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In the process of macromolecular model building, crystallographers must

examine electron density for isolated atoms and differentiate sites containing

structured solvent molecules from those containing elemental ions. This task

requires specific knowledge of metal-binding chemistry and scattering proper-

ties and is prone to error. A method has previously been described to identify

ions based on manually chosen criteria for a number of elements. Here, the use

of support vector machines (SVMs) to automatically classify isolated atoms as

either solvent or one of various ions is described. Two data sets of protein crystal

structures, one containing manually curated structures deposited with

anomalous diffraction data and another with automatically filtered, high-

resolution structures, were constructed. On the manually curated data set, an

SVM classifier was able to distinguish calcium from manganese, zinc, iron and

nickel, as well as all five of these ions from water molecules, with a high degree

of accuracy. Additionally, SVMs trained on the automatically curated set of

high-resolution structures were able to successfully classify most common

elemental ions in an independent validation test set. This method is readily

extensible to other elemental ions and can also be used in conjunction with

previous methods based on a priori expectations of the chemical environment

and X-ray scattering.

1. Introduction

Elemental ions are essential for the function of many proteins

and are also present at high concentrations in many crystal-

lization solutions. The identification of these ions in crystal

structures requires the careful analysis of both the chemical

environment and scattering properties, usually in comparison

to water molecules. Restrictions on the chemical environment

of an ion can include coordination by certain elements and

at distances that are expected to balance the charge of the ion

(Nayal & Di Cera, 1996; Müller et al., 2003; Dokmanić et al.,

2008; Zheng et al., 2008; Brown, 2009; Harding et al., 2010;

Carugo, 2014). Abnormal B factors (atomic displacement

parameters) or peaks in the mFo � DFc map can be used to

coarsely filter candidates by number of electrons. When metals

bind in similar chemical environments, one can also use

anomalous scattering information to narrow down the list of

candidate ions (Ascone & Strange, 2009; Harding et al., 2010;

Echols et al., 2014). Crystallographers usually manually apply

these selection criteria, starting with the sites flagged by a

solvent-picking procedure. Ions are labeled based on the

researcher’s intuition, some subset of the above listed features

and other previously known biochemical information.

A complete solution for automated structure determination

should include correctly building ions into the structure, but
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this task is made difficult by the fact that many metals bind the

same structural features of a protein, can adopt similar co-

ordination geometries and have similar scattering properties

(Zheng et al., 2008; Harding et al., 2010). These ambiguities

can lead to errors in both the automated and the manual

interpretation of diffraction data. Indeed, multiple groups

have found evidence for a substantial number of structures

with suspicious metal assignments (Chruszcz et al., 2010;

Dauter et al., 2014; Echols et al., 2014; Zheng et al., 2014).

Previously, we have summarized the useful criteria in ion

identification and have described a method for automatically

identifying ions as part of the PHENIX software for auto-

mated macromolecular crystallography (Adams et al., 2010;

Echols et al., 2014). This method identifies ions using a tree-

like set of manually determined rules, henceforth described as

a decision tree. These rules consist of a number of constraints

on features in the chemical environments and scattering

properties. The parameters for these constraints were taken

from reported values in the literature and then optimized on

structures deposited by the Joint Center for Structural

Genomics (JCSG; Elsliger et al., 2010). However, the design of

this procedure limits its sensitivity and requires developers to

manually determine the parameters for each new element.

Consequently, it has only received thorough optimization and

validation on zinc and calcium. Furthermore, rather than

weighing all features of a site to find a unified probabilistic

score, the method merely returns a list of compatible ions

whose constraints have not been violated.

In order to address these issues, we have investigated using

machine-learning algorithms to automatically detect the

patterns that differentiate ions from one another. In the

context of structural biology, these methods have shown

success in the analysis of crystallization images (Pan et al.,

2006) as well as in the prediction of binding and functional

sites from both sequence (Lippi et al., 2012; Carugo, 2008) and

structure (Brylinski & Skolnick, 2011; Buturovic et al., 2014),

structural polymorphism (Takaya et al., 2013), the results of

mutation experiments (Wei et al., 2013) and model building

into electron density (Holton et al., 2000; Gopal et al., 2007).

Here, we present an advance upon our previous method, in

which we use support vector machines (SVMs) to classify sites

as either water or one of various elemental ions. SVMs are a

class of machine-learning algorithms that take the approach of

treating input vectors as points in N-dimensional space, where

N is the number of features used to describe the inputs. The

best set of hyperplanes that divide the space between these

points is determined and the confidence of the prediction is

derived from the distance of a point to the nearest hyperplane

(Wu et al., 2007; Fig. 1).

We have compiled several large sets of ion-containing

structures from the Protein Data Bank (PDB; Berman et al.,

2000) and trained SVMs on their ion and water sites using

features from both the chemical and scattering environments.

Three independent types of data sets were used: (i) manually

curated structures across a broad resolution range, (ii) auto-

matically curated high-resolution structures and (iii) a more

stringent version of (ii) in which individual ion sites were

subjected to tighter thresholds on allowed binding and scat-

tering features. The SVMs exhibit very high sensitivity for all

of the ‘heavy’ (fourth-period) ions (calcium and transition

metals) with very few mislabeled water molecules. They were

usually able to reliably distinguish different classes of

elements, but as expected have difficulty in distinguishing

similar transition metals. In high-resolution structures they are

able to detect all common ions except sodium, with up to twice

the sensitivity of the previous method. When combined with a

simple filter for quality control in the

SVM predictions, we found that the

true-positive rate almost doubled, while

the false-positive rate was no higher

than when using a decision tree. On

manual inspection, we also found that

these SVMs uncovered many un-

modeled ions. These findings highlight

the value of automated methods in

correctly labeling ions in future struc-

tures before they are deposited in the

PDB. Our methods are easily extensible

to support additional, rarer elements as

more structures become available.

