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Despite huge advances in the computational techniques

available for simulating biomolecules at the quantum-

mechanical, atomistic and coarse-grained levels, there is still

a widespread perception amongst the experimental commu-

nity that these calculations are highly specialist and are not

generally applicable by researchers outside the theoretical

community. In this article, the successes and limitations of

biomolecular simulation and the further developments that

are likely in the near future are discussed. A brief overview

is also provided of the experimental biophysical methods that

are commonly used to probe biomolecular structure and

dynamics, and the accuracy of the information that can be

obtained from each is compared with that from modelling. It

is concluded that progress towards an accurate spatial and

temporal model of biomacromolecules requires a combination

of all of these biophysical techniques, both experimental and

computational.
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1. Introduction

High-throughput sequencing, protein production and crystal-

lization, and developments in X-ray crystallography, small-

angle and wide-angle X-ray scattering (SAXS/WAXS),

electron microscopy (EM), mass spectrometry and nuclear

magnetic resonance (NMR), combined with modern data-

storage capacities, have enormously increased the quantity of

biological information available in structural, proteomics and

genomics databases. However, without an equivalent invest-

ment in understanding and interpretation in terms of biolo-

gical function, our ability to use this information is limited.

Computer modelling to enhance our understanding and guide

further experimental characterization is essential, since the

quantity and complexity of biological data is immense and

continues to grow.

Improved understanding of biomolecular interactions and

their consequences through computer modelling is not just of

fundamental interest, but is also of benefit to applied science.

Structural molecular biology has provided the key concepts

underlying rational drug design, which enables the use of

molecular design to target an active site or binding pocket of a

known structure. The desired outcome is usually a molecule

that specifically recognizes the correct binding site with suffi-

cient affinity to outcompete the natural substrate. However, it

is still not always possible to accurately predict the binding

constant simply from knowledge of the structures of the

individual binding partners because of a lack of a fully

quantitative understanding of the relationship between
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molecular structure and thermodynamics. In spite of some

successes, it can also still be difficult to interpret calorimetric

data, for example gained by techniques such as isothermal

titration calorimetry (ITC), in terms of atomistic structure

alone, and this has proven troublesome to the pharmaceutical

industry, who would ideally use the insight provided by these

techniques to enhance drug development (Chaires, 2008).

A purely structural description has proven to be insufficient

for a complete understanding of biological function because

biomolecules are conformationally flexible objects. They

change shape significantly owing to thermal fluctuations when

they are at 300 K, and site-specific recognition can involve

large conformational changes as the biomolecules adapt their

flexible conformations to maximize favourable interactions.

In the case of allosteric interactions, these conformational

changes can give rise to information transfer through both

changes in shape and flexibility (e.g. entropy); dynamic

information transfer has, for example, been demonstrated

theoretically by Rodgers et al. (2013) and experimentally by

Tzeng & Kalodimos (2012). However, directly visualizing

these structural rearrangements and changes in biomolecular

flexibility remains challenging. Mesostable states can be

visualized by X-ray crystallography and gross structural rear-

rangements are observable by EM and SAXS/WAXS, but a

true time-resolved atomistic description

of the functionally related conforma-

tional rearrangements remains elusive

for most systems. NMR provides

detailed information on sample

dynamics, but remains limited by mole-

cule size and the need for isotopic

labelling. Spectroscopic methods [elec-

tron paramagnetic resonance (EPR),

Förster resonance energy transfer

(FRET) and optical and vibrational

spectroscopies] provide detailed infor-

mation on either very local structural

rearrangements or long-range distance

changes, but the challenge here lies in

linking this sparse information to a

complete description of the molecular

system (Fig. 1). In response to this,

biomolecular simulation has developed

algorithms which calculate the thermal

motion of biomolecules, in the hope that

this will offer a theoretical bridge

between thermodynamic measure-

ments, sparse distance information

and atomistic structure. Although

promising, these simulation methods

have not replaced experiments owing to

the approximations that are currently

needed for the calculations to be tract-

able. However, in common with

experiments, but unlike mathematical

modelling (for example using a ‘sphe-

rical cows’ approach; see Fig. 1), the

value of computer simulations improves

with improving technology.

In this article, we discuss the

successes and limitations of biomole-

cular simulations and the further

improvements that are likely in the near

future. We also provide a brief overview

of the experimental biophysical

methods commonly used to probe

biomolecular structure and dynamics

and compare the accuracy of the infor-

mation that can be obtained from each
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Figure 1
A comparison of the molecular-biophysics length scales and timescales accessible to simulation and
experiment. The term ‘spherical cows’ refers to approximate models that provide an abstract
representation of a physical system; such models are useful because of the simplicity of the
calculations (e.g. volumes or surface areas of a herd can be easily estimated by assuming that cows
are spherical and assigning a radius) and the general nature of the model (the volume of a goat herd
can easily be compared).



with that from simulation. We conclude that progress towards

an accurate spatial and temporal model of biomacromolecules

requires an integrated approach that uses a combination of all

of these biophysical techniques, both experimental and

theoretical (Zhao & Schuck, 2015).

