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Improvements in crystallographic hardware and software have allowed

automated structure-solution pipelines to approach a near-‘one-click’ experi-

ence for the initial determination of macromolecular structures. However, in

many cases the resulting initial model requires a laborious, iterative process of

refinement and validation. A new method has been developed for the automatic

modeling of side-chain conformations that takes advantage of rotamer-

prediction methods in a crystallographic context. The algorithm, which is based

on deterministic dead-end elimination (DEE) theory, uses new dense conformer

libraries and a hybrid energy function derived from experimental data and prior

information about rotamer frequencies to find the optimal conformation of each

side chain. In contrast to existing methods, which incorporate the electron-

density term into protein-modeling frameworks, the proposed algorithm is

designed to take advantage of the highly discriminatory nature of electron-

density maps. This method has been implemented in the program Fitmunk,

which uses extensive conformational sampling. This improves the accuracy of

the modeling and makes it a versatile tool for crystallographic model building,

refinement and validation. Fitmunk was extensively tested on over 115 new

structures, as well as a subset of 1100 structures from the PDB. It is

demonstrated that the ability of Fitmunk to model more than 95% of side

chains accurately is beneficial for improving the quality of crystallographic

protein models, especially at medium and low resolutions. Fitmunk can be used

for model validation of existing structures and as a tool to assess whether side

chains are modeled optimally or could be better fitted into electron density.

Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/

server/ or at http://fitmunk.bitbucket.org/.

1. Introduction

Macromolecular crystallography (MX) is a major tool for

determining the atomic structures of proteins and protein

complexes (Berman et al., 2013). The structures determined by

MX are a central part of protein function studies (Richardson

& Richardson, 2014). The current methodology is very robust

and allows the determination of structures of macromolecules

of all sizes: from small structures of enzymes (Blake et al.,

1965; Matthews et al., 1967) to huge assemblies such as virus

capsids (Harrison et al., 1978; Abad-Zapatero et al., 1980),

ribosomes (Ban et al., 2000; Schluenzen et al., 2000; Wimberly

et al., 2000) and vault particles (Tanaka et al., 2009). Infor-

mation that can be derived from crystal structures also ranges

from single protein–small molecule interactions (Wall et al.,

1997; Porebski et al., 2012), through the determinants of

protein complex formation (Buckle et al., 1994; Niedzial-

kowska et al., 2012), to the mechanistic behavior of molecular
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factories (Abrahams et al., 1994). The widespread application

of structural data determined by MX in many different fields

has made the technique instrumental to many discoveries.

To facilitate the widespread use of MX, in some cases by

scientists who are not experts in structural biology, an enor-

mous effort has been put into the development of easy-to-use,

nearly automated software that aids researchers during the

process of data reduction (Otwinowski et al., 2003; Kabsch,

2010) and crystal structure determination and refinement

(Panjikar et al., 2005; Minor et al., 2006; Sheldrick, 2008; Winn

et al., 2011; Adams et al., 2013). Progress in software has made

MX accessible to many noncrystallographers by providing

automated and semi-automated pipelines that sometimes

approach a ‘one-click’ experience for structure determination

and initial model building (Wlodawer et al., 2013). This has

allowed MX to play an increasingly pivotal role in various

biomedical and biological research areas (Berman et al., 2013;

Giegé, 2013; Richardson & Richardson, 2014), and results in a

constantly growing flux of new structures deposited into the

Protein Data Bank (PDB; Berman et al., 2000).

The accelerating expansion of the PDB has led to the

development of various new tools for structural bioinformatics

and data mining, which has resulted in new methods for

structure validation that have recently been standardized and

applied to the whole repository (Read et al., 2011). Regardless,

there are many structures, both old and newly deposited, of

suboptimal quality in terms of model correctness and model-

to-data correspondence (Cooper et al., 2011; Pozharski et al.,

2013; Shabalin et al., 2015). There are

several possible approaches to reduce

the number of problems with protein

model quality. Examples of these

approaches include automated valida-

tion, in which users are alerted about

problems during refinement (Urzhumt-

seva et al., 2009; Cymborowski et al.,

2010), improvement of software in an

attempt to eliminate problems prior to

human involvement (Headd et al., 2009;

Bell et al., 2012), or re-refinement using

automated, state-of-the-art tools,

improving even legacy structures

(Joosten et al., 2012), although auto-

matic re-refinement still has its limita-

tions (Chruszcz et al., 2010).