2. Methods

2.1. Data sets

To train and test the SVMs, we

assembled three separate collections

of structures: (i) a curated structure

set including metal-bound protein

structures that were deposited with
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Figure 1
An illustration of the general design of support vector machines (SVMs). SVMs are initially trained
by input of examples of each class and their associated feature values. A trained SVM is then able to
predict the identity of future objects based on their feature values (left). The underlying mechanism
of classification involves finding the set of hyperplanes that best divide the space between examples
in N dimensions, where N is the number of values in a feature. Here, this is depicted as lines dividing
two-dimensional space (right). Other types of SVMs allow nonlinear functions to divide this space.



anomalous diffraction data and manually inspected to ensure

that ions were not mislabeled, (ii) an automatically curated

structure set containing all ion-bound sequence-unique

protein structures that met a certain resolution limit and (iii) a

more stringently curated structure set in which the ion sites

from the training set of (ii) were passed through a simple set of

input filters. Within each of these data sets, the structures were

randomly assigned to independent training and test sets. To

train each SVM, we performed feature selection and scanned

SVM parameters using cross-validation within the training set.

We tested the best-performing SVM and set of parameters

on the test set, which was kept separate during the process of

training.

2.1.1. Curated structure set. To build our curated training

and test sets, we first collected a list of X-ray crystal structures

in the PDB that (i) contained at least one metal of interest, (ii)

contained diffraction data with separate anomalous pairs and

(iii) had a resolution of or better than 3 Å. For this analysis

we restricted the choice of ions to the most common heavier

elements (Ca, Mn, Fe, Zn and Ni). We then re-refined the

structures using phenix.refine (Afonine et al., 2012) and

manually examined them using Coot (Emsley et al., 2010). We

retained the structures where the metal assignments appeared

to be reasonable based on any noted crystallization conditions

or other experimental information and previously described

patterns in metal binding and anomalous scattering (Zheng

et al., 2008, 2014; Harding et al., 2010; Echols et al., 2014);

however, we did not screen any sites based on their coordi-

nation geometry. Structures were assigned to the training set

until at least 50 examples of each site were present, after which

we attempted to evenly represent each metal in the training

and test sets.

2.1.2. Automatically collected and curated high-resolution
structure set. We constructed separate high-resolution struc-

ture sets for sodium, magnesium, chloride, potassium, calcium,

manganese, iron, cobalt, nickel, copper, zinc and cadmium

ions. For each set, we collected a list of X-ray crystal structures

from the PDB that (i) contained at least one site with that

element at any charge, (ii) had a resolution of 2.0 Å or better

(1.5 Å for Na+, Mg2+, Cl�, Ca2+ and Zn2+), (iii) included

deposited diffraction data and (iv) included only protein in

their macromolecular content. In order to obtain as large a

sample size as possible, we did not require that anomalous

data be available. Redundant structures were filtered out using

a 90% sequence-identity cutoff. For SVM benchmarking, we

randomly assigned 200 chloride-containing structures to the

test set. This number was 100 for sodium, magnesium, potas-

sium, calcium, manganese, iron and zinc, and 50 for cobalt,

nickel, copper and cadmium. These numbers gave a split of

around 2:1 between the training and test set for all ions. All

remaining structures were assigned to the training set. Note

that the structures in this data set were not filtered for having

anomalous data present, and thus no anomalous scattering

information was included when training the SVM on this data

set.

2.1.3. Stringently curated high-resolution structure set. To

test the effect of simple, automated quality-control filters on

the training inputs, we also extracted a third training set from

the high-resolution structures. The training ion sites in this set

were excluded if they failed to pass a few simple filters: (i)

sodium ions were required to have bond-valence sums (see

below) between 0.6 and 1.4, (ii) magnesium ions were required

to have bond-valence sums between 1.5 and 2.5, (iii) all ions

were required to have a � level in the mFo map (generated

directly from Fobs structure factors) greater than or equal to 1

and (iv) all ions were required to have an mFo � DFc peak

height of at least 0, as measured below. No filters were applied

to the test sites.

2.2. Structure processing

For each structure in both the test and training sets, we

replaced the ions in each structure with water molecules and

refined the result using phenix.refine with the arguments

waters=False refine.sites.individual=‘not water’.

These options disabled the positional refinement of waters as

well as the automatic deletion or placement of new waters.

This kept all sites intact and prevent waters from being refined

into heavier atom sites that had been anonymized. We

discarded any structures where (i) the Rfree increased by more

than 0.04, (ii) the average bond-length deviation increased

by more than 0.05 Å or (iii) the average bond-angle deviation

increased by more than 0.57�. We then built a list of the

scattering and chemical environments for each ion and water

site in the refined structures. Alternate conformations of water

molecules and ions were excluded from this list.

2.3. Classifier training

2.3.1. SVM setup. To train each SVM, we first extracted

quantitative features from each pair of scattering and chemical

environment objects, as listed below. In order to prevent bias

towards features with inherently larger ranges, we normalized

their values to fit in the range �1 to 1, mapping the minimum

and maximum values from each feature in the training set

to �1 and 1, respectively. We then used scikit-learn v.0.13.1

(Pedregosa et al., 2012) to perform recursive feature elim-

ination with fivefold cross-validation (RFECV; Guyon et al.,

2002) for feature selection.