2. The ‘resolution’ of biophysical methods and
comparison with simulation

In experimental biophysics, the term resolution refers to the

spatial and temporal dimensions accessible to a technique. In

addition, it should be noted that most biophysical experiments

are ensemble measurements that study the behaviour of a

population of macromolecules. Owing to the conformational

heterogeneity of macromolecules, this ensemble averaging

results in a loss of both spatial and temporal resolution.

The exceptions are single-molecule experiments. However,

although these are producing results about the physical

properties of macromolecules (atomic force microscopy),

reaction kinetics (single-enzyme kinetics) and subcellular

localization (super-resolution microscopy), they do not yet

provide atomic resolution information about the macro-

molecular structure.

We can broadly divide experimental biophysical techniques

into three classes. The first includes those techniques that are

able to provide both a high-resolution structural and poten-

tially temporal description of the entire macromolecule (i.e.

X-ray crystallography and EM). The second class comprises

techniques that provide sparse spatial information [i.e. EPR,

FRET, ITC, surface plasmon resonance (SPR), optical/vibra-

tional spectroscopy and single-molecule biophysics] that can

take the form of direct distance measurements, kinetics,

binding interaction data or very local spatial information.

These data, whilst sparse, can be of extremely high temporal

and spatial resolution. The third class includes those techni-

ques which can provide low-resolution structural information

on the entire macromolecule as well as information on

dynamics [SAXS/small-angle neutron scattering (SANS)/

WAXS, mass spectrometry, hydrogen/deuterium exchange

(HDX) and footprinting]. NMR is a special and extremely

versatile case as, depending on the exact experiment carried

out, it could be classified into any of the three classes. Indeed,

as long as an appropriate pulse sequence and sample-labelling

methodology can be devised, NMR can be used to probe the

structure and dynamics of the system of interest. A major

advantage of NMR is that the requirement for paramagnetic

nuclei for detection means that NMR can probe the structure

and dynamics of the molecule of interest in extremely complex

backgrounds such as crowded macromolecular environments

(Cabrita et al., 2010).

In spite of the wealth of biophysics techniques available,

in the main structural molecular biology has made progress

by using experimental design which simplifies highly complex

biological systems. For example, binding-affinity measure-

ments and ITC are performed in dilute solution under

conditions where only the binding partners of interest are

included, under the assumption that the cellular environment

is not significant. However, fundamental processes such as

protein folding, which are commonly studied in isolation, are

known to be influenced by the presence of the ribosome and/

or chaperones. X-ray crystallography requires a homogeneous

crystalline environment which may more closely reflect the

crowded environment of the cell, but does not reflect its

heterogeneity. Indeed, the effects of crowding are clearly

important for in vivo protein function (Ellis, 2001).

Model building and approximation are already endemic in

the biosciences, as it has been necessary to take a reductionist

approach when designing experiments to overcome the

complexity inherent in molecular biology; consequently,

nearly all in vitro experiments are an abstraction of the real

in vivo system. Computer simulations provide a different, but

no less valid, and often more detailed, technique for model

building. Currently, most simulations begin from data

provided by experimentalists and this places a large respon-

sibility on both the experimenter and theoretician to under-

stand the capabilities, limitations and assumptions of each, as

has been previously discussed (Coveney & Fowler, 2005).

3. Computer simulations of biomolecules

Computer simulations of biomolecules aim to integrate high-

accuracy physical models with efficient parallel computer

algorithms running on the best available supercomputing

hardware, which often requires infrastructure at the national

level, such as the UK supercomputer ARCHER (hardware

will be discussed in x4). Simulation algorithms are continu-

ously updated to exploit advances in computing architectures,

such as graphics processing units (GPUs), and atomistic

molecular-dynamics (MD) simulations have been considered

to be sufficiently useful to society that Shaw Research have

designed a special-purpose parallel architecture for fast MD,

known as Anton, which has been reported to run simulations

two orders of magnitude faster than conventional resources

(Dror et al., 2012). Since a more accurate physical description

nearly always entails higher computational expense, including

fewer spatial details usually allows longer timescales and

length scales to be explored. Molecular models at the quantum

and atomistic levels require that the atomistic structure of the

biomolecule is known. Either the experimental coordinates

are downloaded from the Protein Data Bank (PDB), or the

structure has to be predicted by homology modelling. Recent

developments in high-resolution cryo-EM promise to provide

a new source of high-resolution structural data (Brown et al.,

2015; Lučič et al., 2013). Coarse-grained simulation methods

do not necessarily suffer from this restriction, and can take

advantage of the growing Electron Microscopy Data Bank

(EMDB). The aim is then to use computation to calculate

quantities that are unobtainable from experiments alone, such

as the magnitude of conformational changes owing to thermal

motion. While robust validation is always required when

predictions go beyond what is experimentally accessible, the

range of applicability of the models is usually well known and

the limitations understood. The precise validation required

and the nature of these limitations will be specific to the
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biological question being addressed, and requires careful

thought on behalf of the simulator. An example, however,

would be good agreement between the time-averaged struc-

ture of a protein calculated from an MD simulation and the

X-ray structure used as input to the simulations (Rueda et al.,

2007).