Here, we present Fitmunk, a new

program for the automatic building of

amino-acid side chains in protein crystal

structures. Fitmunk can be used at

various stages: model building, model

refinement, and the validation and re-

refinement of protein models. We

expect that wide use of Fitmunk will

significantly improve the quality of

crystallographic models and thus the

reproducibility of electron-density map

interpretation.

The problem of building a crystal-

lographic model is comparable to theo-

retical protein modeling, and many of

the algorithms used in this field have

been adapted to crystallography. A

current and very successful example of

such an adaptation is Rosetta. The

development of molecular-replacement

protocols using Rosetta utilizing elec-

tron density to rebuild models has been

instrumental in solving otherwise

unsolvable structures (DiMaio et al.,

2011). Because the problem of theor-

etical protein modeling can be divided
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Figure 1
Overview of Fitmunk workflow. The overview shows the major steps of the algorithm used by
Fitmunk. The workflow is divided into three stages: stage I, fitting; stage II, collision resolution;
stage III, refitting with pairwise interactions. The parameters that were optimized to achieve the
best accuracy are shown on the left. The color of the step corresponds to the component of the
algorithm that is responsible for the step.



into several parts, e.g. protein backbone modeling and side-

chain packing, algorithms and programs have been developed

exclusively for these specific tasks. An example of

a specialized program for side-chain conformation modeling

that can be used in protein crystallography is MUMBO

(Stiebritz & Muller, 2006), which uses a set of deterministic

algorithms based on dead-end elimination (DEE) theory

(Goldstein, 1994) combined with stochastic sampling to solve

the combinatorial problem.

Both generalized (such as Rosetta or RAPPER; Furnham

et al., 2006) and specialized (such as MUMBO) protein

structure-prediction programs use the same conceptual

framework for theoretical modeling and crystallographic

model building; in the latter case, the fit to the electron density

is added as an additional term in their energy functions. In

both cases, the set of algorithms used to solve the combina-

torial problem is the same. Our program Fitmunk uses a

slightly different approach. While it is based on DEE theory,

we have developed new algorithms designed specifically for

building crystallographic models that rely on the highly

discriminatory nature of electron-density maps. These algo-

rithms allow Fitmunk to use extensive conformational

sampling, which improves the accuracy of the modeling, and

makes the software a versatile tool for crystallographic model

building, refinement and validation.

2. Methods

Electron-density maps derived from experimental X-ray

diffraction data can provide very descriptive information

about the position of optimal amino-acid side-chain confor-

mations. Unfortunately, for several reasons, including the

inadequate quality of many crystals, a lack of high-resolution

data and/or incomplete phases, protein electron-density maps

are often noisy. To address this issue, the developed algorithm

leverages information obtained from electron-density maps

and supplements it with prior information about the distri-

bution of amino-acid side-chain conformers. The algorithm

used by Fitmunk comprises three components: an energy

function, conformer libraries and a DEE-based search and

collision-resolution algorithm (Fig. 1), which are described in

detail in the following sections.

2.1. Energy function

In Fitmunk, the total energy of the system is expressed as

EðCsÞ ¼
PN

i

Eselfðci;sÞ þ
PN�1

i

PN
j¼iþ1

Epairðci;s; cj;sÞ; ð1Þ

where Cs specifies a tuple of single conformations for each of

the N residues of the polypeptide and ci,s is the sth confor-

mation of the ith residue. Eself is the self-energy of each

conformation, which is defined as

Eselfðci;sÞ ¼ �wd log
Dðci;sÞ

max
n

Dðci;nÞ
� wp log

pðci;sÞ

max
n

pðci;nÞ

þ Ebackboneðci;sÞ: ð2Þ

The first term is the energy of conformation s fitted to electron

density D(ci,s) relative to the best-fitting conformation of the

same residue [maxnD(ci,n)]. The second term is the energy of

the frequency of conformation s, p(ci,s), relative to the most

frequent conformation of the residue from the library

[maxn p(ci,n)] and the third term is the energy of interaction of

the residue in the given conformation with the protein back-

bone. Similar to the approach of Krivov and coworkers,

weighting coefficients wd and wp are used for the density-fit

and frequency terms, respectively (Krivov et al., 2009). These

weighting terms are allowed to be dependent on resolution

(for wd) or resolution and residue type (for wp).