To generate the classifier, we used LIBSVM v.3.18 (Chang

& Lin, 2011) to score SVMs trained with a range of values for

the soft margin constant C. This parameter controls to what

extent a hyperplane is affected by values at its margins, and

it is important to keep it low to avoid overfitting (Ben-Hur &

Weston, 2010). C values were tested at increasing orders of

magnitude between 0.001 and 10 000. We discarded the sets of

parameters that caused their SVM to take more than a week

to be trained. Class weights were also calculated to give equal

representation to each class of ions and prevent overtraining

on water sites. We enabled shrinking heuristics, an option

within LIBSVM that improves the speed of training on some

data sets. For all sets of parameters, we trained the SVM using

a linear kernel. As RFECV requires a fully trained SVM

during its calculations, feature selection was re-calculated for

each set of parameters. Each set of parameters were ranked
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according to the performance of the resulting SVM on the

portion of the training set assigned to the cross-validation

group. The optimal parameters were then used to train an

SVM on the entire training set with the added option to

calculate probability estimates.

This same procedure was run on each high-resolution data

set using separate SVMs trained only to differentiate these

ions from water molecules in the same structures. Owing to

constraints on computation time, we limited the total number

of water molecules in any one training set to a randomly

selected subset of 150 000 sites. In the case of sodium as well

as the merge of all high-resolution structures, this number was

decreased to 100 000.

2.3.2. Site features. The features measured at a site can

be divided into three groups: (i) X-ray scattering, (ii) the

chemical environment and, optionally, (iii) anomalous scat-

tering information. From the X-ray scattering environment,

we included (i) the highest resolution of the diffraction data

(dmin) rounded to the nearest 0.5 Å, (ii) the height and spread

of a Gaussian function fitted to the mFo map, using points in

a 1.6 Å radius around the site, (iii) the peak height in the

mFo � DFc map measured via eight-point interpolation, (iv)

the B factor of the atom divided by the average B factors of all

structured water molecules in the model and (v) the occu-

pancy of the atom.

From the chemical environment, we included (i) the

presence of each geometric shape at the coordination site

(see below), (ii) the number of coordinating atoms for each

common coordination group and (iii) the bond-valence sum

(BVS) and vector sum of bond valences (VECSUM) (Müller

et al., 2003), as calculated for each supported ion.

The list of coordination groups included carboxyl, amide,

backbone N atoms and carbonyls, sulfate, phosphate, sulfide,

disulfide, water and primary, secondary and tertiary nitrogen

groups. Additionally, a raw count of coordinating O, N, C and

S atoms was tracked. The BVS and VECSUM values were

calculated using parameters provided in the literature (Brown

& Altermatt, 1985; Brese & O’Keeffe, 1991; Brown, 2009). In

the case of chloride ions, we did not calculate the BVS and

VECSUM values as no published parameters are available.

The formulae for the BVS and VECSUM calculations are

vij ¼ exp
rij � d

0:37

� �
pj; ð1Þ

BVSi ¼
P

j

vij; ð2Þ

VECSUMi ¼

P
j

viju

�����
�����

BVSi

: ð3Þ

Here, rij is the bond-valence parameter for the ion and the

coordinating atom, d is the distance between them, pj is the

percentage occupancy of the ion and u is the unit vector

pointing from the ion to the coordinating atom. BVSi and

VECSUMi were calculated for each ion identity supported by

the SVM where the corresponding rij value was available.

When anomalous data were available, we included f 00 values

that were calculated using Phaser (McCoy et al., 2007; Echols

et al., 2014). Separately, we also trained on the peak height

from the anomalous difference map, measured using eight-

point interpolation, divided by the expected f 0 0 value to test

whether it was possible to avoid the computationally intensive

step of determining f 0 0 from the experimental data. For the

high-resolution data sets, we omitted the resolution feature

owing to the differences in the resolution cutoffs used to

create the sets.

2.3.3. Detecting coordination geometry. To detect coordi-

nating geometries, we used an algorithm to find the shape that

best matched the set of coordinating atoms at each site. As an

input, this algorithm accepts a list of vertices corresponding to

the locations of the coordinating atoms within 2.9 Å around a

site. It then begins with a list of possible shapes, each repre-

sented by a list of vertices corresponding to that shape. These

shapes were first filtered to only include those with an equal

number of vertices to the number of coordinating atoms.

In both the set of vertices of the shape and the input set of

coordinating atoms, the algorithm calculated the angles

between each pairwise combination of vertices, using the

origin as the middle point. These angles were then sorted in

descending order and the r.m.s.d. between the two sorted lists

was calculated. The shape with the smallest r.m.s.d. was then

selected as the geometry that matches that site. If the r.m.s.d.

was above a threshold value for that shape, it also was

discarded. The shapes used were taken from common coor-

dination geometries reported in the literature (Harding, 2001).

We have listed the shapes and the parameters included in our

algorithm in Supplementary Table S1.

2.4. Labeling ions as false positives

When manually inspecting sites, we followed the previously

reported binding and scattering patterns to confirm the iden-

tity of ions (Harding et al., 2010; Echols et al., 2014). In the case

of sodium and chloride ions, the full range of environments

has not been fully described anywhere in the literature to

the best of our knowledge. For sodium, we added the extra

requirement of 5–6 coordinating atoms, a BVS value close to 1

and a VECSUM value below 0.6. As we did not know of any

comprehensive rules for chloride coordination, we used the

conservative rules that a site have a peak in the mFo � DFc

map and be coordinated by a backbone or side-chain amide

group at a distance of around 3 Å from the nitrogen atom.

