of
droplets before (left) and after (right) gamma correction. Shadow pixels along the edges of the droplet have been ‘boosted’, while the centre details
remain relatively similar. Droplets with no dark edges should have no changes.



the droplet boundary. To avoid the strong boundary effect,

droplets are artificially extended radially and the filter

response of this extended region is ignored in the final

frequency count. Fig. 9 illustrates this operation. The cropped

version of the segmented droplet is converted to its polar form

centred at the droplet centroid. The polar image is of size

R� 360, where R is chosen to be half of the largest dimension

(x or y) of the original segmented droplet. For each column

(1–360�) in the polar image the droplet boundary is extended

by replacing 13 pixels (half of the filter size + 1) outside the

radius of the droplet with the median of intensities of the ten

pixels closest to the droplet boundary. The median is used

instead of the mean to avoid outliers from possible imperfect

segmentation. The new extended polar image is then

converted back into rectangular space, resulting in a padded

droplet. The ring of added pixels is copied to the original

droplet image. This provides a sufficient number of neigh-

bouring pixels for the calculation of filter responses for pixels

in the original edge; the filter responses for pixels in the

extended region are ignored in the final histogram count.

Figs. 9(b), 9(c) and 9(d) show a comparison of texton labels

with and without droplet extension.

2.2.5. Calculation of texton distribution. The gamma-

corrected and extended image is intensity-normalized to have

� = 0 and � = 1 for intensity invariance and is scaled by a factor

of 0.25 to match the textons in the dictionary. The texton

distribution is then calculated as described in x2.1.3. Compu-

tation time from reading an image to generating the texton
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Figure 9
(a) Process of extending the boundary of a droplet. A colour wheel is shown beside the droplet for illustration. The segmented droplet is cropped and
converted to its polar form. The droplet boundary is extended by replacing 13 pixels beyond the boundary in each column with the median of intensities
in the ten pixels closest to the boundary in the corresponding column. The image is finally converted back to Cartesian space. The padded pixels should
be similar to the boundary they were derived from, with some variations owing to interpolation errors. (b, c, d) Effects of droplet boundary. (b) A typical
example of crystal growth at the edge of the droplet. (c) The strong edge of droplet boundaries gives a strong signal that often corresponds to crystal
edges, either masking the presence of crystals by the edge or creating false-positive signals. (d) By extending the droplet boundary to avoid the strong
edge, noise can be supressed for better crystal detection.



distribution histogram is on average under 1.5 s on a Windows

7 machine with 8 GB of RAM and an Intel Core i5-2500.

2.3. Data sets and training algorithm

2.3.1. Data set. At the SGC, crystallization experiment

droplet images are automatically captured with a Minstrel HT

system (Rigaku). Experimenters label images with scores

between 1 and 10, where labels 1 and 2 are for precipitates, 3–5

for microcrystals and 6–10 for mountable crystals. It should be

noted that labelling is optional, and it is usually only the

interesting droplets that are labelled. Two sets of training

images were selected: (i) ‘interesting’ images, a random subset

of 2501 images of droplets that were given labels of 3 and

above captured between April 2013 and July 2013, and (ii)

‘uninteresting’ images, a random subset of 3553 images from

the same period with scores <3 or with no scores recorded.

2.3.2. Training algorithm. The set of 2501 ‘interesting’

droplets and 3553 ‘uninteresting’ droplets were used to train a

two-class random forest classifier (Breiman, 2001) with 500

decision trees using the TreeBagger function of MATLAB.

The random forest algorithm was chosen for its speed and its

ability to deal with the large numbers of both instances and

features, unlike competing algorithms. Given a set of features

from new test images, the random forest produces

the posterior probability for a particular class, which is used

directly as scores for the images. In this case, for the ‘inter-

esting’ class a score of 1 indicates that the droplet is likely to

contain crystals or crystalline behaviour, while a score of 0

indicates that it is ‘uninteresting’. In a typical classification

exercise, a threshold is set to determine which class the data

point belongs to. Tenfold cross-validation of the classifier at a

cutoff of 0.5 gave an average area under the ROC curve of

0.9418 � 0.0027, indicating good separation of scores for both

classes, and an average accuracy of 0.8930 � 0.0044. However,

as the intention is to rank and not to classify droplets, no

threshold was selected; instead, the scores were used to rank

droplets directly.

