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Reversible macromolecular interactions are ubiquitous in

signal transduction pathways, often forming dynamic multi-

protein complexes with three or more components. Multi-

valent binding and cooperativity in these complexes are often

key motifs of their biological mechanisms. Traditional solution

biophysical techniques for characterizing the binding and

cooperativity are very limited in the number of states that

can be resolved. A global multi-method analysis (GMMA)

approach has recently been introduced that can leverage the

strengths and the different observables of different techniques

to improve the accuracy of the resulting binding parameters

and to facilitate the study of multi-component systems and

multi-site interactions. Here, GMMA is described in the

software SEDPHAT for the analysis of data from isothermal

titration calorimetry, surface plasmon resonance or other

biosensing, analytical ultracentrifugation, fluorescence aniso-

tropy and various other spectroscopic and thermodynamic

techniques. The basic principles of these techniques are

reviewed and recent advances in view of their particular

strengths in the context of GMMA are described. Further-

more, a new feature in SEDPHAT is introduced for the

simulation of multi-method data. In combination with specific

statistical tools for GMMA in SEDPHAT, simulations can be

a valuable step in the experimental design.
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1. Introduction

Protein interactions play essential roles in signaling pathways,

transcriptional regulation and numerous other biological

processes (Gavin et al., 2002; Matthews, 2012). They mediate

the formation of reversible complexes of proteins with other

macromolecules such as proteins, nucleic acids and/or small

molecules to generate structures and biological responses.

Protein interaction networks determined from proteomic

experiments have been shown to involve thousands of

proteins with known or unknown functions, most of them

contributing to large complexes containing many subunits

(Gavin et al., 2002). In order to understand the biological

processes regulated by these protein interactions, we need to

investigate the dynamics of these interactions and to obtain

detailed information on the composition (stoichiometry) of

the complexes, their physicochemical driving force (binding

free energy) and their information transfer (binding coop-

erativity). These thermodynamic parameters represent the

basic functional characteristics of an interacting system, and

are complementary to structural elucidation using crystallo-

graphy. In particular, the binding free energy and its enthalpic

and entropic components directly relate to the nature of the

binding interface and have been widely used in the pharma-

ceutical industry as markers for drug development.
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In the past decades, with the assistance of various biophy-

sical methods, such as analytical ultracentrifugation (AUC),

isothermal titration calorimetry (ITC), surface plasmon reso-

nance biosensing (SPR), nuclear magnetic resonance (NMR)

and fluorescence spectroscopy, the stoichiometry and affinity

of many protein interactions have been measured. However,

using any of these methods, the study of complex multi-

component or multi-site systems can be highly challenging. On

the other hand, such interactions are ubiquitous and of great

interest and, in particular, the cooperativity between the

different binding interfaces is a key feature of protein func-

tion.

The concept of global analysis of protein interaction data

from multiple experiments was described soon after the

introduction of computer-aided data analysis, and has been

demonstrated to help to increase the information content of

the data (Knutson et al., 1983; Beechem, 1992), similar to

hybrid methods in structure determination (Robinson et al.,

2007). To this end, in the last decade we have developed the

software SEDPHAT as a computational engine for globally

analyzing multiple data from different biophysical methods.

It has a flexible and user-friendly graphical interface that does

not require any system-specific or data-dependent program-

ming. SEDPHAT was first established for the global analysis

of multiple data sets from a single technique. For ITC, we have

demonstrated how this can substantially improve the level of

detail and reveal the cooperativity parameters in ternary multi-

protein complexes (Houtman et al., 2007); in sedimentation

equilibrium analytical ultracentrifugation (SE) SEDPHAT

has been routinely used in global analysis to overcome the

limitation of ill-conditioned SE data and obtain better deter-

mination of thermodynamic parameters (Vistica et al., 2004;

Ghirlando, 2011; Zhao, Brautigam et al., 2013); and multiple

approaches for global analysis in sedimentation velocity

analytical ultracentrifugation (SV) include direct boundary

modeling with Lamm equation solutions for determining

equilibrium and kinetic binding constants, as well as hydro-

dynamic shape parameters (Schuck, 2003; Dam et al., 2005;

Brautigam, 2011), multi-signal analysis (MSSV) for deter-

mining the number and composition of co-existing complexes

(Balbo et al., 2005; Padrick & Brautigam, 2011; Brautigam et

al., 2013) and global density-contrast analysis for determining

macromolecular partial specific volume (Brown et al., 2011).

Finally, applications of global analysis of combined SE and SV

data in SEDPHAT have demonstrated the utility of a more

generalized sedimentation analysis (Canzio et al., 2013; May et

al., 2014).

For the global analysis of multiple data sets from different

biophysical methods (GMMA), we have recently introduced a

few specific statistical functions in SEDPHAT to address the

combination of data sets of dissimilar size and information

content (Zhao & Schuck, 2012). As demonstrated with a

model system for a two-site binding process (Zhao & Schuck,

2012), GMMA can significantly improve the precision and

resolution of thermodynamic analyses of multi-site systems.