2.5. Filtering SVM predictions

To apply quality control to the SVM predictions, we added a

few simple filters to exclude elements from inclusion in the list

of potential sites. Elements were only included as options if (i)

the site had a BVS for that element within 50% of any of the

charges that may be associated with that element, (ii) the site

had a VECSUM below 0.6 for that element, (iii) the site had

an mFo peak height greater than 1.0, (iv) the site had an
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mFo�DFc peak height greater than 0 for elements other than

sodium and magnesium, (v) in the case of halides, the site had

to be coordinated by at least one positively charged group at

a distance of less than 3.5 Å as well as having no negatively

charged groups closer than 3.2 Å, and (vi) all nearby atoms

were located at least 1.8 Å away from the site. These filters

were applied to test sets when mentioned below.

2.6. Recall rate

When used below, the recall rate is defined as the number

of correctly labeled sites for an element divided by the total

number of sites for that element.

3. Results

3.1. Manually curated structures

3.1.1. Training and test sets. For the curated structure data

set, we obtained 147 structures for SVM training and 138

structures to test its performance (Supplementary Tables S2,

S4 and S5). All ions except iron were represented approxi-

mately equally in the training and test sets. Iron ions appeared

with four times the frequency in the training set as in the test

set owing to the limited number of structures meeting the

specified criteria.

Within the training set, we observed five examples where a

site modeled as water was found to have significant anomalous

scattering (defined here as f 00 > 1; Supplementary Fig. S2). On

closer inspection, we found that two were alternate confor-

mations of a neighboring selenomethionine residue (PDB

entries 2i6h and 1pg6). The other three sites (one in PDB

entry 2oik and two in PDB entry 2p0n) had three or fewer

coordinating atoms and BVS and VECSUM values that did

not agree with any of the elements discussed in this paper.

These sites may represent inaccuracies in the training data, but

because they were not a subset of the elemental ions that were

being tested, we chose not to exclude these structures.

3.1.2. SVM classification and feature selection. In our

benchmarks we evaluated the performance of the SVMs in

differentiating ions from water molecules as well as pairwise

from one another. We found that the SVM trained on curated

structures was able to differentiate most ion sites from water,

with only nine out of a total of 48 084 water molecules falsely

identified as an elemental ion (Table 1). When we trained an

SVM in the absence of anomalous scattering features, the

false-positive rate stayed about the same, while the rate of

recall dropped slightly. Omitting either entire chemical or

research papers

Acta Cryst. (2015). D71, 1147–1158 Morshed et al. � Elemental ion identification using SVMs 1151

Table 1
Benchmark of the ability of classifiers to differentiate each ion from water in the blind, curated test set.

Shown here are the unmodified decision-tree algorithm as well as SVMs trained on the curated training set using (i) all features of a site, (ii) all features except
anomalous scattering, (iii) only electron density and anomalous scattering information and (iv) only information about the chemistry of a site. The pairs of
numbers for each SVM and ion indicate the number of true positives (ions correctly identified) and false positives (water molecules identified as ions).

Ion versus water Structures Ions Waters Decision tree All features Anomalous peak No anomalous Scattering only Chemistry only

Ca2+ 53 108 18384 60, 0 92, 6 84, 7 89, 6 91, 24 63, 7
Mn2+ 33 70 9632 31, 1 68, 2 65, 1 64. 2 67, 0 62, 4
Fe2+/3+ 14 17 3077 9, 0 17, 0 16, 0 16, 1 17, 0 15, 1
Ni2+ 26 49 11923 32, 1 48, 1 47, 0 48, 0 49, 3 42, 7
Zn2+ 24 64 12651 47, 0 60, 0 56, 0 56, 0 59, 0 55, 0
Total true positives 179 285 268 273 283 237
Total false positives 2 9 8 9 27 19

Table 2
Benchmark of the abilities of classifiers to distinguish different ions from one another in the blind, curated test set.

Shown here are the unmodified decision-tree algorithm as well as SVMs trained on the curated training set using all features of a site and the same SVM with a
simple filter applied to the predictions. The pairs of numbers for each SVM and ion pair indicate the number of correct identifications of the first and second ion,
respectively.

Total sites Decision tree All features
All features
(filtered predictions)

Ion 1 Ion 2 Ion 1 Ion 2 Ion 1 Ion 2 Ion 1 Ion 2 Ion 1 Ion 2

Ca2+ Mn2+ 108 70 60, 0 31, 2 86, 9 59, 8 84, 5 61, 10
Ca2+ Fe2+/3+ 108 17 60, 0 9, 0 92, 0 17, 0 90, 0 14, 1
Ca2+ Ni2+ 108 49 60, 0 32, 0 91, 0 48, 1 90, 0 38, 2
Ca2+ Zn2+ 108 64 60, 0 47, 0 92, 0 60, 0 90, 0 52, 1
Mn2+ Fe2+/3+ 70 17 11, 1 6, 0 51, 2 15, 17 50, 2 12, 16
Mn2+ Ni2+ 70 49 22, 0 28, 0 52, 2 46, 16 51, 7 36, 15
Mn2+ Zn2+ 70 64 26, 0 33, 0 46, 3 57, 22 45, 5 50, 21
Fe2+/3+ Ni2+ 17 49 2, 0 27, 0 11, 5 43, 6 8, 9 33, 6
Fe2+/3+ Zn2+ 17 64 2, 0 35, 1 11, 2 58, 6 9, 3 50, 5
Ni2+ Zn2+ 49 64 1, 0 24, 0 18, 5 55, 30 17, 3 49, 21
Total true positives 569 1008 929
Total false positives 4 134 132
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scattering environment caused a significant decrease in

specificity and a decrease in recall. These data indicate that

there are differentiable properties in both types of environ-

ments, but that it is important to couple a chemical approach

with one that incorporates X-ray scattering. This was espe-

cially applicable to calcium ions, that were often bound with

partial occupancy resulting in sites that scatter similarly to

water.