The following section aims to provide a flavour of the

wealth of computational studies that have been performed for

biomolecules at each particular level of accuracy using specific

examples, but is by no means intended to be exhaustive.

Consequently, we refer the curious reader to the many reviews

cited for a more detailed account of a particular biomolecular

simulation technique. We also encourage researchers who

wish to perform their own simulations to engage with the

comprehensive series of tutorials and workshops provided

by the websites of biomolecular simulation software codes

such as GROMACS (http://www.gromacs.org/Documentation/

Tutorials) or AMBER (http://ambermd.org/tutorials/), and

invite them to attend the practical workshops run by CCP5

(http://www.ccp5.ac.uk/events/) and by CCP-BioSim (http://

www.ccpbiosim.ac.uk/workshops).

3.1. Quantum-mechanical calculations

Whilst reactions involving the reconfiguration of covalent

bonds are ubiquitous in biochemistry, representing the distri-

bution of electrons within biomolecules is extremely compu-

tationally expensive. Nevertheless, quantum-mechanical (QM)

calculations have been used, for example, to understand the

catalytic ability of enzymes, to predict how key mutations may

affect catalytic efficiency and to explain the high selectivity of

enzyme-catalysed reactions. They have been used to reveal the

structures of short-lived species such as transition states, which

can then be used as templates for the design of enzyme inhi-

bitors for biotechnological or medicinal applications (Lons-

dale et al., 2012a).

A typical quantum-chemical calculation solves the Schrö-

dinger equation to determine the energy and electronic

configuration of the valence electrons associated with a

particular set of coordinates for the atomic centres. Deter-

mining the electronic structure shows to what extent a given

pair of atoms are covalently bonded, where the electrons are

distributed and where the biomolecule is polar or apolar, and

can provide the empirical parameters required for classical

atomistic simulations. When applied to enzyme catalysis, QM

calculations have been used to understand how the enzyme

lowers the activation-energy barrier of the chemical reaction

by perturbing the electronic structure of the transition state.

Short-lived species such as transition states are hard to isolate

experimentally, hence calculations are used to provide infor-

mation that would otherwise be inaccessible. In complex

biochemical reactions, the detailed mechanism of the

catalysed reaction may not be well understood, and in this

situation quantum-chemical calculations can test and compare

hypotheses in silico. When combined with geometry-

optimization algorithms, which adjust the relative positions of

the atomic nuclei in conjunction with the molecular orbitals,

quantum-chemistry calculations can show how the shape and

electronic structure of biomolecular fragments change along a

reaction pathway on the sub-ångström length scale. Many

QM methods are too computationally intensive to permit

molecular-dynamics (MD) simulations and instead are used

to calculate potential energy profiles, from which one may

deduce the pathway taken during a chemical reaction by

calculating the lowest energy route across a potential energy

landscape. Relative reaction rates, for example when residues

in an enzyme active site are mutated, can then be predicted

by comparing the heights of the energy barriers between the

reactants and products. Reaction rates can also be compared

between different substrates. Also, by comparing the relative

energy barriers to different proposed mechanisms, the most

likely mechanism can be deduced (i.e. that with the lowest

barrier).

The bottlenecks in quantum-chemical calculations are

usually the matrix-diagonalization operations to obtain the

wavefunctions of the molecular orbitals occupied by the

valence electrons in the molecule, which are both slow and

memory intensive. The so-called post-Hartree–Fock ab initio

methods are the most accurate QM methods, and examples of

these include Møller–Plesset perturbation theory (MP2) and

coupled-cluster theory. These methods can be used to study

model reactions that involve a relatively small number of

atoms (�20) to a high degree of accuracy, e.g. for gas-phase

bimolecular reactions or for small cluster models of enzyme

active sites. For reactions involving significantly more atoms,

e.g. for enzymatic reactions with multiple residues partici-

pating in the mechanism, these methods are usually not

feasible for routine application. The cheapest QM methods

are the semi-empirical methods (e.g. AM1 and PM3), the

name arising from the fact that the more expensive parts of the

QM calculation are approximated by a set of parameterized

functions that are based on empirical data. These are used for

calculations requiring a large number of QM atoms (�100

atoms) and for calculating free-energy barriers. However,

semi-empirical methods have limited applicability because

they are parameterized for a finite set of reactions and are not

derived from first principles. Whilst they have been shown to

provide useful insight for reactions that are similar to those

that they have been parameterized for, their accuracy is less

good for reactions which deviate too far from the para-

meterization set. Density-functional theory (DFT), which is

intermediate in complexity between semi-empirical and ab

initio methods, provides a good compromise between accuracy

and computational cost. However, DFT calculations generally

do not include dispersion (e.g. van der Waals) interactions, so

for biological molecules in which such forces play an impor-

tant role in stabilizing folded conformations these need to be

added empirically (Lonsdale et al., 2010, 2012b). There are

various types of density functional which differ in the way in

which electron exchange and correlation is mathematically

represented. One of the most popular functionals is B3LYP,

which has been used successfully to calculate molecular

geometries and energies reasonably accurately compared with

more computationally intensive methods. It is known as a
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hybrid functional, because the electron exchange is calculated

using a linear combination of three different methods, and

their relative contributions have been parameterized to fit to

experimental data.