A recent application to a three-site system can be found in

Gustchina et al. (2013), which highlights the advantage of

GMMA over single-technique data that can be hard to

interpret alone. In the present paper, we provide a brief

overview of the basic principles and the most recent devel-

opments of select biophysical methods for the study of protein

interactions, with special emphasis on their complementarity

in the context of GMMA. We then describe a new function

implemented in SEDPHAT to simulate multi-method data

in order to facilitate the experiment planning and to solidify

data interpretation for complex interacting systems. With the

improvements in sensitivity and resolution of the biophysical

methods, and the new computational tools in SEDPHAT,

the GMMA approach allows us to gain new perspectives for

studying complex interactions and to further propel under-

standing of biological functions.

2. Recent developments in SV, ITC and SPR for protein
binding studies

2.1. Sedimentation-velocity analytical ultracentrifugation
(SV)

Analytical ultracentrifugation (AUC) is a classical and first-

principle-based technique for characterizing macromolecules

and nanoparticles in solution, and has a long history of

applications to biological macromolecules and their reversible

interactions (Schachman, 1959). The basic objective of the

analytical ultracentrifuge is to monitor and interpret the

evolution of the macromolecular concentration profiles after

the application of a centrifugal field. For a basic introductory

review and practical protocols, see, for example, Lebowitz et

al. (2002) and Zhao, Brautigam et al. (2013). Sedimentation

velocity (SV) and sedimentation equilibrium (SE) are the two

standard experimental designs in AUC, with SV focusing on

the sedimentation process while SE examines the final equi-

librium distribution. For protein studies, the combination of

these two methods can provide powerful information of

protein size, size distribution and purity, hydrodynamic shape

and affinity for binding other macromolecules (Zhao, Brau-

tigam et al., 2013). AUC can be used to study a wide range of

particle sizes from 100 to 108 g mol�1. Currently, three types

of optical systems are available for AUC: the conventional

absorbance spectrophotometer, the Rayleigh interferometer

and the recently commercially introduced fluorescence-

detection system (FDS). With different optical detection

systems and different experimental approaches, AUC offers

a remarkably broad dynamic range for investigating protein

interactions with equilibrium dissociation constants (Kd) from

picomolar to millimolar (Chaudhry et al., 2009; Rowe, 2011;

Zhao et al., 2014). The application of AUC to protein binding

studies allows determination of the stoichiometry and the

affinity of protein complex formation, including both self-

association and hetero-association.

SV, in particular, is highly advantageous in the study of

protein interactions, mainly because the strong size-dependent

sedimentation process leads to high hydrodynamic resolution,

which is usually far superior to diffusion-based methods such

as dynamic light scattering or size-exclusion chromatography.

research papers

4 Zhao & Schuck � Analysis of protein complex stoichiometry and affinity Acta Cryst. (2015). D71, 3–14



Furthermore, in the standard experimental design of SV,

despite their higher sedimentation velocity the protein

complexes will remain in a bath of their slower sedimenting

constituent components, such that dissociating complexes can

re-associate during the sedimentation process in a way that

reflects their equilibrium and kinetic properties. In recent

years, it has undergone substantial improvements in instru-

mentation, theory and computational data analysis, which

have benefited numerous protein studies for deciphering the

composition of protein complexes, binding mechanisms and

specificity (Schuck, 2013). Here, we focus on some of the most

recent developments in SV relevant to protein interaction

studies.

2.1.1. Diffusion-deconvoluted and spectrally deconvoluted
sedimentation coefficient distributions c(s) and ck(s). One of

the most valuable aspects of SV is the great hydrodynamic

resolution and sensitivity that can be applied to determine the

number, the size and the hydrodynamic shape of co-existing

protein complexes. A critical advance in SV was made in the

1990s with the ability for routine efficient numerical solution

of the master equation of sedimentation and diffusion fluxes in

the sector-shaped solution column: the Lamm equation

(Lamm, 1929; Schuck, 1998; Brown & Schuck, 2007). This

provides a model for the temporal and spatial evolution of the

concentration of a single non-interacting particle �1(r, t) and

opened the door to the direct modeling of the observed

sedimentation boundaries a(r, t).

The extension of this to the description of a coupled sedi-

mentation of a kinetically interacting system has been devel-

oped (Schuck, 1998, 2003; Stafford & Sherwood, 2004; Dam et

al., 2005). In principle, it can provide binding constants, the

sedimentation coefficients (s-values) of all species and – under

highly favorable conditions of reaction kinetics on the same

timescale as the sedimentation experiment, i.e. with complex

lifetimes of approximately 1 h – estimates for the kinetic rate

constants for chemical interconversion. While conceptually

very powerful, it has the important drawback of requiring

highly pure sample and prior knowledge of (or a hypothesis

on) the complexes formed (Brautigam, 2011; Zhao et al., 2011;

Zhao, Brautigam et al., 2013).