We next tested how well the SVM could differentiate heavy

ions in the curated test set from one another (Table 2). This

method had difficulty in telling the various transition metals

apart, as well as manganese from calcium. Omitting anom-

alous data did not significantly impact the ability of the SVM

to differentiate ions from one another. This may be owing to

the fact that there were not enough examples of data collected

near the X-ray absorption edge for metals in the structure

(Supplementary Fig. S2).

3.1.3. Examining the false positives. To identify what

specific types of sites were problematic for the SVM to iden-

tify, we examined each site in the test set where the SVM that

was trained on all features flagged a water molecule as an ion.

Out of seven sites, two are likely correct ion assignments that

were overlooked by the original authors; another was attri-

butable to an erroneous initial water placement.

(i) A site in PDB entry 3bwx (Joint Center for Structural

Genomics, unpublished work; Fig. 2a) appeared to be a real

calcium site, as its BVS and VECSUM values agreed with its

assignment as a calcium. Additionally, it had a distorted

pentagonal bipyramid coordination geometry, which has

previously been reported to be indicative of calcium sites

(Graham et al., 2005).

(ii) A site in PDB entry 2oy2 (Bertini et al., 2006; Fig. 2b)

had a trigonal bipyramid coordination geometry and a BVS

value that supports the assignment of calcium to the site.

(iii) A site in PDB entry 4fca (Center for Structural

Genomics of Infectious Diseases, unpublished work; Fig. 2c)

was identified as nickel but actually appears to be an un-

Figure 2
Sites in the curated data set found to be incorrectly modeled as waters. (a) PDB entry 2oy2, chain A, residue 1290. (b) PDB entry 3bwx, chain A, residue
629. (c) PDB entry 4fca, chain A, residue 701. Green and red meshes are mFo�DFc density at �3.0�. The pink mesh is anomalous difference density at
3.0�. (a) and (b) include a gray mesh for the 2mFo � DFc density at 2.0�. Red spheres are water molecules. Distances are labeled in Å. Images were
generated using PyMOL v.1.3.



modeled alternate conformation of the neighboring seleno-

methionine residue.

(iv) A site in PDB entry 2vca (Ficko-Blean et al., 2008;

Fig. 3a) where a water was identified as a calcium ion although

its site had little supporting electron density.

(v) In PDB entry 3qlq (Trastoy et al., 2012), one site was

marked as calcium owing to the unusually close proximity of

two carboxyl groups (Fig. 3b), while another was also marked

as calcium owing to a neighboring heavy metal with over-

lapping density (Fig. 4c). Both of these sites were predicted to

be manganese when calcium was excluded as a possibility.

(vi) In PDB entry 2xrm (Gamble et al., 2011; Fig. 3d), a

single site with a pentagonal pyramid coordination geometry

was identified as a calcium ion. It is possible that this is a
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Figure 3
Examples of the different categories of false positives, where a water molecule was incorrectly labeled as a heavy atom by the SVM. (a) Site had little or
no electron density; PDB entry 2vca, chain A, residue 2257. (b) Site is coordinated extraordinarily closely by neighboring atoms; PDB entry 3qlq, chain
A, residue 266. (c) Site is coordinating a neighboring heavy atom; PDB entry 3qlq, chain A, residue 259. (d) Site has an ambiguous environment and
could not be successfully identified; PDB entry 2xrm, chain A, residue 2024. (a) includes a gray mesh for the 2mFo � DFc density at 2.0�. Colors, shapes
and lines are as in Fig. 3.



correct assignment, as the BVS and VECSUM values for

calcium at this site were 2.302 and 0.483, respectively, but the

low resolution of the data makes it challenging to confirm this

assignment.

In all but PDB entry 3xrm, the use of conservative cutoffs,

such as a minimum mFo peak height or a maximum BVS value,

would have eliminated the incorrect ion assignments. We

examine this use of a priori information later in this work.

3.2. Automatically curated high-resolution structures

3.2.1. Training and test sets. For each ion, the high-

resolution training sets contained between 87 and 330 struc-

tures. The total ion counts in both the training and test sets

ranged from 218 for cobalt ions up to 825 for chloride ions

(Supplementary Tables S3 and S6). All ions had approxi-

mately two to three times as many sites within the training set

as the test set. Consistent with the findings of Müller et al.

(2003), we observed a wide distribution of BVS and VECSUM

values for all ions in these structures, despite the relatively

high resolutions (Fig. 4). In most cases the distribution is

densest around the expected bond valence (one for Na and

K; two for Mg and most heavier ions), but the clustering of

outliers suggests that a large fraction of input ions may either

be mis-assigned or have malformed binding sites (for example,

missing coordinating waters). The practical implications for

our method are discussed below. We also collected simple

statistics on the frequencies of coordination environments

(Supplementary Tables S10 and S11) and found that the

ion-binding patterns in the training set were similar to those

previously reported in the literature (Zheng et al., 2008;

Harding et al., 2010).