For large biomolecules where the active site forms a small

section of the entire protein, hybrid quantum-mechanical/

molecular-mechanical (QM/MM) methods are used (van der

Kamp & Mulholland, 2013). QM/MM calculations use clas-

sical molecular mechanics (MM) to represent the atoms that

do not take part in the chemical reaction, but treat the active-

site quantum mechanically. The classically treated atoms

within the model affect the energies of the chemically reacting

species firstly through the presence of the MM region placing

a restriction on the movement of the QM region during

minimization, i.e. the MM atoms hold the QM region in

position, and secondly through long-range electrostatic inter-

actions, although only the more accurate QM/MM methods

allow the MM region to polarize the QM region. In addition,

the protein as a whole may routinely undergo large confor-

mational changes during its thermal motion, so an ensemble of

structures (at least five) is considered in state-of-the-art QM/

MM models to ensure that the changing shape of the active

site is included in the potential energy surface calculations.

This ensemble of structures is usually obtained from an MD

simulation of the enzyme–substrate complex (MD simulations

are discussed in more detail in x3.2).

Knowledge of the factors that determine the reactivity and

selectivity of drug metabolism is useful in the design of new

pharmaceutical compounds that do not result in the formation

of toxic metabolites (Lonsdale & Mulholland, 2014). An

example application of QM/MM methods for studying drug

metabolism focused on the regioselectivity of hydroxylation of

drug molecules by the human cytochrome P450 2C9 enzyme.

The QM region was modelled using the B3LYP density

functional (with an empirical dispersion correction), and the

rest of the enzyme and the solvent were represented using the

CHARMM27 force field, as shown in Fig. 2 and Supplemen-

tary Movies S1 and S2 (Lonsdale et al., 2013). The calculations

showed that relatively small changes in substrate orientation

relative to active-site residues can have a dramatic effect on

the heights of relevant energy barriers. The reactive species

in P450s is a highly reactive iron(IV)–oxo species (called

Compound I) which is difficult to isolate experimentally and

has a complex electronic structure (Bathelt et al., 2005).

Calculating the energy barriers to the reaction at different

sites of the reacting molecules found that the lowest barriers in

two out of three cases corresponded to the oxidation sites

observed experimentally, which provided good evidence that

QM/MM calculations can be used to reliably predict the site of

metabolism for drugs in P450 enzymes. These calculations also

revealed that the mechanism underlying the selectivity of P450

enzymes is a combination of factors involving the orientation

of the substrate in the active site and the differing reactivities

of chemical sites on the substrate. In common with many

enzymes, the human cytochromes P450 are membrane-bound;

however, all known crystal structures to date have been

obtained for solubilized forms in the absence of membrane.

In a recent study, a membrane-bound model of the human

CYP3A4 isoform was constructed using a combination of

atomistic and coarse-grained molecular-dynamics simulations

(Lonsdale et al., 2014). QM/MM (B3LYP-D/CHARMM27)

reaction profiles were calculated both from membrane-bound

and soluble forms of the enzyme. The calculations revealed

that the reactivity of the enzyme is similar between the two

forms; however, important differences were observed between

the substrate entrance and exit pathways. It is hoped that the

framework outlined in this study can be applied to the study of

other membrane-bound enzymes.

In principle, QM/MM methods should be applicable to all

enzymes, yet whilst many enzymes have been studied using

such methods (van der Kamp & Mulholland, 2013; Ranaghan

& Mulholland, 2009), these calculations are not yet routine.

The choice of an appropriate QM method depends on the

system and the type of problem to be addressed. Also, the size

of the QM region and other practical aspects are important

and should be thoroughly tested for each new application

(Lonsdale et al., 2012a). The classical MM region is treated

using invariant point charges and (unless a polarizable MM

model is used) cannot be polarized by changes in charge on

the QM atoms. This can be overcome by increasing the size of
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Figure 2
The transition state for the hydroxylation of S-ibuprofen at C3 in the
human drug-metabolizing cytochrome P450 2C9 (Lonsdale et al., 2013).
The H atom at C3 undergoes abstraction by the ferryl O atom of the
porphyrin (shown as a yellow dashed line). Knowledge of the mechanism
and transition states for reactions such as these can be useful in the design
of new pharmaceutical compounds with desired metabolic properties.
The reaction was modelled with QM/MM (using the QoMMMa program;
Harvey, 2004) using multiple starting structures taken from MD
simulations (performed using CHARMM; Brooks et al., 1983) and the
CHARMM27 force field (MacKerell et al., 2000). The QM region is
shown in ball-and-stick representation.



the QM region to incorporate more of the surrounding atoms,

but this increases the computational expense. Conformational

sampling is also an important issue, and reaction profiles

should be calculated starting from different conformations of

the enzyme (i.e. using different structures from an MD simu-

lation), which additionally increases the computational cost

because it requires each calculation to be performed multiple

times.