2.4. Validation and cross-imaging- platform application

To test the algorithm, a separate set of images was selected

from 196 plates set up at SGC Oxford over a different date

range (July to September 2013) with at least one recorded

crystal (label �3 as scored by SGC crystallographers). Of

these, 101 plates were sparse-matrix screens, while the

remaining 95 were optimization experiments. Each plate

contained 96 wells with three subwells each, where the

subwells share the same protein solution and reservoir solu-

tion at different mixing ratios (typically 2:1, 1:1 and 1:2).

Droplets in these plates were ranked by the algorithm and the

highest rank of crystals marked by crystallographers was

determined either by subwell or by well, where the maximum

score of the three subwells was used.

For validation of the robustness of the algorithm across

imaging platforms, we analysed images acquired by the

Structural Biophysics group of the Novartis Institute for

Biomedical Research (NIBR), Basel using a Rock Imager

(Formulatrix). Images of 134 plates with at least one recorded

crystal were selected. A comparison of this data set with that

from the SGC is summarized in Table 1. These images were

captured in the Extended Focus Imaging mode, where

multiple focal depths are combined to form the final image,

hence producing sharper images across the droplet. A

combination of seal materials and polarizing optics also

produces more colourful images. Furthermore, the resolution

was just over half of that of the SGC at �2.99 mm per pixel

length. Fig. 10 shows a comparison of SGC images and

Novartis images. Background images for the type of plate used

were obtained similarly as described in x2.2.1. To address the

resolution difference, we scaled the images by a factor of 0.5

(instead of 0.25). Droplet segmentation proved to be more

difficult owing to the sharp edges of precipitates within the

droplets (see, for example, Fig. 10c). When DroplIT failed on

the original image, it was instead applied to a gamma-

corrected image, as described in x2.2.3 (with a Gaussian low-

pass filter, � = 10), which blurs large, dark regions often

associated with precipitates without affecting the high-

frequency change of a droplet boundary, or to a blurred
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Figure 10
Comparison of images captured at (a) SGC, Oxford with the Minstrel HT and (b, c) Novartis, Basel with the Rock Imager. SGC droplets are captured at
one focal depth, resulting in out-of-focus regions, whereas Novartis images are a combination of seven focal depths and hence are sharper across the
droplet. The pllate material, seals and optics used at Novartis also produce colour gradients in the images.



version of the image. This reduced the rate of failure of

droplet segmentation from 12 to 2%. The same analysis was

carried out, determining the highest rank of crystals marked

by crystallographers.

2.5. Human evaluation of the crystallization outcome with
the ranking system

To show that such ranked viewing of images results in drops

with microcrystals being more carefully evaluated, ten plates

containing (micro)crystals were randomly selected from the

SGC and divided into two sets (A and B). Each set consisted

of three sparse-matrix screens and two optimization screens of

different protein targets. Two groups of five crystallographers

from the SGC with varying experience were asked to evaluate

each plate in a standardized time interval of 2 min, which was

insufficient to view all 288 droplets in a plate and thereby

simulates the end goal of the program of minimizing the time

required to identify all crystals. (Limiting the time commit-

ment to 20 min also helped in recruiting sufficient volunteers.)

The first group viewed set A in a ranked order and set B in an

unranked order, while the second group viewed set B in a

ranked order and set A in an unranked order. The majority

vote (microcrystals or crystals) of each group of crystallo-

graphers was used to compare against the other group for

missed (micro)crystal annotations.

3. Results and discussion

3.1. Ranking versus classification or filtering

Although previous studies set out to classify crystallization

drops into discrete human-assigned categories, it is not clear

that they demonstrated that this is achievable or indeed that

the underlying premise of one-drop-one-score is even useful:

individual drops routinely exhibit multiple precipitation

behaviours that may inform one another but which are

nevertheless only very loosely defined by the community

(Newman et al., 2012). Unsurprisingly, even human classifi-

cation of droplets yields poor agreement rates (Buchala &

Wilson, 2008), and using such variable opinions as ground

truths severely undermines the training of learning algorithms

and not only reduces accuracy, especially for multi-class clas-

sifiers, but makes it unmeasurable. The increased rate of false

negatives is particularly pernicious since the formation of

crystals is in general a rare event yet is experimentally crucial

to detect.