3.2.2. SVM classification. Within each high-resolution data

set, we tested how well the SVMs trained on unexamined high-

resolution structures could differentiate their respective ion

from structured water molecules. For most ions, the relevant

SVM had a recall rate above 65% and a low false-positive rate

(Table 3). Recall rates were lower for sodium, chloride and

potassium ions, which is most likely owing in part to in-

accuracies in deposited structures or possibly the fact that the

binding sites and scattering properties tend to be more similar

to water. Upon visual inspection, we found that many of

the original water sites unexpectedly flagged as sodium and

chloride ions by the SVM were in fact genuine examples of

those respective elements binding (Supplementary Table S12);

this is consistent with previous reports that sodium and

chloride ions are commonly mislabeled (Dauter & Dauter,

2001).

We also combined the list of high-resolution ion sites to test

how well a SVM could differentiate ions from one another

(Supplementary Table S9). Overall, the results were positive:

out of the 66 pairwise combinations of ions tested, 53 had a

precision above 80% for both ions and 38 had a precision

above 90%. On average, the SVM had a precision of 91% and

a recall of 65%, compared with 89 and 34%, respectively, for

our previously reported method (Echols et al., 2014). There

were three cases where the accuracy of the SVM was consis-

tently lower than the average. (i) As expected, transition
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Figure 4
Ion sites have a wide variety of chemical binding environments: BVS values (horizontal axis) plotted against VECSUM values (vertical axis) for ions in
each of the high-resolution training sets after re-refinement. Points are colored by structure resolution, with the resolution range for each element
indicated by the color bar to the right of the corresponding plot. Outliers with BVS values greater than 4 were omitted for display purposes.



metals were consistently difficult to tell apart. (ii) Magnesium

and calcium ions were frequently mislabeled as sodium ions.

This may be owing to the fact that all three bind similar

environments and scatter with similar intensities. However,

the spread of valences for these two ions are quite wide

(Fig. 4) and it is possible that this is attributable to mislabeled

sites in the test sets. (iii) Iron ions had an increased chance of

being labeled as sodium. We do not have an explanation for

this last case and can only note that it did not appear between

iron and other nontransition metals. Thus, SVMs are capable

of telling ions apart from both water as well as most other ions,

even when no manual curation was applied to their training

data.

3.2.3. Examining the false positives. As above, for each site

in the test set that was originally modeled as a water molecule

but flagged as an ion by an SVM, we manually inspected its

environment to confirm that it was indeed a false positive

(Supplementary Table S12). We found that out of 208 sites

flagged in this manner by an SVM, 96 were true examples

of unmodeled ions (Table 3). Out of these 96 sites, 22 were

unmodeled ions whose true identities were not what the SVM

was originally trained on. For the 112 remaining false positives

we noticed many of the same trends as in the curated test set:

16 sites were labeled as an ion when they had little to no

supporting electron density and 36 sites were coordinated too

closely (<2.0 Å) by the neighboring atoms to support any ion

assignment. Additionally, 28 sites coordinated another ion of

the same charge, but this was not detected since all ions in the

test set were relabeled as water molecules before refinement.

3.3. SVM classification compared with a decision tree

To compare the trained SVMs against our previous method,

we ran the decision-tree algorithm from our previous paper

(Echols et al., 2014) on each high-resolution test set as well as

the manually curated test set (Tables 1, 2 and 3 and Supple-

mentary Table S9). Across every data set, SVMs out-

performed the decision tree, often finding twice the number of

model ions. However, this increased sensitivity came at the

cost of reduced specificity. In the high-resolution test set

SVMs flagged 112 water molecules as ions, three times more

than the 31 water molecules flagged as ions by the decision-

tree method.

The decision-tree method was primarily optimized on

structures containing calcium and zinc. However, it was also

designed to be relatively permissive towards heavy ions with

respect to geometry when anomalous scattering and/or

difference map peaks were present. In line with the results

using the manually curated set (x3.1.2), the omission of

anomalous scattering information in the high-resolution

automatically curated test sets did not limit the performance

of these SVMs. This confirms that there is redundant infor-

mation for classification when not specifically comparing

between different ions.

3.3.1. A combined approach. Based on our observations of

the patterns in the false positives flagged by SVMs, we tested

the effect of adding a few basic filters on SVM predictions (see

x2). By applying this combination to the high-resolution test

set, we were able to eliminate 82% of the false positives while

reducing our recall rate by 13% (Table 3). Additionally, when

applied to comparisons between ions, the number of ions

falsely predicted to be another ion decreased by 16%,

although the recall decreased by 12% as well, resulting in

almost no change in average precision (Supplementary Table

S9).

Up to this point, although we discarded entire structures

based on global refinement statistics, we did not apply any

filtering to the individual sites in the high-resolution training

set. However, our simple assessments of the training set

showed many sites with implausible scattering and/or chemical
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Table 3
Benchmark of the ability of classifiers to differentiate each ion from water in the automatically curated test set.

Shown here is the unmodified decision-tree algorithm as well as SVMs trained on all features except anomalous scattering and resolution. We have included
statistics for SVM classification as well as classification when stringent inputs were used for SVM training and classification when a simple filter was applied to the
list of elements used in prediction. Numbering follows the same pattern as in Table 1.