A more widely applicable approach, which is usually the

first step in modern data analysis, is the combination of single-

species Lamm equation solutions �1(s, r, t) into sedimentation-

coefficient distributions c(s). It is defined by the integral

aðr; tÞ ffi
R

cðsÞ�1ðs; r; tÞ ds ð1Þ

that is fitted directly to the set of observed boundary profiles.

It is important to take precautions against overfitting through

the use of maximum entropy or Tikhonov regularization

(Schuck, 2000), which may be tailored to specific prior

knowledge (Brown et al., 2007). Similar to the deconvolution

of point-spread functions in optical imaging, c(s) results

in diffusion-deconvoluted sedimentation-coefficient distribu-

tions.

In most common cases, the biological sample solution is

composed of an ensemble of molecules with various sizes.

Such polydispersity is challenging in many biophysical

methods. However, the c(s) analysis can detect and account

for this: the high hydrodynamic resolution and sensitivity to

trace components allow unrelated sedimenting species to be

excluded from further analysis and therefore prevent incon-

sistencies in GMMA arising from different sensitivity to

impurities. For sufficiently long-lived complexes, c(s) can

resolve the number of co-existing complexes and determine

the molecular weight and s-value (i.e. a molecular shape

function). For short-lived complexes, c(s) provides a platform

for efficient further thermodynamic analysis (see below).

The stoichiometry of multi-component complexes can be

directly resolved from sedimentation velocity data with

multiple signals, if it is possible to exploit different spectral

signatures of different components. For example, the spectral

difference could be owing to different aromatic amino-acid

contents causing differences in the extinction coefficients at

280 or 250 nm, or in combination with refractive-index signals,

or using chromophoric labels in the visible-light region. We

can take advantage of such differences in the multi-signal

sedimentation coefficient distribution ck(s),

a�ðr; tÞ ffi
P

k

"k;�d
R

ckðsÞ�1ðs; r; tÞ ds; ð2Þ

(where "k,� represents the extinction coefficient of component

k at wavelength � and d is the optical path length), which

simultaneously fits the data a�(r, t) acquired at the different

signals and spectrally convolutes component contributions

(Balbo et al., 2005). The integration of ck(s) reports the

concentration of components co-sedimenting in a certain

peak. Details for the application of this multi-signal SV

(MSSV) approach and requirements for spectral resolution

can be found in Padrick & Brautigam (2011), Brautigam et al.

(2013) and Zhao, Brautigam et al. (2013).
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Figure 1
Example of the MSSV analysis of MHC class I (blue) binding to HHV-7
U21 (red) forming mixed 4:2 complexes (May et al., 2014). The insets
show raw boundary profiles from the Rayleigh interference optical
system (left) and absorbance system at 280 nm (right). No chromophoric
label was required for the spectral decomposition owing to the difference
in content of aromatic amino acids in the two proteins.



The importance of MSSV in the context of protein inter-

action analysis is its capability to directly reveal the size and

the composition of protein complexes, which can be invaluable

prior information when modeling binding isotherms observed

with other methods (Fig. 1), especially for multi-component

systems. This unique advantage has been demonstrated in

various multi-component protein systems (Houtman et al.,

2006; Brautigam et al., 2009; Barda-Saad et al., 2010; Padrick et

al., 2011; May et al., 2014).

2.1.2. Isotherms of signal-weighted average sedimentation
coefficients and effective particle theory. The c(s) distribu-

tion can be integrated to determine signal-weighted average

sedimentation coefficients, sw, which are directly related to the

average overall transport of the interacting system (Rivas et

al., 1999; Schuck, 2003). When acquired as a function of

solution composition, it provides a binding isotherm from

which equilibrium constants can be determined, as well as the

hydrodynamic shape of the individual species (Zhao, Brau-

tigam et al., 2013). Such isotherms can be easily loaded into

SEDPHAT and fitted using nonlinear regression analysis with

the appropriate binding model.

Furthermore, interacting systems at nonstoichiometric

concentrations in SV produce characteristic boundary

patterns that depend on the lifetime of the complexes relative

to the duration of the SV experiment. For long-lived

complexes, the boundary pattern directly reflects the popula-

tion of different species, which often can be hydrodynamically

resolved. For short-lived complexes, the sedimentation is

coupled to the chemical interconversion, leading to the

formation of effective particles that consist of free and

complex species in proportions that ensure that the time-

average sedimentation velocities of all macrocmolecules are

equal (Schuck, 2010a,b). As we have shown recently, these

characteristic boundary amplitudes, and their s-values, can

also be assembled into isotherms that reflect equilibrium

constants as well as species sizes and shapes, and in combi-

nation with the sw isotherms increase the information content

and precision of the binding analysis (Zhao et al., 2011).