Here, we target a more realistic goal, namely to prioritize

droplets for viewing: we judge this to be more useful because

it does not pre-empt decisions but helps them to be made

more accurately as well as more rapidly. One version of this

approach is filtering, as employed, for example, in Rigaku

Automation’s viewing software for images captured on a UV-

enabled instrument, or more recently by Mele et al. (2014),

who filter out images from further examination based on the

lack of change (differences) in a droplet over time, on the basis

that such changes may indicate the formation, growth or

disappearance of crystals. However, filtering is merely an

extended case of classification, where instead of a single

classification cutoff a tuneable cutoff or criterion is still

required to hide a subset of data.

In contrast, ranking circumvents the problem of selecting

filtering cutoffs or criteria, which tend to be arbitrary; instead,

it rearranges the data in a more meaningful way. In our

approach, we rank droplets on a continuous scale (0 to 1) of
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Table 2
A comparison of the performance of the algorithm before and after
review of image annotations.

The top and bottom halves of the table show the number and percentage of
plates where the first marked crystal was ranked in the plate, in terms of
ranking by well and ranking by droplet, respectively.

No. of plates %

Rank (well)
1 128 65.31
<10 185 94.39
<32 192 97.96

Rank (droplet)
1 118 60.20
<29 (10%) 189 96.43
<72 (25%) 191 97.45

Total No. of plates 196

Table 1
Comparison of validation data sets acquired from SGC, Oxford and Novartis, Basel.

SGC Novartis

Total No. of plates 196 134
Sparse-matrix screens 101 114
Optimization screens 95 19
Scoring criteria

Interesting Label � 3 Label = {Phase Separation, Salt, Microcrystals, Needles
(one-dimensional), Plates (two-dimensional), Crystals
(three-dimensional), Interesting}

Uninteresting Label < 3 Label = {Clear, Precipitate}
Additional differences

No. of subwells used 3 1
Imaging mode Single focus depth Extended focus imaging
Optics No polarization effect Visible polarization effect
Resolution (mm per pixel length) �1.13 �2.99



their probability of being ‘interesting’: this means that crystals

or microcrystals are likely to be viewed first, while the ‘unin-

teresting’ droplets (precipitates, clear drops) are viewed later.

In the real-world environment where time is limited and

attention level decreases with time, the ranking system focuses

resources on what is most likely to matter, namely the likely

presence of crystallinity.

The ranking score is obtained by repurposing a two-class

classifier trained on images assigned manually into only two

categories, namely containing crystallinity (‘interesting’) or

not (‘not interesting’), and therefore containing the respective

textons. When applied to new images, the classifier generates a

score (0 to 1), which ordinarily would be compared against a

threshold in order to assign images to either category; instead,

here the score is directly employed for sorting a given set of

images (typically all images in a crystallization plate).

Multi-class classifiers can in principle also be used to rank

images, most trivially by assigning each class to a rank (e.g.

‘crystal’ over ‘microcrystal’ over ‘spherulite’ and so on);

however, this ranking is algorithmically arbitrary (for

example, should ‘clear’ drops be viewed before ‘precipitate’

drops?), and moreover it is non-obvious how to rank images

within classes, since the classifier scores are no longer uni-

directional. On the other hand, Buchala & Wilson (2008) have
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Figure 11
Effectiveness of the algorithm at ranking crystal-containing images. (a) Rank of first human-scored crystal image in the plate. The ideal curve is a
horizontal line with y axis = 1 if all plates have been well ranked. (b) Enrichment plot for the representative plates marked by the dotted lines in (a). Each
column represents a plate with the wells as horizontal lines coloured for clear crystals (red), microcrystals (orange) and ‘uninteresting’ droplets (yellow),
as scored by a crystallographer; it is clear that ‘interesting’ images are effectively being moved to the top of the viewing order. A similar plot for all plates
used can be found in Supplementary Fig. S3. (c) Actual images for the plates shown in (b), showing the inherent problems in those drops which the
algorithm failed to rank highly (the last three).



shown that reducing the number of classes increases the

human agreement rate and hence the accuracy of the classifier,

suggesting that the fewest possible classes (two) would

support the highest reliability.