The following function is used in Fitmunk to score the fit of

conformation s to electron density:

Dðci;sÞ ¼
P

a2ci;s

dðaÞ; dðaÞ ¼
�0ðaÞ � kt; �0ðaÞ � kt � 0

kf½�
0ðaÞ � kt�; �0ðaÞ � kt < 0

�
:

ð3Þ

�0(a) is the value of the electron density for atom a sampled at

point a and at six points around it positioned along each of the

axes at distance r, averaged and normalized versus the r.m.s.d.

of the electron-density values. The purpose of introducing a

penalty threshold (kt) and a penalty factor (kf) is to prefer-

entially score conformations that lie in continuous electron

density with a level higher than kt. kt, kf and r are allowed

to be dependent on the resolution of the diffraction data.

Additionally, penalties are residue type-dependent. Other

forms of this function have not been extensively tested;

however, the form in (3) gave satisfactory results after the

training of penalty parameters. Furthermore, any limitations

of this function to reduce the number of potential collisions

will be compensated by the collision-resolution step.

The frequency of conformation s, p(ci,s), is calculated on

the basis of the backbone-independent (son of) Penultimate

Rotamer Library (Lovell et al., 2003), which provides a

probability distribution of side-chain conformations filtered

similarly to the Penultimate Rotamer Library (Lovell et al.,

2000). This library is used to assign a frequency of occurrence

to each conformation present in the conformer library used

by Fitmunk. The frequencies of conformations from Fitmunk’s

library are calculated by interpolating values from frequency

sampling provided by Lovell’s library using an inverse-

distance weighting method. The obtained values are normal-

ized, so the sum of frequencies for all conformations of a given

side chain equals one.

The final term of the self-energy function is the interaction

energy between a side chain in a given conformation and the

backbone [Ebackbone(ci,s)]. Nonbonded interactions are repre-

sented through Coulomb and Lennard–Jones terms using

parameters from the OPLS united-atom force field (Jorgensen

& Tirado-Rives, 1988). To calculate interactions for each side-

chain conformation, additional conformations with polar H
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atoms are generated. H atoms are added using the same

geometric criteria as used by REDUCE (Word et al., 1999).

For rotatable H atoms, X—X—O—H torsion angles are set to

�60, 60 and 180� for Ser and Thr and to 0 and 180� for Tyr. All

three protonation states for His are used.

The second term in the total energy function in (1)

[
PN�1

i

PN
j¼iþ1 Epairðci;s; cj;sÞ] describes the pairwise interaction

energy between single conformations of residues, for which

only the nonbonded term is used, as described above.

2.2. Conformer libraries

To generate dense conformer libraries, all depositions from

the PDB that (i) contained polypeptides longer than ten

amino acids, (ii) were deposited together with structure factors

between 10 April 2007 and 10 April 2013 and (iii) have a

resolution better than 1.8 Å were selected. R and Rfree factors

were recalculated and 2mFo�DFc and mFo�DFc maps were

generated using REFMAC5 (v.5.7.0029) without any cycles of

refinement (Murshudov et al., 2011). To ensure that the maps

to be used for further analysis were recalculated correctly,

only those depositions where the recalculated R and Rfree

factors were within 10% difference from the values reported

in the PDB were accepted, with one exception as listed below.

For example, a deposition with a recalculated Rfree of 0.22 was

accepted if the reported Rfree was 0.20. Depositions that had

recalculated R and Rfree factors that were both lower than the

reported values by more than 10% were also accepted if the

difference between the recalculated Rfree and R factors was

lower than 0.05. Redundancy was removed from the set of

accepted depositions by selecting the structure of the highest

resolution from each cluster of structures with pairwise iden-

tity greater than 40% as clustered by BLAST (Altschul et al.,

1990) and provided by the PDB.

Only one chain of a given polypeptide sequence was taken

from each deposition. When multiple conformations of a

single residue were present, the one with the higher occu-

pancy, or the lower atomic displacement parameters if the

occupancies were equal, was selected. 2241 nonredundant

chains comprising 438 109 residues were taken for further

analysis.