2.1.3. Fluorescence-detected sedimentation velocity (FDS-
SV). While traditionally AUC is constrained to the analysis of

moderate to weak interactions with Kd values in the micro-

molar to millimolar range, based on the required optical

detection by absorbance or interferometry, fluorescence

detection can extend the dynamic range to nanomolar or even

picomolar concentrations (Crepeau et al., 1976; Schmidt et al.,

1990; Schmidt & Riesner, 1992; MacGregor et al., 2004). The

fluorescence-detection system (FDS) resembles a moveable

confocal microscope featuring a focal point that scans radially

through the solution column (Fig. 2). A design by Laue and

coworkers (MacGregor et al., 2004) has recently become

commercially available from AVIV Biomedical Inc. (Lake-

wood, New Jersey, USA).

Currently, excitation is restricted to 488 nm and emission

is acquired in a wavelength band from 505 to 565 nm. This

provides optimal sensitivity for GFP and FITC-related dyes,

but owing to the exquisite sensitivity of the commercial system

detection of some red fluorophores is also possible (unpub-

lished observation). Initially, the majority of applications of

research papers

6 Zhao & Schuck � Analysis of protein complex stoichiometry and affinity Acta Cryst. (2015). D71, 3–14

Figure 2
Schematic representation of the scanning setup of the FDS optics for
AUC (MacGregor et al., 2004). This figure was taken from Zhao, Casillas
et al. (2013).

Figure 3
High-affinity interaction of an EGFP and GFP monoclonal antibody
(Zhao et al., 2014): (a) c(s) distributions from FDS-SV data; (b) sw

isotherms (symbols) and best-fit model (lines) at different macromole-
cular concentrations, leading to a microscopic binding constant of 20 pM.



FDS-SV were of a qualitative rather than a quantitative

nature (Kroe & Laue, 2009; Kingsbury & Laue, 2011), but the

analysis of FDS-SV data has undergone rapid development

(Bailey et al., 2009; Lyons et al., 2013; Zhao, Casillas et al., 2013;

Zhao, Lomash et al., 2013; Zhao et al., 2014). In particular, we

have recently shown that, after accounting for some char-

acteristic data features including spatial and temporal changes

in the signal magnification, highly quantitative fits can be

achieved with signal-to-noise ratios rivaling that of the best

traditional optical system (Zhao, Casillas et al., 2013).

Furthermore, when fully exploiting the very large statistics of

data points that can be acquired in FDS-SV, and when using

an inert carrier protein to block surface adsorption (after

appropriate controls), it is possible to measure sedimentation

coefficients of protein complexes at low picomolar EGFP

concentrations, which opens this method up to the study of

ultrahigh affinities with subnanomolar equilibrium constants

(Zhao et al., 2014; Fig. 3). In the context of GMMA, this brings

the sensitivity of SV-AUC onto a par with (and even

exceeding) that of SPR and ITC.

2.1.4. Detergent-solubilized membrane proteins and
nanodiscs. It is important that the AUC methods described

above are equally as suitable for soluble proteins as for

membrane proteins. While the study of detergent-solubilized

membrane proteins was pioneered by Reynolds and Tanford

based on SE (Reynolds & Tanford, 1976), modern SV analysis

capabilities and new solubilization strategies have stimulated

significant progress in recent years (Ebel, 2011). In either of

these approaches, additional steps in experimental planning

and data analysis are required to account for the contributions

of detergent to the sedimenting macromolecule (Ebel, 2011).

Furthermore, AUC is completely compatible with membrane

proteins reconstituted into nanodisc systems (Inagaki et al.,

2012; Monterroso et al., 2013). These developments advance

the membrane protein studies and open the door to future

GMMA applications by the combination of SV with other

biophysical methods.

2.2. Isothermal titration microcalorimetry (ITC)

ITC has served as a key technique for quantifying binding

affinity and stoichiometry of protein interactions. It is based

on the direct measurement of the reaction heat during a

titration series of injections of a reactant into a thermally

isolated vessel containing reaction partner(s). From the shape

of the resulting isotherm of observed heats, the change of

enthalpy, �H, the equilibrium constant can be determined

and, traditionally, an ‘n’ value reflecting the reaction stoi-

chiometry and active concentration errors. Numerous ITC

applications have been accomplished in various systems with a

range of Kd between 1 nM and 100 mM (Wiseman et al., 1989).

In order to expand the accessible affinity range, various

approaches have been developed using displacement or

competition strategies (Sigurskjold, 2000; Velazquez Campoy

& Freire, 2006; Krainer et al., 2012). The required three-

component binding models have been implemented as part of

the ITC model set in SEDPHAT. In the context of multi-site

interactions and GMMA, one unique feature of ITC is its

suitability for detecting cooperativity in binding, because we

observe both changes in enthalpy (��H) and free energy

(��G) (Bains & Freire, 1991; Houtman et al., 2007).