3.2. Classical atomistic molecular dynamics (MD)

Atomistic molecular-dynamics (MD) simulations have

famously been described as providing a ‘computational

microscope for molecular biology’ (Dror et al., 2012) because

simulations viewed on a computer screen can create the

impression that the biomolecule has been magnified to suffi-

cient dimensions that it is being visualized with optical

microscopy. MD provides a trajectory of a biomolecule which

shows how it changes shape as it undergoes thermal fluctua-

tions at 300 K, as shown in Supplementary Movie S3. The MD

algorithm treats every atom within the protein as a classical

ball connected by covalent bonds, which are represented as

perfect harmonic springs and which therefore cannot break.

Nonbonded atom pairs interact through van der Waals (or

dispersion) interactions and electrostatics. Each atom in the

system is assigned a set of empirical parameters designed to

impart chemical specificity, which are known as the MD force-

field parameters. For example, each atom carries a partial

charge depending upon its electronic properties and its

environment. MD force-field parameters are derived from a

combination of experimental data (such as vibrational spec-

troscopy of small molecules) and QM calculations on tractable

molecular fragments, and are constantly being iteratively

debated, checked and improved. The solvent environment

is generally also represented at the atomistic level. Conse-

quently, calculations involving proteins in membranes are

more computationally expensive owing to the need to simulate

the lipid bilayer. The change in position of every atom in

response to the force that it experiences from all of the others

is calculated over a very short numerical integration timestep

(typically 2 fs) using Newtonian mechanics. The bottleneck in

MD arises from the enormous computational expense of

calculating the net force on every particle from all other

particles in the system at each short timestep interval.

However, if the timestep is too long then the energy will

progressively inflate and the simulation will become numeri-

cally unstable. Consequently, even with parallel computing,

MD simulations exploring timescales of tens of microseconds

are currently considered to be state of the art, although

timescales of milliseconds have been achieved using specia-

lized resources (Shaw et al., 2010).

Atomistic molecular-dynamics simulation is arguably the

most mature biomolecular modelling technique. Recent

research highlights from this field include the MoDEL simu-

lation database, which provides the biomolecular sciences

community with a database containing in excess of 1700

protein trajectories obtained by state-of-the-art MD simula-

tions which can be freely downloaded (Meyer et al., 2010),

insights into protein-folding mechanisms for fast folders

(Lindorff-Larsen et al., 2011), atomistic information on the

structure and dynamics of 100 nm cages constructed from self-

assembling coiled-coil peptides to complement scanning

electron-microscopy data (Fletcher et al., 2013) and simula-

tions of the entire tubular HIV-1 capsid assembly based on

cryo-electron tomography (Zhao et al., 2013). There is an

established software infrastructure used by a global simulation

community, such as the MD codes NAMD (Phillips et al.,

2005), GROMACS (Pronk et al., 2013), CHARMM (Brooks et

al., 1983) and AMBER (Case et al., 2014), and accompanying

visualization tools such as VMD (Humphrey et al., 1996),

Chimera (Pettersen et al., 2004) and PyMOL (Schrödinger).

MD computer programs have been optimized for parallel

performance on national resources and new architectures such

as GPUs, and are generally free to academics. While a user can

chose between AMBER or CHARMM force-field parameters,

many simulators routinely compare the results from several

force fields as there are no set rules for choosing one over the

other, although the differences are usually small (Rueda et al.,

2007). Multiple replicate simulations (typically at least three,

but more than ten are now common) are also required because

thermal effects can be so significant at 300 K that a chance

event observed in a simulation can be mistaken for an

important mechanistic result.

While the Nobel Prize for Chemistry in 2013 was awarded

for the development of multiscale models of complex chemical

systems, and in spite of the fact that the first successful

biomolecular simulation was reported in 1977 (McCammon et

al., 1977), it is disappointing that we are still unable to routi-

nely provide an accurate prediction of biomolecular affinities

(which are governed by the change in free energy when

biomolecules associate) using atomistic simulation, even for

small molecules. However, the physical attributes that allow

proteins to perform such extraordinary functions in vivo also

make their interactions very challenging to describe quanti-

tatively. Many proteins act as switches or participate in

signalling cascades. Therefore, biomolecular affinities are

often modulated through allosteric interactions with other

molecules or by environmental perturbations, such as changes

in pH, temperature or salt concentration. To be switchable,

free-energy differences must be delicately balanced, which

implies that they are modest in magnitude compared with the

thermal energy. This is achieved thermodynamically firstly

because all biomolecular interactions are mediated by the

solvent; binding partners need to displace a layer of bound

solvent before the interaction can proceed. Assuming that

these solvent interactions can be overcome, the remaining

favourable interaction energy that drives molecular associa-

tion is generally (but not always) offset by unfavourable

changes in entropy, which occur because the conformational

flexibility of any molecule tightly bound within a complex is

usually reduced relative to its unbound state. Consequently,

the overall free-energy change that drives molecular recog-

nition involves a number of large but compensating terms that

are opposite in sign, with the result that even a small error in
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the calculation of any one component leads to a large error in

the overall value predicted by theory.