To improve the quality of the conformer libraries, the

following side-chain conformations were excluded: those that

formed significant ‘clashes’ (i.e. van der Waals radii overlaps of

greater than 0.4 Å), those that were modeled without signifi-

cant experimental data (2mFo � DFc map value for side chain

or main chain with EDSTATS Z-score lower than 1) or those

that model the experimental data poorly (significant peaks in

the mFo � DFc map with Z-score >3 or <�3). Clashes and

map significance values were calculated using MolProbity

v.3.14.080821 (Chen et al., 2010) and EDSTATS v.0.5 (Tickle,

2012), respectively. Of 438 109 collected residues, 41 472 were

excluded owing to insignificant or misinterpreted electron

density. A further 60 387 residues were excluded owing

to clashes and 5608 other residues were incomplete, leaving

330 642 for further analysis. The atomic nomenclature of

symmetric residues (Arg, Asp, Glu, Phe and Tyr) was

normalized by swapping the names of symmetric atoms if

particular torsion angles (�1 for Asp, �2 for Glu, Phe and Tyr

and �5 for Arg) were outside the range �90 to 90�. Pseudo-

chiral residues (Leu and Val) were normalized by swapping

the names of equivalent atoms if their ‘chirality’ was reversed.

Thr and Ile residues with incorrect chirality were excluded

from analysis. For the purpose of clustering, Asn, Gln and His

residues were treated as symmetric by applying the same rules

as used for symmetric residues and swapping the identities of

the atoms of the amide group or imidazole ring. H atoms were

removed if present. To remove redundancy at the conforma-

tional level, depositions were processed starting from the

highest resolution structures, and a new conformation was

added to the data set if the r.m.s.d. between the analyzed

conformation and previously collected conformations was

higher than 0.1 Å (calculated after superimposing the main-

chain N, C� and C atoms and measuring deviations over all

side-chain atoms excluding C�).

Even after filtering out conformations with steric clashes

or that have poor fit to electron density, conformations that

significantly violated known chemical rules were observed.

Therefore, these conformations, specifically those that

violated the Engh and Huber target values (Engh & Huber,

2001) by more than 6�, were filtered out. Conformers where

the position of C� differed by more than 5� from the mean

were also excluded. Finally, we visually inspected conformers

that were observed only once and removed serious outliers.

We call this nonredundant filtered data set cl0.1. It contains

83 042 conformations and is a very dense conformer library,

which in most cases is too complex for direct use in side-chain

conformation modeling. This data set was further clustered

using hierarchical agglomerative clustering using the r.m.s.d.

of all side-chain atoms (excluding C�) as a distance metric, and

the maximum linkage criterion as implemented in the hcluster

Python package (Eads, 2008). A medoid (the conformation

with the smallest sum of r.m.s.d. values between itself and all

other conformations in a cluster, weighted by the number of

occurrences of each conformation) was selected as a repre-

sentative conformation for a given cluster. A library that

is referred to as clX contains representative conformations,

each of which represents a cluster of conformations with a

maximum pairwise r.m.s.d. lower than or equal to X Å.

Based on the hierarchical clustering process, it is possible to

create conformer libraries with lower complexity (e.g. cl1.0),

which can be dynamically expanded to denser ones (e.g. cl0.5).

The positions of atoms from all conformations and linkage

data are stored in a file in HDF5 format (The HDF Group;

http://www.hdfgroup.org/HDF5/), which is designed for fast

retrieval.

2.3. Dead-end elimination algorithm, collision detection and
resolution

To utilize the complex conformer libraries, it was necessary

to design a three-step algorithm (Fig. 1) with decreasing

conformational complexity at each step of the search process.

A simplified variant of the self-energy function in (2), where
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the nonbonded energy term Ebackbone(ci,s) is removed, is used

in the first and second stages to perform faster calculations. In

the third stage, however, after reducing the overall complexity

in the first two steps, the full energy function in (2) is used as

described above. During the first two stages of the search,

conformations which form close contacts (clashes) with either

the protein backbone (first stage) or other modeled confor-

mations (second stage) are removed. Incorporation of a check

for steric clashes was necessary because the simplified self-

energy function does not contain any repulsive terms that

penalize close contacts. It is possible to represent the energy

function with clash elimination as

ExðCsÞ ¼
PN

i

Eself xðci;sÞ þ
PN�1

i

PN
j¼iþ1

Epair xðci;s; cj;sÞ;