2.2.1. Global modeling of titration isotherms. In the last

decade, it has become abundantly clear that ITC is signifi-

cantly more powerful when multiple titrations are analyzed

globally (Henzl et al., 2003; Armstrong & Baker, 2007;

Houtman et al., 2007; Freiburger et al., 2009; Herman & Lee,

2009; Coussens et al., 2012). This is true for simple repetitions

as well as for the combination of separately suboptimal

experiments into a well defined global analysis. This is even

more critical when studying systems with more than two

components and more than two sites, such as multi-protein

complexes, and whenever multiple titrations can sample the

n-dimensional binding isotherm of n-component systems in

orthogonal ways (Houtman et al., 2007).

SEDPHAT is naturally capable of accommodating such

global analyses in a flexible manner with a menu-driven or a

drag-and-drop interface. The growing list of global ITC

analysis models includes various two-component and three-

component protein interactions, with macroscopic or micro-

scopic descriptions to exploit known symmetries and compe-

tition models, as well as salt-dependent, temperature-

dependent and protonation-linked binding models.

A prerequisite for the global analysis of ITC data is to

abandon the concept of a nonphysical (and usually non-

integral) ‘n’ value as a catch-all parameter for concentration

errors, incompetent protein fractions and reaction stoichio-

metry. In the global context, as implemented in SEDPHAT,

the reaction stoichiometry is fixed in the reaction model but

separate parameters allow for concentration errors and/or

incompetent fractions of material. The concentration errors

can have lower and upper bounds, and may be linked across

different experiments (‘linked local parameters’), where

justified by experimental design and sample preparation.

2.2.2. Integration with peak-shape analysis and error esti-
mates. Over the last decades, significant improvements in the

instrumentation of ITC have allowed smaller sample volumes

and more sensitive detection. However, baseline assignment

for the power traces followed by peak integration to deter-

mine the heat of each injection is a nontrivial first step in the

ITC analysis, and is often one of the limiting factors for data

interpretation. This has a particularly pronounced impact on

the binding processes associated with smaller heats, and is

exacerbated for smaller volume instruments. Since the

manufacturer-provided automated integration algorithm

cannot adapt well to the stochastic nature of the baseline drift

and its adventitious jumps, it has previously been regarded

the state-of-the-art strategy to manually adjust the baseline

assignment (Velazquez Campoy & Freire, 2006). Clearly this is

unsatisfactory, since it is subjective and potentially associated

with bias. (This may not always be obvious since the assigned

baseline is usually subtracted out in the final thermogram

plots.)

In order to develop an objective approach for ITC peak

integration, we introduced a new method implemented in the
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New Integrator of Thermograms Produced by Isothermal

Calorimetry (NITPIC; Keller et al., 2012). Conceptually, this

approach is based on the recognition that the peak shapes

from all injections are similar (although not identical) to each

other, such that regularization by truncated singular value

decomposition can be used to distinguish baseline from

injection heats (Keller et al., 2012). This approach is particu-

larly robust with regard to adventitious baseline jumps. The

algorithm is self-adjusting to the noise in the baseline and

usually runs fully automatically. Some algorithmic adjustments

are possible, for example, in rare cases, to set overall threshold

levels or to adapt criteria to nonstandard isotherms, but by

design no adjustment to individual injections is possible (nor is

it necessary). As illustrated in Fig. 4, it greatly outperforms

the standard integration routines currently provided by the

instrument manufacturers.

In addition to the isotherm of reaction heats, NITPIC

determines error bars associated with the calculated heat of

each injection on the basis of the baseline noise in the power

trace surrounding the injection. This is important as it leads

to proper statistical weighting in the isotherm analysis. For

example, this allows realistic analysis of the statistical accuracy

of binding parameters where very few data points are in the

transition to saturation. This region of the data governs the

estimate of the binding constant and will be sparsely sampled

for high-affinity systems (high ‘c’-value conditions), and may

therefore be sensitive to variable uncertainties of individual

injection heats. Also, proper error estimates are of particular

importance for the global ITC analysis when data with

different loading concentrations in the reaction vessel

(different ‘c’ values) are analyzed jointly, which produce very

dissimilar statistical errors.

2.3. Surface plasmon resonance surface binding (SPR)

Optical biosensing has become a popular technique for

studying protein interactions with the introduction of a

commercial SPR biosensor (Löfås et al., 1991). In the most

commonly used flow design, a protein is immobilized on a

polymeric support at the sensor surface and its binding partner

(or reaction mixture) is flowed across the sensor surface at

various concentrations while monitoring the accumulation of

surface-bound material optically via the solution refractive-

index changes in the evanescent field of light in total internal

reflection (Schuck, 1997). Analogous to the potential impact

of the covalent attachment of extrinsic fluorophores to

proteins in fluorescence techniques (including FDS-SV; Zhao,

Lomash et al., 2013), covalent attachment of the protein to the

surface and the proximity of the surface can lead to alterations

in its binding properties. Whether or not the surface binding

parameters are identical to those in solution is strongly

dependent on the particular proteins under study, and exam-

ples of both are common (Schuck et al., 1998).