Ion versus water Structures Ions Waters Decision tree SVM
SVM (filtered
predictions)

SVM (stringent
inputs)

SVM
(stringent inputs,
filtered predictions)

Na+ 95 196 43498 32, 9 (28 Na+) 52, 7 (42 Na+) 46, 0 (41 Na+) 8, 5 6, 0
Mg2+ 87 206 49603 111, 1 (7 Na+, 2 Mg2+,

1 Ca2+)
144, 10 (3 Mg2+, 2 Cl�) 128, 4 (3 Mg2+) 127, 4 (5 Mg2+) 125, 2 (5 Mg2+)

Cl� 192 492 103229 77, 3 (21 Cl�, 2 I�) 260, 15 (22 Cl�, 1 K+, 2 I�) 199, 9 (17 Cl�,
1 K+, 2 I�)

257, 17 (24 Cl�, 2 K+,
2 I�)

195, 10 (21 Cl�,
2 I�)

K+ 96 259 48569 73, 3 (4 K+) 148, 11 (1 Cl�, 4 K+, 2 I�) 118, 2 (3 K+) 145, 8 (2 Na+, 3 K+, 2 I�) 116, 2 (3 K+)
Ca2+ 93 244 46547 64, 0 (2 Ca2+) 188, 11 (1 Cl�, 2 Ca2+) 172, 3 (2 Ca2+) 189, 7 (2 Ca2+) 172, 3 (2 Ca2+)
Mn2+ 95 284 49859 158, 4 235, 25 223, 2 232, 23 223, 0
Fe2+/3+ 93 320 46960 154, 1 199, 2 180, 0 (1 Cl�) 203, 1 182, 0
Co2+ 47 135 27716 38, 0 89, 13 (1 Mg2+) 77, 0 (1 Mg2+) 86, 6 75, 0
Ni2+ 48 93 21531 30, 2 68, 2 48, 0 66, 4 (1 Ni2+/3+) 48, 0
Cu+/2+ 41 92 16076 30, 0 74, 3 73, 0 75, 3 74, 0
Zn2+ 95 289 41939 173, 0 264, 7 (2 Cl�, 1 Zn2+) 243, 0 265, 6 (2 Cl�) 245, 0
Cd2+ 45 234 15981 132, 7 (1 Cd2+) 178, 6 (7 Mg2+, 3 Cd2+) 143, 0 (1 Cd2+) 178, 7 (6 Mg2+, 1 Cd2+) 141, 0 (1 Cd2+)
Total true positives 1072 1899 1650 1831 1602
Total false positives 31 112 20 91 17
Discovered ions 73 96 72 52 34



environments (Fig. 4; Supplementary Fig. S3). In order to

assess the quality of these sites, we applied similar filters for

quality control on the training inputs, using information from

valences and electron density as in the outputs above. After

applying these filters to the high-resolution training set, we

observed a significant change in the ion count for sodium,

magnesium and chloride, with drops of over 100 for each, but

little change for most other ions (Supplementary Table S3).

When differentiating ions from water, we found that this

approach reduced the total number of false positives by 19%

and the recall by only 4% (Table 3). Combined with filters on

the SVM outputs, we saw a minor improvement: 17 false

positives, down from 20, and a drop in the recall of only 3%.

To assess the confidence of the probabilities assigned by the

SVM to its predictions, we calculated the ratio of the score of

the predicted ion divided by the sum of the scores for all other

ions when evaluating all possible ions at a site (Supplementary

Fig. S5). We found that although the ratios for incorrect

assignments tended to fall below 1.0, the distribution was

skewed to the right, with many incorrect assignments having

scores at least five times greater than that of all other ions

combined. Although this suggests that there is some value to

screening by ‘confidence’, it did not prove to be as effective as

the other filters discussed above.

Overall, these results show that simple filters based on a

priori knowledge of chemical and scattering patterns of ions

are essential to maintaining a low false-positive rate when

differentiating ion sites from structured water molecules.

However, they are still not adequate to differentiate all ions

from one another with the same degree of accuracy: more

experimental data, and intelligent algorithms that act upon

anomalous information, are required for this task (Mueller-

Dieckmann et al., 2007; Thorn & Sheldrick, 2011; Echols et al.,

2014).

4. Discussion

Pattern-recognition techniques applied to electron-density

maps have previously been shown to be a powerful tool for

sequence assignment in automated protein model building

(Gopal et al., 2007; Langer et al., 2008). They have also proven

useful for identifying possible metal-binding sites from struc-

ture alone (Bordner, 2008; Buturovic et al., 2014). Here, we

trained SVMs on information from the X-ray scattering and

local chemical environment. These SVMs were able to reliably

predict the identity of the 12 most common ions in the PDB at

moderate to high resolutions, with the exception of sodium. In

the case of sodium, the inability of our method to select many

useful features for classification (Supplementary Table S8) and

the wide spread of valences (Fig. 4) suggest that this ion is

frequently misclassified. This highlights the need for addi-

tional curation and correction of ions in existing structures

before machine-learning methods may be used.

The method described in this paper also provides a

straightforward route to improve its predictive ability as more

metal-bound structures are deposited. Although the trained

SVMs were unable to reliably tell transition-metals ions apart

without the use of anomalous scattering near elemental K

edges, they were able to differentiate calcium ions from zinc,

nickel and manganese with a high degree of accuracy in the

curated test set (Table 2). Additionally, within the high-

resolution test sets, an SVM was able to differentiate most

chemically distinct ions with an average precision and recall of

91 and 65%, respectively, improved from precision and recall

rates of 89 and 34% when using the method of decision trees

(Supplementary Table S9).

4.1. Comparison of SVMs and manual decision trees

Although the manually constructed decision tree was shown

to be applicable to ion identification in our previous work, it is

inherently limited by the ability of the designer to set optimal

parameters and to pick out relationships between multiple

features simultaneously. For each additional metal, new

parameters must be determined and later updated as more

structures containing that metal are published. These para-

meters are often based around a priori knowledge that

leads to sensible results, such as coordination chemistry and

anomalous scattering that are consistent with those reported

in the literature. However, the allowable range for these

features is set at the discretion of the methods developer.

Even structures with a resolution of 2.0 Å or better were

found to have ion BVS values that deviated by greater than

50% from their ideal values (Fig. 4; Müller et al., 2003). Ion

electron-density and difference map peak heights were also

found to deviate by up to 200% from their average values

(Supplementary Fig. S3).