Eself xðci;sÞ ¼
Eselfðci;sÞ distanceðci;s; backboneÞ � r

þ1 distanceðci;s; backboneÞ< r

�
;

Epair xðci;s; cj;sÞ ¼
0 distanceðci;s; cj;sÞ � r

þ1 distanceðci;s; cj;sÞ< r

�
: ð4Þ

A k-d tree is used to search for main-chain or C� atoms that

are nearest to the given conformation. The distance cutoff r at

which distance a conformation is marked as clashing with the

backbone depends on the identities of the pair of evaluated

atoms. These cutoff distances are calculated as the first

percentiles of distances observed in the protein structures that

were used for extracting conformations and may be adjusted

by a user-selectable distance. By default, these distances are

reduced by 0.3 Å to compensate for main-chain position

errors during model building. Fitmunk also provides an option

to remove conformations that clash with other modeled non-

proteinaceous waters, ions or small molecules with their own

distance thresholds. Not every conformation is evaluated for

clashes, because for purposes of efficiency ‘lazy’ evaluation is

used, i.e. a conformation is only assessed for clashes when it is

selected. If the lowest energy conformation does not form

clashes, no further conformations are evaluated. In the first

stage, clashes between side chains are not considered; there-

fore, according to (4), the total energy of the conformation is

equal to Eself_x. This is a special case of the DEE theory. For

example, the Goldstein elimination criterion becomes the

simple selection of the conformation with the lowest Eself_x,

ci;s ¼ argminnEself xðci;nÞ: ð5Þ

At this point, most of the conformations of the core residues

at high and medium resolutions will be properly placed, but

several residues will form clashes either inside the asymmetric

unit and/or with crystallographically related copies. These

collisions are resolved in the second stage.

At the collision-resolution step (the second stage), the

simplified energy function in (4) is used as well. Its advantage

is that its value does not depend on pairwise interactions,

except for colliding conformations. Because colliding confor-

mations are excluded, it is therefore easy to calculate lower

energy bounds that can be used as an additional eliminating

criterion. For conformations without collisions the elimination

criterion becomes

Eself xðci;sÞ � Eself xðci;tÞ> 0: ð6Þ

Here, the term is calculated with the remaining residues in

‘compatible’ (i.e. nonclashing) conformations and it is always

equal to or higher than Elow(�), which is calculated with the

remaining residues adopting a conformation with the lowest

possible energy, disregarding any clashes. Therefore, it is

possible to introduce an elimination criterion based on this

lower bound,

Elowðci;sÞ � Eself xðci;tÞ> 0: ð7Þ

Although this criterion is weaker (permitting more confor-

mations to pass) than (6), the advantage of (7) is that it is

possible to eliminate all remaining conformations in a ranked

data set if one reaches a conformation that has Elow(ci,s) >

Eself(ci,t), where ci,t is the conformation which gives the lowest

energy so far, without actually calculating any collisions.

To find and resolve collisions, a directed graph is used to

describe the relationship between different conformations

(nodes v, w) of one residue [horizontal edges eh(vi, vi+1)] and

the dependency of the conformation of one residue on the

conformation of another [vertical edges ev(vi, w|vi)]. In such a

graph, each node has a maximum of two outgoing edges: ev

and eh. The A* search algorithm is used to explore this graph
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Figure 2
Example of the graph explored by the A* search. The first node v1 is
visited and checked for collisions. It represents the lowest energy
conformation of residue v but clashes with conformation w1 and cannot
be a terminal node. There are two options: either we choose to keep v1

and find a nonclashing conformation of w (w4) or we move to the next
conformation of v. The estimated cost of moving to v2 is 5, whereas that of
remaining at v1 is 7. v2 is therefore selected. At this point the following
moves are possible: go to v3 (cost 8), keep v2 (cost 13) or skip to v1 and w4

(cost 7). Because of the lowest cost the last possibility is explored with
further options, w5 (9) and u3 (10), and previous ones, v3 (8) and v2 (13). v3

is selected and w2 is evaluated for clashes. Because this does not form any
additional collisions it is marked as a terminal node, its estimated cost is
used to set Elow = Eself_x, it is possible to eliminate all other conformations
based on the criterion in (7) (other evaluated options have costs higher
than the final cost of a terminal node) and the selected path leading to the
green node is the best solution. During graph exploration, the nodes
marked in yellow or green are evaluated for clashes while those in white
are not.