The SPR biosensing data could directly offer kinetic infor-

mation on the binding; however, very frequently the kinetics

of surface binding significantly deviate from the expected
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Figure 4
Titration isotherm from data after automated thermogram processing
using MicroCal Origin (blue circles) or NITPIC (red squares and error
bars) and fit (red line) to a 1:1 binding model of a NITPIC isotherm (from
Keller et al., 2012). The left inset shows the thermogram. The right insets
illustrate the principle of baseline interpolation for three different
injections as highlighted in red in the thermogram plot.

Figure 5
Example of SRP data analysis with a surface site distribution in EVILFIT
(Zhao et al., 2012). (a) Binding data (blue to green) and best fit (red lines)
from the distribution model of an experiment of �2-microglobulin (1.0,
5.0, 10, 50 and 100 nM) binding to a CM5 sensor chip with anti-�2-
microglobulin-biotin immobilized; (b) best-fit affinity and kinetic rate
constant distribution from global fit of all data in (a).



pseudo-first-order theoretical model. This can be attributed

to mass-transport limitation and/or variations of the physico-

chemical microenvironment of the sensor surface causing

heterogeneity of the surface binding sites (Schuck & Zhao,

2010; Zhao et al., 2012). To account for these issues from

surface binding, a transformation of surface-binding progress

data into a space of two-dimensional rate-constant distribu-

tions has been developed and implemented in the free soft-

ware EVILFIT (Svitel et al., 2007; Schuck & Zhao, 2010).

EVILFIT typically leads to excellent fits of the raw data and

the most populated or putatively native interactions repre-

sented in the major peaks to be focused on (Fig. 5). Tikhonov

and Bayesian regularization allow the user to probe the

information content of the SPR data.

In the context of GMMA these surface-induced artifacts of

impaired binding sites pose a significant difficulty. Therefore,

although SEDPHAT does allow the incorporation of steady-

state surface-binding isotherms, in order to probe true solution

interactions it is advantageous to conduct solution competi-

tion experiments, conceptually just like the competition

experiments between labeled and unlabeled macromolecules

in fluorescence approaches. We can exploit the SPR surface

solely as a measure of the free binding partner in solution,

which can be empirically calibrated through an initial series of

surface-binding experiments. This is followed by experiments

in which reaction mixtures are injected, which, dependent on

the solution interaction, deplete the concentration of free

surface-binding partner. Such a surface-competition isotherm
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Figure 6
Venn diagram of different biophysical methods that can contribute to GMMA in SEDPHAT. Hierarchy of parameters: macromolecular binding
parameters that are central TO the model for each data type, such as Kd, �G and ��G, are indicated in bold red; macromolecular parameters that serve
as observables in each technique, such as mass in AUC and SPR, translational frictional coefficient in SV and DLS, spectroscopic changes upon binding
in fluorescence or other spectroscopy and rotational diffusion coefficient in fluorescence anisotropy, are indicated in bold black. In ITC, the enthalpic
changes (�H and ��H) as binding parameters are directly probed calorimetrically. Finally, in most methods there are technical and ‘nuisance’
parameters that are usually unrelated to the molecules under study, such as baseline offsets and sample dimensions (meniscus and/or bottom in SV), but
also incompetent fractions, as indicated in grey. Some of these local parameters may be constrained to be the same in a subset of experiments, such as
concentration errors. A given model is projected into each of the data spaces, optimizing the local and nuisance parameters, compared with the
experimental data, and a global measure for the goodness of fit is calculated, which is then optimized by nonlinear regression.



is the preferred approach for SPR analysis in SEDPHAT in

the context of global analysis. Indeed, global analysis of direct

and competition isotherms can be performed to reveal

differences between surface and solution binding (Schuck et

al., 1998).

A strength of the SPR analysis is its application to high-

affinity interactions with Kd in the nanomolar range. However,

a disadvantage that is important to keep in mind is that

multivalent surface binding cannot be studied reliably, and

the method is limited in the presence of self-associations.

Furthermore, control experiments are essential for all solution

components other than the specific binding partner to ensure

that they do not bind to the surface.

3. Global multi-method analysis (GMMA) in SEDPHAT

3.1. Basic principle of GMMA

The goal of GMMA is to exploit synergies of the different

biophysical techniques. The first step in the analysis of an

interacting system is the definition of the thermodynamic

states, i.e. the number and stoichiometry of complexes. In our

experience, SV and MSSV often provide unique opportunities

as they deliberately depart from the premise of a binding

model upfront. If the binding scheme cannot be identified

directly, it may be assessed later by evaluating the implications

of different structurally motivated hypothetical models on the

quality of fit of the binding data, with GMMA offering the

most stringent criteria.

The premise of GMMA is that the combination of data sets

from different techniques that exploit different observables

for monitoring the same binding process can break the para-

meter correlation which exists in a single-method analysis, and

thereby increases precision and opens up more complex multi-

site and multi-component systems for study (Fig. 6). As an

illustration of this principle, we applied GMMA to the two-site

interaction of �-chymotrypsin binding soybean trypsin inhi-

bitor (Fig. 7; Zhao & Schuck, 2012). Of the ITC, SPR, SV and

fluorescence anisotropy methods applied, no single one was

able to resolve the binding energies and enthalpies of the two

sites, and the individual best-fit values were very different. Yet,

in combination in GMMA they determined all of the binding

parameters very well, as shown by the shapes of the error

contours of the individual and GMMA analyses (Fig. 8).