The importance of dynamics and entropy in biomolecular

function is particular challenging for computation, because

calculation of the entropy requires a full exploration of the

conformational space of the biomolecule. In response to this,

the community has developed a plethora of innovative

computational and algorithmic techniques designed to provide

a more efficient exploration of conformational space (Zuck-

erman, 2011). Examples include replica exchange, which uses

elevated temperatures to force the biomolecule to move more

rapidly across its free-energy landscape, and metadynamics

or conformational flooding, which impose restraints upon a

biomolecule that place a bias against revisiting areas of

conformational space that the simulator has already observed,

as described by Zuckerman (2011). While much progress has

been made using these techniques, especially in the area of

drug design (see part VI of Baron, 2012), they are certainly not

routine. More sophisticated algorithms often provide results

that are more difficult to interpret, and care must be taken that

any additional artefacts that are introduced are not hidden

behind this extra layer of complexity.

3.3. Coarse-grained biomolecular simulation

Atomistic molecular-dynamics simulations are computa-

tionally very demanding; each atom is considered to be a

single particle, which results in many interaction sites. The

greater the number of interaction sites, the slower the simu-

lation. These simulations can become prohibitively slow for

studying processes such as the self-assembly of lipid bilayers

and protein-oligomerization events. An alternative approach

is to use coarse-grained models (for a recent review, see

Tozzini, 2010). In such models, a group of heavy (non-H)

atoms are combined together into a single, larger particle,

thereby reducing the number of interaction sites. A coarse-

grained simulation can thus access longer timescales and

length scales than is possible by atomistic simulations, albeit at

the cost of the atomistic detail. The speed-up in the sampling

of phase space achieved by CG force fields for biomolecular

simulation can vary between five and ten times faster (Marrink

et al., 2004) to 15–200 times faster (Orsi & Essex, 2011). The

simulation speed-up is a result of the reduced system size, but

also the ‘softer’ potentials used to describe the interactions

within the particles, which result in smoother energy land-

scapes compared with atomistic simulations and enable longer

integration timesteps to be used. While many coarse-grained

models have been reported and are widely used within the

wider biomolecular simulation community, arguably the most

popular is currently the MARTINI force field (Marrink et al.,

2004; Marrink & Tieleman, 2013). In general, four heavy

atoms are lumped together into a single particle in MARTINI,

which gives rise to the representation of water shown in

Fig. 3(a). MARTINI is usually implemented within the

GROMACS simulation package; for

examples, see Bond et al. (2007) and

Scott et al. (2008).

An example of the use of coarse-

grained biomolecular simulation to

study systems that would be computa-

tionally inaccessible to atomistic calcu-

lations is provided by Supplementary

Movie S4, which shows the self-

assembly of lipids around an outer

membrane protein (Bond & Sansom,

2006). Supplementary Movie S5 and

Fig. 3(b) show a recent study of the

membrane protein fukutin (Marius et

al., 2012; the lipid membrane has been

omitted for clarity). Fukutin resides in

the endoplasmic reticulum or the Golgi

apparatus within the cell. Its localization

is thought to be mediated by the inter-

action of its N-terminal transmembrane

domain with the surrounding mem-

branes. Experimental work has shown

that this domain exists as a dimer within

the lipid bilayers; however, the process

of dimerization, the structure of the

dimers and the localization within the

membranes are difficult to probe using

experimental methods alone. Coarse-

grained MD simulations predict steps in

the dimerization process, in which a
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Figure 3
Coarse-grained biomolecular simulations. (a) A schematic of the water model in which four
atomistic water molecules are lumped together in a single particle (indicated by the grey sphere).
(b) Initial (left) and final (right) positions observed during the dimerization of fukutin. The protein
backbones are shown in cyan, the S residues of the important TXXSS motif are shown in orange
space-filling format, the phosphate groups of the lipids are shown in purple space-filling format, and
the remainder of the lipid molecules and the waters have been omitted for clarity.



TXXSS motif is crucial in holding the dimer together. Fig. 3(b)

(left) shows the initial positions of the N-terminal trans-

membrane domains of two fukutin proteins compared with

their dimerized state after 2 ms of coarse-grained MD simu-

lation (Fig. 3b, right).

Much of biomolecular simulation has been inspired by the

wealth of structures available in the PDB, and has therefore

been focused on providing theoretical methods that use this

information as direct input to computations. However,

progress in lower resolution methods, such as cryo-electron

microscopy and cryo-tomography, is leading to a rapid growth

in the number of structures available in the EMDB. In

response, biomolecular simulators have designed simulation

techniques that take advantage of these new experimental

data (Kim et al., 2011). While the PDB provides atomistic

structures, the EMDB provides lower resolution volumetric

information illustrating the overall shape of biomolecules,

biomolecular complexes or supermolecular structures.

Therefore, one strategy for simulating EMDB maps is to use a

continuum representation in which no atoms or particles are

present at all. Such an approach is common at the macroscopic

level. Finite-element analysis (FEA) is used ubiquitously for

computer-aided design within structural engineering applica-

tions, but does not take thermal noise into account.