(Fig. 2). Each residue is assigned the lowest energy confor-

mation from the first stage and these conformations are then

checked for collisions. To detect collisions between all

symmetry-related copies it is necessary to recreate all 27 unit

cells. To reduce the complexity of the problem, a bounding

sphere around the current conformation of each residue is

calculated, the sphere centres are transformed to recreate 27

unit cells and the k-d tree algorithm is then used to detect

colliding spheres. Finally, pairwise atom distances are checked

to determine whether a given pair of conformations actually

clash. If no collision is found, according to (4) the residue

remains in the lowest energy conformation. If a collision with

another residue w is found, then the conformation w|vi, which

is a conformation of w compatible with vi, is added to the

graph and connected with the vertical edge (vi, w|vi).

A* searches require a heuristic function to estimate the

minimal cost h of moving to the next node. We define this

function as

hðviÞ ¼ min½ElowðvcÞ � Elowðviþ1Þ;ElowðwcÞ � ElowðwjviÞ�; ð8Þ

where vc is the current best conformation. It means that the

minimal cost is either an estimated increase in energy after

adopting the next ranked conformation of the same residue or

an estimated increase after selecting the evaluated confor-

mation together with a noncolliding conformation of residue

w. If conformation vi does not clash with any residue, it is

marked as a terminal node and selected as a possible candi-

date for solution.

When a node is visited, the actual cost of moving to this

node is calculated as g(vi) = g(parent) + Elow(vc) � Elow(vi)

and the estimated total cost of visiting the following nodes as

f(vi) = g(vi) + h(vi).

The search is finished when all remaining discovered nodes

have an estimated cost higher than the cost of moving to the

node already marked as terminal. The nodes forming the path

to the terminal node determine the conformations of the

respective residues that form a globally optimal solution

according to the criterion in (6).

After the second stage of fitting, all of the side chains adopt

conformations that minimize the simplified energy function,

and in general fit well to the electron-density map. At this

point most of the side chains may be brought to the correct

positions by crystallographic refinement. The energy function

used up to this point did not include nonbonding interactions

between residues; therefore, the hydrogen-bond network

needs to be optimized by applying flips (if needed) to the side

chains of Asn, Gln and His residues.

In the third stage of fitting, the full energy function in (1) is

applied, comprising electron-density fit, rotamer frequency

and nonbonding interaction terms. The conformations that

were determined in the two previous stages are placed near

the optimal positions; however, the precision depends on the

density of the conformer library sampled in the search process.

During the third stage, additional samples from a denser and

higher complexity variant of the conformer library centred on

the previously established conformation are used to improve

conformational sampling. Cluster K1 is defined as that from

which the optimal conformation ci,s was taken. To expand the

conformations around ci,s, cluster K2, which is a superset of K1

at lower complexity (e.g. cl1.5), is selected. The hierarchy tree

is then traversed down and descendants of K2 at higher

complexity (e.g. cl0.4) are selected. The conformation sets of

Asn, Gln and His residues are also expanded by applying flips

if needed, and conformations of residues that contain polar H

atoms are further expanded by adding H atoms as described

previously.

The self-energies and pairwise interaction energies are

calculated for all conformations and a DEE cycle is then

performed by sequentially applying multiple criteria: Gold-

stein (Goldstein, 1994), single-conformation split DEE (Pierce

et al., 2000) and two-conformation ‘magic bullet’ split DEE

(Gordon & Mayo, 1998; Pierce et al., 2000). Each DEE

criterion is applied iteratively until no further conformations

are eliminated before continuing on with the next criterion.

The elimination stops after ‘magic bullet’ DEE converges.

Residues for which DEE did not identify a unique confor-

mation are then clustered based on the presence of pairwise

interactions. Clusters that are smaller than 15 residues are

resolved using another A* search. To resolve larger clusters,

an additional cycle of DEE is applied. This cycle starts with a

DEE based on conformation pairs (Lasters et al., 1995) and

uses the Goldstein criterion. Finally, the cycle for singles is

repeated and the remaining interactions are resolved by an A*

search. The size of the cluster for which the A* search is

applied was determined empirically, i.e. our current imple-

mentation of A* is faster than DEE for clusters of this size.