Remarkably, even though only ITC reports binding enthalpy

changes and only SV reports sedimentation coefficients, these

parameters of the 1:1 and 2:1 complexes were significantly

better determined by GMMA than by the combination of ITC

or SV alone or by single-method global analysis (Zhao &

Schuck, 2012).

Modeling each technique involves global parameters {pglob},

which are dependent on the macromolecular interacting
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Figure 7
Screenshot of GMMA fit of 11 data sets from four biophysical methods of binding between �-chymotrypsin and soybean trypsin inhibitor from Zhao &
Schuck (2012). Top row, left to right: SPR competition experiment, four ITC titrations, sw isotherm from a dilution series in SV. Bottom row, left to right:
sfast and effective particle boundary amplitudes from the dilution series in SV, sw and boundary fractions from a titration series in SV and steady-state
fluorescence anisotropy competition titration.



system, as well as local parameters {ploc}, which may be

macromolecular properties that are only important in a subset

of experiments (such as extinction coefficients or frictional

coefficients) or technical ‘nuisance’ parameters such as

instrumental baselines etc. SEDPHAT ‘projects’ an inter-

action model into the different data spaces, determines the

local root-mean-square deviation and �2 of the fit and calcu-

lates from this a weighted overall �2 as

�2
r;glob ¼

PE
e¼1

Ne

� ��1PE
e¼1

w�2
e

PNe

i¼1

½ye;i � fe;iðfpglobg; fploc;egÞ�
2

�2
e;i

ð3Þ

(where fe,i, ye,i and �e,i are the model, data and standard

deviation for data point i of experiment e out of a total of Ne

data points in a total of E experimental data sets, with a

statistical weighting factor we for each experiment). The

object-oriented internal structure of SEDPHAT will auto-

matically add and dynamically optimize the necessary local

parameters for each data type when experimental data are

added, without requiring any user intervention or data-specific

or system-specific programming. Nonlinear regression then

globally optimizes �2
r,glob of the fit, adjusting the parameters

(optionally with user-provided constraints or links between

parameters) offering simplex, Marquardt–Levenberg and

simulated-annealing algorithms.

3.2. Statistical analysis functions

Standard statistical analysis functions are available in

SEDPHAT to probe parameter errors and correlations in any

fit, including cross-correlation parameters from the covariance

matrix, contours of the error surface and its projections with

F-statistics and Monte-Carlo analysis. For example, the

reduction in parameter correlation between the Kd of the

first and second binding site achieved through GMMA is

visualized in Fig. 8 with two-dimensional projections of the
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Figure 8
Parameter correlations between K1 and K2 for different experiments: (a) SPR alone (top left in Fig. 7), (b) a single ITC experiment (top second from
right in Fig. 7), (c) a dilution series in SV (top right and first and second lower left in Fig. 7) and (d) GMMA jointly of the same data sets.



error surface, which can be computed and displayed in

SEDPHAT.

Specific for GMMA, we have introduced a statistical weight

(we in equation 3) to account for very dissimilar sized data

sets and to ensure that all experiments can make statistical

contributions to the global fit (Zhao & Schuck, 2012).

Dependent on differences in the various techniques regarding

the potential impact of systematic errors, this parameter can

be adjusted by the user. A tool to scan the parameter errors as

a function of the set of weights {we} can alert as to whether any

of the GMMA results is sensitive to this choice, and can report

the overall largest confidence interval for all parameters

(Zhao & Schuck, 2012). Furthermore, a statistical test based

on cross-validation and F-statistics was implemented to flag

data sets that do not seem to be mutually consistent, for

example owing to possible differences from experimental

imperfections or the influence of systematic errors. Finally, it

is instructive to inspect which experiments carry significant

information on each parameter. These functions are available

in the Statistics menu of SEDPHAT, with the option to

subgroup experimental data sets for the purpose of their

statistical analysis.

3.3. Experimental design for GMMA using simulation tools

It can be a nontrivial question what experiments should

be performed for optimally probing binding equilibria when

various methods are available. This is true, in particular, for

multi-component and multi-site systems and in the context of

GMMA. To facilitate experimental planning, we have imple-

mented new simulation functions in SEDPHAT that can

generate series of experimental data sets in silico that can be

added to a GMMA. In conjunction with the statistical analysis

functions of SEDPHAT, the user may probe which set of

experiments and, for each technique, which experimental

design would be most informative, given a certain hypothesis

for the nature of the interactions and estimates of the likely

binding constants. This may also reveal whether certain types

of experiments would be worth conducting on the basis of

their added information content, or whether it is possible to

fully characterize a certain interacting system at all with the

methods at hand and given the likely errors of data acquisi-

tion.