This process of optimizing cutoffs is time-consuming, and

often the associations between multiple features are not

apparent from a superficial inspection. This leads to an algo-

rithm that is both too permissive in some cases and too

stringent in others, and excellent coordination chemistry for

one ion is not used as information to rule out other ions.

For instance, multiple structures have been identified in which

calcium is coordinated by nitrogen, an event considered to be

an outlier in previous reports in the literature (Zheng et al.,

2008). Tuning the cutoffs to catch these corner cases while

maintaining a low false-positive rate requires many iterations

of cross-validation.

To solve this problem of tuning parameters, we turned to

SVMs to automatically determine the best cutoffs for each

feature and how different features may be used in conjunction

with one another. Although they have shown to be successful

for our purposes, they are not without drawbacks. While their

strength lies in their ability to quickly and automatically

identify predictive features for classification problems, they

are nonetheless limited by metaphorically driving via the

rear-view mirror: because they rely on a pre-selected set of

example ion sites, they may be inaccurate when predicting

ions in novel or uncommon environments. While we have

attempted to control for this overfitting by removing non-

predictive features, the potential still remains for inaccurate

assignments. We saw three examples of this in PDB entry 2vca

(Fig. 3a), where the water molecules placed in low electron
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density were incorrectly identified as calcium ions. Addition-

ally, SVMs do not solve the problem of disambiguating the

transition metals, which appear to be similar to one another

in both their chemical and scattering environments. Indeed,

when manually fitting these metals it is expected that a crys-

tallographer collect anomalous data near the X-ray absorption

K edges of the metals (Read & McCoy, 2011; Echols et al.,

2014; Zheng et al., 2014) and/or employ complementary

techniques for element identification (see, for example,

Garman & Grime, 2005; Shi et al., 2005; Bergmann & Glatzel,

2009).

Ultimately, SVMs are limited by the quantity and quality of

the training input. A number of elements are less pervasive in

the PDB (Supplementary Fig. S1), and finding enough high-

quality structures to train a SVM to reliably differentiate them

from both water and other ions can be challenging. In the case

of sodium ions in particular, there are many spurious examples

which impeded the ability of the algorithm to find patterns in

the data. Automated curation of these data sets is effective in

reducing the false-positive rate, but risks reducing sensitivity

as well, especially at lower resolutions where the coordination

geometry is often imperfect or incomplete. We note, however,

that in any tests against automatically curated data the true

‘false-negative’ rate is likely to be significantly lower than that

presented here owing to the presence of spurious ions in the

test sets.

For optimal classification, we have found that it is most

efficient to combine these two approaches by using SVMs to

mine the predictive features of a site and a more simplified

decision tree as a mechanism of quality control. Simple rules

can prevent the SVM from suggesting ions that would

immediately be rejected by a crystallographer. These rules

include rejecting sodium and magnesium from sites with

anomalous signal, rejecting ions that give large VECSUM

values and requiring that sites have significantly larger mFo

signal than other water molecules for the placement of heavy

atoms. Additionally, the classification described here is applied

independently to each ion and does not automatically consider

the scenario where two adjacent atoms are flagged as possible

ions with like charges (for example when multiple water

molecules are placed in density for a heavier atom). In the

context of our automated refinement procedure (Echols et al.,

2014), this is easily corrected by sorting all candidate ions by

descending 2mFo � DFc map level and ignoring any atoms

adjacent to an already placed ion.

4.2. Future directions

One question that remains largely unexplored is whether

SVMs can be used to classify rarer metals and halides.

Although our method has some applicability to distinguishing

chloride ions from water and various cations, halide ions are

particularly difficult to identify owing to their nonspecific

binding patterns, which may include hydrophobic contacts

(Dauter & Dauter, 2001). Our method may be extended to

these ions if enough correctly labeled examples are present,

but we have not tested its accuracy on this problem here. We

also have not explored the use of more complex features, such

as the electrostatic potential and solvent-accessible surface

area at a site, the shape of the electron-density peak or the

local peptide sequence, which have been shown to be asso-

ciated with metal-binding sites (Brylinski & Skolnick, 2011;

Carugo, 2008, 2014). While relatively computationally inten-

sive, these features may improve the predictive power of the

classifier.

Not surprisingly, one of the major limitations of our

approach is the unreliability of many structures in the PDB

even at high resolution, and continuous and large-scale

manual curation of these structures by experts is prohibitively

time-consuming. Although improvements to validation

methods are helpful (see, for example, Zheng et al., 2014), it is

difficult to formulate rules that will apply across a wide reso-

lution range without excluding a large number of valid sites,

and any method for comprehensively judging crystal struc-

tures must take experimental data into account. Continuous

re-evaluation of structures, especially in the context of

improved computational methods (Joosten et al., 2012), may

help with the curation of large data sets of published struc-

tures, but the deposited data are rarely sufficient to unam-

biguously identify many elements. In any case, any decision

about the identity of a site should currently not be made by

software alone, and must incorporate external information

beyond the inputs used here. Although computational

methods are effective at reducing manual effort in the building

and refinement workflow, a comprehensive and scientifically

robust approach requires the integration of multiwavelength

data sets and/or complementary experiments into the data-

collection, processing and deposition pipelines.

5. Availability

The trained SVMs and accompanying programs are available

as part of PHENIX v.1.9.1 or more recent, which is free of

charge for academic users (http://phenix-online.org/). Source

code is included in the distribution; additional code and the

data sets used for training are available from the authors.
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