2.4. Preparation of training and test sets for side-chain
modeling

Two sets of models of protein structures were generated:

the first as a training set to optimize tunable energy-function

parameters and the second as a test set to estimate the accu-

racy of Fitmunk. The primary data set from which these sets

were drawn includes models of structures for which it was

possible to recalculate R factors close to the reported values

(as described in x2.2), that share no more than 40% identity,

that were deposited between 2007 and 2013 and that have a

reported resolution between 0.9 and 3.5 Å. From this primary

set, 150 structures per resolution bin were randomly selected.

From all models, all ligand, ion and water atoms were removed

and the models were then subjected to five cycles of REFMAC

refinement with local automatic NCS and without TLS.

Models were divided randomly within each bin, assigning 50

structures to a training set (TR) and 100 structures to a test set

(TS). The width of resolution bins was 0.2 Å, except for the

highest and lowest resolution bins, for which the ranges 0.9–1.2

and 3.0–3.5 Å were used, respectively. For testing purposes, we

also created derivative test sets based on each TS by intro-

ducing noise and reducing the completeness of the model.

Noise was introduced by changing the � angles of randomly

selected residues by a random rotation between �40 and 40�.

Model completeness was reduced by removing the side chains

of randomly selected residues. The percentages of side chains
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that were deleted (X) or randomized (Y) are indicated by the

name of the test set: TS_dX_rY. These models were subjected

to five cycles of REFMAC refinement and the resulting

2mFo � DFc electron-density maps were used for Fitmunk

evaluation.

In addition to the test sets based on PDB depositions

described above, Fitmunk was also used in the determination

of 115 new structures solved in the authors’ laboratory. These

structures may be considered to be a measure of the real-

world performance of the methodology. Fitmunk was used at

various stages of model building, and included structures

determined both by molecular replacement and by experi-

mental phasing. For consistency in comparison, each of the 115

models was refined using REFMAC for five cycles without

TLS and with automatic local NCS. The resulting models were

subjected to Fitmunk refinement. Both the reference models

and the models after Fitmunk side-chain fitting were subse-

quently refined using REFMAC for five cycles. The refined

models were then compared in terms of R, Rfree, MolProbity

clashscore and MolProbity score.

2.5. Accuracy metrics and optimization of fitting parameters

The algorithm described above introduces several tunable

parameters that have to be optimized to achieve the best side-

chain fitting accuracy. As a measure of accuracy, we selected

the percentage of the side chains of a given residue type where

the fitted conformation deviated from the original position by

an r.m.s.d. of no greater than 0.5 Å. If the optimized parameter

is independent of residue type, the accuracy calculated for all

residues together was used as a metric. For training purposes

Asn, Gln and His residues were treated as symmetric, except

in the nonbonded interaction weight-optimization step.

For the purpose of checking the correct Asn, Gln and His

conformations, the orientations of these residues in the

reference structures were optimized using REDUCE from the

MolProbity suite.

To determine values of the energy-function parameters that

maximize the accuracy, a grid test was performed on the TR

sets. The obtained values were smoothed assuming continuous

resolution dependency using multiquadratic radial basis

functions (RBFs), with " set to 2. The values that maximized

the accuracy were chosen and then tested using the TS sets. If

the improvement was insignificant (below 1% of improved

conformations for a given residue type in the resolution bin),

neutral values were chosen (0 for kt, 1 for kf, 0 for r and 10�5

for wd/wp). The search for optimal parameter values was split

into several independent steps associated with each energy

term. Firstly, the values of the parameters of the electron-

density-related term were optimized. These are the averaging

radius (r), the penalty threshold (kt) and the penalty factor

(kf). Optimization was performed using only the electron-

density-related term from the energy function, using the cl0.7

conformer library. The cl0.7 conformer library was selected

because it offered a reasonable accuracy to speed ratio. To

independently evaluate all amino acids, optimization was

performed without collision resolution (only the first stage of

fitting was performed). The averaging radius value was opti-

mized independently of the kt and kf values, which were

optimized simultaneously thereafter, followed by optimization

of the wd/wp ratio. Because RBF smoothing of the trained

weights ratio produced suboptimal results, the values that

maximized the accuracy on the training set were used directly

instead of the values obtained through smoothing. All of these

parameter values were dependent on resolution and residue

type.