3.2. Algorithm performance

Our approach appears to rank images effectively, if judged

by criteria that are reasonable in routine laboratory usage: for

plates where wells were viewed with our new ranking order,

the first well was a crystal-containing image for 128 out of a

total of 196 plates (65.31%). The number of such ‘successful’

plates increases if the criterion is relaxed to expect at least one

crystal in the top 10 or top 32 ranked wells (Table 2), as also

illustrated by the curve in Fig. 11(a), which shows that for most

plates the first human-annotated crystal is very high in the

ranking order. We show both the results for viewing by well

and subwell in Table 2: while viewing by subwell (single

droplets) is the common practice, when all drops in a well have

the same chemical composition and differ only in the mixing

ratio (x2.4) there is added value in viewing all of the subwells

of the well side by side, since precipitation trends can be

directly observed.

It is not only the top drop but all drops in a plate that seem

to be effectively ranked: Fig. 11(b) and Supplementary Fig. S3

illustrate how the top of the viewing order is generally enri-

ched in images with crystals and microcrystals. Moreover,

where the ranking failed to move the human-annotated crystal

to the top, it was usually questionable whether the images had

been correctly marked (Fig. 11c) or else the images themselves

were problematic (Fig. 12). As with all learning approaches,

the performance is expected to improve as more images are

added to the training set; but we conclude that the method

does push at least one crystal to the top with high likelihood.

In our calculation of texton distribution, the closest match

of the filter response of a pixel to the dictionary entries was

calculated with the Euclidean distance, which is the commonly

used distance measure in texton research and hence is a

natural choice for this initial work. At the same time, distance

measures remain an unresolved question in the field, and there
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Figure 12
Examples of images and the corresponding texton maps of annotated crystals and microcrystals that received low ranks. Such crystal images were usually
out of focus (a), questionably or generously labelled (b, c) or surrounded by precipitates (d), or the droplet was inaccurately segmented (e, f ).



is no a priori reason to believe the

Euclidean metric is meaningful

for this application; thus,

exploring other distance

measures, and identifying those

that are consistent with human

perception, may significantly

improve the performance of the

algorithm; this will be addressed

in future work.

3.3. Performance for different
imaging systems

The texton approach is robust

enough to work well on different

imaging systems without addi-

tional training. Using the learning

parameters obtained with images

acquired by the Minstrel HT

system at SGC Oxford, the

method was transferred to

Novartis, Basel, which has a Rock

Imager system. The transfer was

generally straightforward, apart

from the modifications in droplet

segmentation as mentioned

previously and a different scale

factor (0.5 instead of 0.25 at the

SGC) to approximately match the

resolution at the filtering stage.

Table 3 and Fig. 13 show the

performance of direct application

of the system, as well as the same

system with additional training

images (15 ‘interesting’ and 150

‘uninteresting’ randomly selected

images), compared with the SGC

Oxford data sets; as expected, the

results improved with more

training images. Note that a direct

comparison of the SGC and

Novartis numbers is not mean-

ingful for this number of plates; in

addition the ratios of sparse-

matrix screens and optimization

screens are different.

This result indicates that the

texton approach does not need a

very high level of detail in the

images: SGC and Novartis images

have similar field of view (the

entire subwell of a typical SBS-

format crystallization plate;

Fig. 10) but different pixel resolutions, yet the final scaling

is at lower resolution than both for the texton analysis.