Fluctuating finite-element analysis (FFEA) is a general-

ization of FEA to objects which are sufficiently small that

thermal fluctuations are non-negligible in magnitude (Oliver

et al., 2013). In FFEA, the complex shape of the protein is

represented by a three-dimensional mesh of elements, with

the most convenient element shape being the tetrahedron, as

shown for the rotary ATPase motor in Fig. 4. This mesh is then

parameterized with continuum material parameters such as

the density of the protein, its Young’s modulus and the visc-

osities of the biomacromolecule and its solvent environment.

These material parameters should describe the cumulative

effect at the continuum level of all of the local atomic inter-

actions. Once these parameters have been defined, the

trajectory describing the changing shape of the protein owing

to thermal fluctuations can be calculated by iteratively inte-

grating Newton’s equations of motion over short timesteps

and moving each node of the mesh accordingly, as shown

for the rotary ATPase motor in Supplementary Movie S6

(Richardson et al., 2014). The calculation is analogous to

conventional molecular dynamics (MD), but the forces on

each node within the mesh are derived from continuum

mechanics equations rather than a pairwise particle-based

force field. Since it operates in the continuum limit it has no

upper length scale, and it is sufficiently coarse-grained to

enable simulations of very large protein structures to be

performed for long (e.g. microsecond) timescales. As long as

the necessary force-field parameters can be obtained, FFEA

can include intermolecular forces between biomolecules (such

as van der Waals and electrostatics interactions) and it is also

possible to simulate collections of interacting proteins, protein

association and disassociation or proteins immersed in

complex subcellular environments.

An alternative approach for studying very large proteins

and protein complexes improves computational efficiency

by simplifying the mathematical equations rather than the

biomolecules themselves. Gaussian and elastic network

models (ENMs) are a widely used class of structure-based

coarse-grained models for proteins which represent the native

structure of the protein as an elastic body comprised of a set of

nodes connected by springs (Noid, 2013). Using simple springs

to represent all of the intermolecular interactions within the

protein enables the equations of motion to be solved exactly

by a procedure known as normal-mode analysis, without the

need to run a simulation or obtain a dynamical trajectory. The

calculation provides a set of structural

deformations known as the ‘normal

modes’ that represent the major modes

of flexibility of the biomolecule and

which have been shown to correspond

to protein global motions observed over

microsecond or millisecond timescales

by atomistic simulation (Gur et al.,

2013). Given the approximations

required to produce such a simplified

potential function, ENM and GNM

frequently also use a coarse-grained

protein representation in which a single

bead represents each C� atom, and

continuum methods based on FEA have

also been employed (Bathe, 2008). The

value of these models lies in their

simplicity: to calculate the normal

modes of a protein of interest a user

simply needs to upload the PDB file (for

example to the elNémo webserver;

Suhre & Sanejouand, 2004) and down-

load the results.
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Figure 4
From left to right, this figure shows the EMDB density map of the Thermus thermophilus
A-ATPase, the corresponding FFEA mesh and the ‘solid’ version of this mesh (Richardson et al.,
2014).



4. Computing infrastructure in 2014 in the UK and
beyond

Just as optical microscopy faces physical limitations on the size

and the resolution of the observations that it can make, the

‘computational microscope’ of biomolecular simulation is not

infinitely powerful, as even the most sophisticated super-

computers cannot provide unlimited computational power.

Indeed, in spite of rapid technological and algorithmic

improvements, it is unlikely that supply will meet demand

in the near future. However, while the most ambitious bio-

molecular simulations make use of high-end computing, many

simulations only require modest resources. The provision of

computing in the UK and elsewhere, the so-called ‘e-infra-

structure’, can be represented as a pyramid, as shown in Fig. 5.

Examples of provision at each of these levels, of how to obtain

access and example suitable calculations have been provided

in Table 1.

ARCHER (Academic Research Computing High End

Resource; http://www.archer.ac.uk) is the current UK National

High Performance Computing Facility, physically located in

Edinburgh and operated by EPCC, The University of Edin-

burgh. The funding for ARCHER is provided through the

UK Research Councils, managed by EPSRC. At the time of

writing, ARCHER, a CRAY XC30 comprising 3008 nodes,

is rated 19 on the list of the worlds’ fastest supercomputers

(http://www.top500.org). Such large-scale computers are

required to perform leading-edge scientific and engineering

simulations that are not feasible on smaller-scale computers.

Each ARCHER node can be thought of as analogous to a

high-end consumer PC, since it contains commodity processor

and memory chips. Each node contains two 12-core Intel

Ivy-Bridge processors and 64 GB of memory (with a few

nodes featuring larger amounts of memory). Therefore,

ARCHER features 72 192 cores and approximately 200 TB of

memory in total.

The ARCHER infrastructure is specialized in order to

effectively combine multiple processor and memory compo-

nents into a high-performing large-scale system. The nodes

are very densely packed onto compute blades, which slot into

cabinets. The servers, plus additional infrastructure (the

ARCHER switch room is shown in Supplementary Fig. S1,

bottom right), provide the necessary power to the nodes,

whilst performing the required cooling through the use of

flowing water, as shown in Supplementary Fig. S1 (bottom

left). For the nodes to effectively work together on single

large-scale problems, they must be able to communicate with

each other, and this is facilitated through the availability of the

state-of-the-art CRAY Aries high-performance interconnect,

as shown in Supplementary Fig. S1 (top right). Large-scale

applications also typically require manipulation of large data

sets, and ARCHER provides a Lustre parallel file system that

allows the efficient reading and writing of application data.