To construct such a simulation in SEDPHAT, first the

interaction model must be selected and global binding para-

meter estimates must be entered. The simulation functions can

then be invoked to generate data sets of type SE, SV, SV

isotherms, ITC, SPR, competition SPR, fluorescence aniso-

tropy, general linear spectroscopy (such as steady-state fluor-

escence quenching) or any type of isotherms (for example

chemical shift from NMR data and data of microscale ther-

mophoresis). Likely values for local parameters specific to the

particular technique must be provided (such as characteristic

signal increments and/or ancillary experimental parameters).

In order to help to create the most informative isotherms in

the concentration space, the user is then brought to a two-

dimensional map of either predicted total signal (for the given

technique) or the fractional signal contributions of different

complexes formed, or their fractional population as a function

of total component concentrations (Fig. 9). Optionally, the

research papers

12 Zhao & Schuck � Analysis of protein complex stoichiometry and affinity Acta Cryst. (2015). D71, 3–14

Figure 9
An example of detailed experimental planning for SV of a 2:1 binding
system in SEDPHAT. (a) Parameter space of sw isotherms for the given
binding system as functions of macromolecular concentration for species
A (abscissa) and B (ordinate), both in logarithmic units, and with the
color temperature indicating the theoretical sw values for given
hypothesized binding constants, cropped to conditions where the total
signal is between user-set parameters and experimentally feasible based
on given stock concentrations. (b, c) Relative contribution of the AB and
ABB complex, respectively, to the total signal. In all plots, a graphically
user-generated trajectory (black line with points) is shown, which
automatically generates the sample-preparation plan in (d).



field of view of this interaction map can be cropped to reflect

feasible regions on the basis of maximal available stock

concentrations and/or on the basis of minimal signals or

maximal desired signals (such as OD limits in absorbance

detection). Furthermore, the isotherm plots can be switched

into a differential mode highlighting the regions of greatest

sensitivity to changes in certain parameters. After visually

discerning suitable isotherm trajectories from within any of

these plots (which are presumably those that show char-

acteristic changes along the trajectory, but this is to be

assessed by statistical analysis and is likely to be dependent on

the GMMA context), the user can draw a line with the mouse

in the map and receive the desired number of log-equidistant

mixture concentrations that probe this isotherm. For conve-

nience, the user can obtain recipes to produce a certain

volume of these mixtures from the previously given stock

concentrations.

Constraining the concentration-dependent map of signal

(or complex species) to feasible mixtures based on given

component stock concentrations can highlight, for example,

how high the stock concentrations should be to generate

sufficient information and how much total volume would be

required. With the caveat that the interaction parameters of

the underlying simulations are hypothetical, these simulation

tools can guide protein preparation and link it to

experimental information content. Similarly, such simulations

may reveal which signal-to-noise ratio would be required with

a certain technique to be informative in the context of

GMMA.

4. Concluding remarks

SEDPHAT was designed as software that allows the seamless

global analysis of a large number of experiments with different

biophysical techniques without compromising the level of

detail in the modeling of each technique. It has a graphical

user interface and does not require any system-specific or

data-specific programming, facilitating practical routine

application in the laboratory. GMMA provides the opportu-

nity to characterize more complicated systems of interacting

proteins exhibiting multi-valency, multi-site interactions and/

or cooperativity. We believe this is essential for fully under-

standing the quaternary structure and function of proteins in

their signaling or regulatory pathways, adding complementary

information to crystallographic structures.

5. Availability

All of the tools and methods mentioned above are imple-

mented in software that is available at no cost. SEDPHAT can

be downloaded from https://sedfitsedphat.nibib.nih.gov/software/

default.aspx and an online help system with some basic tuto-

rials is available at http://www.analyticalultracentrifugation.com/

sedphat/default.htm. SEDPHAT interfaces seamlessly with

NITPIC, which reads raw thermogram data and supplies

SEDPHAT ITC isotherm data files as an output. A Python

version of NITPIC written by Dr Chad Brautigam can

be downloaded from http://biophysics.swmed.edu/MBR/

software.html. The advanced plotting program GUSSI can be

found on the same webpage, also authored by Dr Chad

Brautigam, which interfaces with SEDPHAT in many ways

to easily achieve customizable publication-quality graphs of

all data types. Finally, EVILFIT for the analysis of SPR

kinetic surface-binding data is available from https://

sedfitsedphat.nibib.nih.gov/software/default.aspx as a compiled

MATLAB standalone executable with graphical user inter-

face.

All of the software tools described in the present work,

along with the principles and practice of the different

biophysical techniques, are the subject of workshops that are

held twice yearly, alternating at the National Institutes of

Health in Bethesda, USA and at other national and

international locations. Information about the workshops

can be found at https://sedfitsedphat.nibib.nih.gov/workshop/

default.aspx.

This work was supported by the Intramural Research

Programs of the National Institute of Biomedical Imaging and

Bioengineering, National Institutes of Health.
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