The more important factor presumably is that the depth of

field encompasses the majority of the precipitation

behaviour, although no data set is yet available to test

this.

research papers

Acta Cryst. (2014). D70, 2702–2718 Ng et al. � Using textons to rank crystallization droplets 2715

Figure 13
Rank of the first human-scored crystal image in the plate for the Novartis data set of 134 plates. The black
curve shows the performance of direct application of the ranking system without additional training images.
By adding 165 (15 crystal and 150 noncrystal) images acquired with the Rock Imager, more crystal images
were ranked higher, as shown by the red curve. The SGC performance curve (blue) is normalized to an
equal length for qualitative comparison.

Figure 14
Comparison of scores of droplets in two plates. The scores are the posterior probability of a droplet being
‘interesting’ and the profile of the curve gives an overview of a plate. Plate CI035518 (green) was an
optimization screen, in which 213 droplets contained crystals or microcrystals, marked with dark green dots
on the curve. It thus received generally higher scores. In contrast, CI037778 (brown) contained no crystals
and contained mainly clear drops. The scores for this plate tailed off rapidly. The highest scored image here
was a droplet with dust speckles. The embedded images are the corresponding droplets that that were
ranked 1, 100 and 268.



3.4. Scores as a profile of the plate

The collective scores of droplets across a plate form a

profile of the plate and can be used to make quick judgements.

Since each droplet score is the posterior probability of the

droplet being ‘interesting’, a plate with many wells containing

crystals will have a different profile from one with none.

Fig. 14 shows the different profiles of a plate with 244 crystals

and one with no crystals. The profile can also be used to

determine a cutoff for images to inspect: across the 196 plates

analysed, over 88% of the plates would have at least one

crystal found by just inspecting images with scores greater

than 0.5. This also corresponds to not inspecting an average of

90% of ‘uninteresting’ droplets in the plate. Table 4 shows the

trade-off between the percentage of plates with at least one

crystal found and the number of uninteresting droplets to

view, which serves as a confidence

indicator for the various cutoff

values.

3.5. Effectiveness of drop ranking
for human scoring

An aspect that has not been

much explored in the existing

literature is how to present most

effectively the computed classifi-

cations, or for that matter the

features obtained from alter-

native imaging techniques

(SONICC or UV). A common

method in vendor software is to

label the images with tags and

different colour schemes (Mele et

al., 2014), and sophistication is

introduced to allow users to sort

by labels or to hide subsets of

data. Nevertheless, images

remain arranged based on their

physical location on the crystal-

lization plate, even though intui-

tively this does not seem to be the

most efficient way of viewing

images.

We show here that enriching

the number of crystal-containing

images to inspect first does

indeed result in closer attention

apparently being given to interesting droplets. We tested this

by comparing how effectively crystallographers could evaluate

crystallization plates under extreme time pressure (2 min per

plate, ten plates) both with or without the ranking system. All

plates were viewed by two groups of five crystallographers,

with plates viewed in rank order by one group being viewed

unranked by the other, but with both groups performing both

ranked and unranked viewing; the consensus score within each

group was taken to reduce human error (Fig. 15; individual

scores are given in Supplementary Fig. S4). As expected, more

(micro)crystals were annotated when the images were viewed

in ranked order, and where crystallinity was rare (plates 9 and

10) unranked viewing resulted in (micro)crystals being missed,
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Table 3
Percentage of plates according to the rank of the first human-scored
crystal for the SGC and Novartis data sets.

Rank
% of plates
(SGC)

% of plates (Novartis,
without additional
training images)

% of plates (Novartis,
with 165 additional
training images)

1 65.31 43.28 52.99
<10 94.39 90.30 92.54
<32 97.96 99.25 100.00

Table 4
Percentages of plates with at least one crystal found for different cutoffs
of scores for viewing and the corresponding average of uninteresting
droplets that were not inspected.