ARCHER is co-located with and closely coupled to the

Research Data Facility (http://www.epcc.ed.ac.uk/facilities/

uk-research-data-facility), which provides a large long-term

data-storage area for UK researchers. ARCHER provides

a sophisticated and comprehensive software environment,

including pre-installed applications and development tools,

to help enable researchers to get the best out of the service.

Finally, ARCHER also offers support services, ranging from a

helpdesk facility to long-term scientific software development

programmes. The High End Consortium (HEC) for Bio-

molecular Simulation (http://www.hecbiosim.ac.uk) will be

providing both supercomputer time and expertise to the

community until Autumn 2018. Other routes of access include

the EPSRC; supercomputing time can be included on BBSRC

responsive mode grants.

For calculations that do not require the full capacity offered

by ARCHER, but which nevertheless require specialist

supercomputing resources, the UK e-intrastructure provides

a number of regional supercomputing centres. The Hartree

Centre was opened in February 2013 at the STFC Daresbury

Laboratory. There is a particular focus on delivering solutions

to industry, but academic/industrial collaborations and infra-

structure projects are also supported. Other regional facilities
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Figure 5
The UK e-infrastructure pyramid.

Table 1
UK supercomputing provision, modes of access and typical suitable calculations for each tier.

Access QM MD

ARCHER http://www.hecbiosim.ac.uk 250 cores, DFT of enzyme with �2500
atoms (�10 kDa). One geometry
optimization requires �200 h

512 cores, MD of 256 bp DNA circle in water
(�150 kDa), 4 million atoms, up to 50 ns

N8 http://www.n8hpc.org.uk As for ARCHER 64 cores, MD of 100 bp DNA circle in water
(�50 kDa), 500 000 atoms, up to 100 ns

Hartree hartree@stfc.ac.uk

EMERALD (GPU) and Iridis support@einfrastructuresouth.ac.uk

Local N/A High-level QM is normally memory-
limited so it is advantageous to
own a few local large nodes

16 processors, MD of 20 bp DNA in water
(�10 kDa), 35 000 atoms, up to 1 ms



include the N8 supercomputer, Polaris (shown in Supple-

mentary Fig. S1, top left), which is openly available to any

researcher at an N8 university (the N8 is a collaborative

structure between eight of the northern UK universities), and

in the south the Centre for Innovation provides access to

conventional HPC computing (IRIDIS) and the EMERALD

GPU cluster. Pioneering biomolecular simulators have

invested in local GPU clusters, which are generally compar-

able in price to a multiprocessor workstation, but which at the

time of writing can run an MD calculation four times faster

than a typical 16-processor workstation using the AMBER12

software package. While some established codes (such as

AMBER; Le Grand et al., 2013) already have specialized

versions that run on GPU technology, much useful software

has not yet been adapted and so will not run, or will run only

with reduced functionality. Using multiple GPUs for a single

calculation may provide only a modest (�20%) speed-up (the

speed-up is very dependent on application and system size);

however, the use of a facility such as EMERALD enables

many replica simulations to be run, which massively improves

conformational sampling (Woods et al., 2013).

Most useful day-to-day molecular modelling, however, is

achieved with conventional, smaller-scale local resources.

For example, an eight-processor workstation is capable of

performing around 10 ns of modelling a day using GROMACS

for a solvated protein such as ubiquitin, which contains around

70 residues. This is sufficient, for example, to check the

stability of a recently solved biomolecular X-ray or NMR

structure, which can provide a basic ‘sanity check’ before the

atomic coordinates are deposited. With such a simulation it is

possible to identify particularly flexible residues within the

protein or to obtain a quick assessment of the stability of a

binding pose of a docked ligand. The persistence of key

intramolecular or intermolecular contacts can be investigated

at room temperature and in the absence of crystal-packing

contacts. It can also be used to investigate the possibility that

technical details of the experimental procedure, such as the

inclusion of His tags for purification or buffer conditions

(Majorek et al., 2014), might possibly influence the outcome of

the experiment. Most importantly, molecular modelling and

simulation gives researchers the opportunity to visualize their

system of interest, which can rapidly change perceptions in

surprising and invaluable ways.

5. Future perspectives

Simulations have comparable advantages and caveats to the

other experimental techniques presented, and should not be

regarded as any less valid so long as they are used appro-

priately and the corresponding limitations are clearly stated.

To conclude, we argue that the biomolecular sciences need to

embrace computer simulation as a useful technique for model

building and hypothesis testing, especially given the vast

quantities of biomolecular data that are being generated. Most

insight will be obtained by combining all available biophysical

methods to address a single biological problem, and computer

simulation can make a valid and valuable contribution. We

note that the original longer title for this paper ‘A Perspective

on Computer Simulation as a Biophysical Technique’ was

shortened at the insistence of an anonymous referee, who

stated ‘there are insufficient data in the paper to substantiate

the connotation of simulation as a biophysical technique’. We

leave it to the reader to form their own opinion.
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