Cutoff
Plates with �1
crystal found (%)

Mean % of uninteresting
droplets unseen in a plate

0.8 60 98 � 7
0.5 89 90 � 12
0.2 99 59 � 24
0.1 100 36 � 23
0.05 100 20 � 17
0.01 100 4 � 6

Figure 15
Comparison of annotations between two groups of crystallographers. Each column represents a plate of 288
droplets inspected in the unranked order (a) and ranked order (b), and the rows are coloured according to
the majority vote for these images: yellow, non-crystals; orange, microcrystals; red, mountable crystals. Blue
rows indicate missed (micro)crystals, where the corresponding images were annotated in one viewing order
but not the other. The total numbers of annotations (orange and red rows) are shown in between. The black
arrows show the location of missed (micro)crystals in the ranked order.



even those located early in the early viewing order, in contrast

to the ranked viewing: evidently images are considered more

carefully if they are known to be likely to be interesting. At

the same time, ranked viewing does not appear to introduce

more generous scoring at the top of the rank through confir-

mation bias, because microcrystals were also missed in ranked

viewing (Fig. 15b; blue rows in plates 1, 4, and 8, black arrows);

on the contrary, annotation appears to become more stringent

if larger (micro)crystals have already been observed.

3.6. Implementation, deployment and availability

Since rearranging image order is fundamental to our

approach, and given that the profile of scores is so informative,

we developed a custom viewer (Fig. 16), because vendor-

supplied viewers do not in general allow the necessary

customizations. The viewer has been integrated with the

existing database and data-storage infrastructure so that users

can view the information of a plate and annotate droplets as

they would normally with vendor software. Furthermore, the

viewer has the option of viewing subwells of a well side by

side: this is very informative where the subwells are the same

experiment (protein plus reservoir solution) at different

mixing ratios (the default method for coarse screens at SGC

Oxford): the juxtaposition allows the immediate evaluation of

precipitation trends across the different protein concentra-

tions. Various features of known usefulness have also been

added to ensure that the software is fully functional for

routine use.

The algorithm and custom viewer have been deployed at

both SGC Oxford and the Structural Biophysics group,

Novartis, Basel on 64-bit Windows 7 machines. The algorithm

runs on an hourly basis, analysing all plates inspected in the

previous hour. At the SGC, the average processing time per

plate of 288 images is under 6 min on an Intel Core i5-2500

CPU with 8 GB RAM, which is well below the image-

acquisition time of �10 min per plate with the Minstrel HT,

and causes no backlog in processing even though two imagers

are running concurrently. At Novartis, a plate of 96 images is

processed in less than 4 min on an Intel Xeon X5550 CPU with

8 GB RAM, which also easily accommodates the typical

image-acquisition time of less than 6 min for 96 wells with the

Rock Imager.

The software is available as a standalone package,

TeXRank, requiring only the freely available MATLAB

Compiler Runtime (MCR); however, full integration with

existing database and imager systems and deployment of the

viewer will invariably require bespoke effort. The executable

for image processing and generating ranking scores requires

little effort to run once the reference background images have

research papers

Acta Cryst. (2014). D70, 2702–2718 Ng et al. � Using textons to rank crystallization droplets 2717

Figure 16
Snapshot of TeXRank, the custom viewer written to display images of a given plate in the ranked order. The plot at the bottom shows the scores of
droplets, giving a quick overview of the plate. We also display three subwells of a well together, where each subwell contains the same precipitant and
protein sample at different mixing ratios. The image to be scored is highlighted with a red bar at the bottom, and the scoring system and experiment
information mirror the software that users are accustomed to.



been generated, but it is the viewer that must be set up to fit

into the infrastructure of a given laboratory; an application

programming interface (API) is under development to

simplify this process. We have shown that integration is

possible for both the Rigaku and the Formulatrix systems, and

for these particular versions of the systems it could take as

little as 3 days to integrate fully for someone familiar with

either system and with general database knowledge. The code

and executables can be downloaded from https://github.com/

thesgc/TeXRank.

4. Conclusions

We show that textons are effective at describing crystallization

experiments objectively with fast computation times, making

them suitable for everyday use. These descriptors are effective

for ranking droplets by their probability of containing crystals

or microcrystals, and the algorithm was transferable between

two widely used commercial imaging systems for sitting-drop

vapour-diffusion experiments. The collection of scores across a

plate forms a useful profile for a quick overview of the suit-

ability of the protein for structural studies; the algorithm and

the custom viewer can be integrated into the existing infra-

structure and are freely available. We have also shown that

with the system, crystallographers have been able to identify

crystals and microcrystals more efficiently and accurately by

prioritizing which images to view and spend more time on.
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