As the nonbonded interaction terms were not yet used at

this point, it was sufficient to optimize the ratio of the wd and

wp weights. Their values relative to the final energy term were

established in the final optimization step in a residue-type-

independent manner. The training of the absolute value of

these weights was performed using different upper and lower

thresholds for expanding the search space.

Because the training of the final values of the weights and

the optimization of the cluster-expansion thresholds did not

improve the accuracy significantly, cluster expansion was not

used for testing the accuracy of the determination of the

proper Asn, Gln and His orientations. Instead, only the

addition of polar H atoms and the generation of both orien-

tations of Asn, Gln and His were performed.

3. Results and discussion

Fitmunk was primarily designed to be used at different stages

of protein model building, structure refinement and valida-

tion. The Fitmunk program has also been used for the iden-

tification of peptide sequence from even relatively poor

electron-density maps (Niedzialkowska et al., 2015). Here, we

focus on the application of Fitmunk to protein model building

and validation and show the impact of Fitmunk on the quality

of the resulting models, the completeness of the models for

subsequent computational studies and, in some cases, re-

evaluation of the biological roles of some amino-acid residues.

3.1. Model building

Fitmunk was initially developed to build amino-acid side

chains during automated building of macromolecular models

to electron density, and the configurable parameters of the

program were optimized for structures that are in the late

stages of refinement. However, during program development

our group started to routinely use Fitmunk even during the

initial stages of model building and refinement. To date, the

program has been tested on 65 different proteins (115 total

different data sets), improving the model refinement of serum

albumins (Majorek et al., 2012), histone code reader proteins

(Niedzialkowska et al., 2012), complexes of antibodies with

allergens (Chruszcz et al., 2012) and several enzymes

(Porebski et al., 2012; Shabalin et al., 2012). Fitmunk has also

been used for the structure determination of many other

protein structures from several structural genomics centers,

including CSGID, MCSG and NYSGRC, as well as for the re-

refinement of previously determined structures in the PDB.
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Figure 3
Changes in global parameters after refinement of structures with Fitmunk. 115 different structures of 65 different proteins are represented. (a) Changes
in R (black circles) and Rfree (red squares) after Fitmunk refinement. (b) Histograms of �R (gray) and �Rfree (red) between the original and the
Fitmunk-refined structure. (c) Changes in MolProbity clashscore percentiles (black circles) and MolProbity score percentiles (red squares) shown as a
value of the parameter calculated for the Fitmunk-refined structure versus the value of the parameter calculated for the unrefined structure. All
parameters are calculated using the original structure after five cycles of REFMAC refinement and the original structure refined with Fitmunk and five
cycles of REFMAC. Black lines in (a) (horizontal line) and (c) (diagonal line) represent no change in a parameter.

However, the performance of the program was not system-

atically evaluated in all of these cases.

Fig. 3 shows how Fitmunk improved the model-to-data

correspondence, the model quality and the model complete-

ness as evaluated using the 115 selected structures cited above.

Manual inspection of the models showed that Fitmunk

significantly improved different aspects of these models

(Fig. 4): it was able to select better conformations and better

rotamers with a similar fit, to resolve cascade errors and to

introduce conformational changes related to differences in

crystal contacts or bound ligands in models used for molecular

replacement (MR). We also investigated how refinement with

Fitmunk affected R and Rfree, the MolProbity percentile

clashscore and the overall MolProbity percentile score. R and

Rfree were influenced the most when many side chains were

not present in the original model [for example, after MR with

a model generated by CHAINSAW (Stein, 2008), which

removes all side chains or some side-chain atoms on the basis

of sequence alignment between the target sequence and the

model used for MR] and were rebuilt by Fitmunk. In such

cases we observed a drop in Rfree of as high as 0.15 when only

the backbone of the protein was used. It was possible to

successfully use Fitmunk even with relatively incomplete

structures that had an initial Rfree of <0.45; however, the best

improvement was achieved with structures that had a well

modeled backbone and an Rfree of �0.4 or better (Fig. 3). For

models that were near the final stages of refinement (Rfree of

<0.2 and all side chains already modeled) the improvement in

R and Rfree averaged 0.003 (16 models).

The main strengths of Fitmunk are observed when

analyzing model quality. Even for nearly final structures, for

which Fitmunk did not affect the R factors significantly,

application of the side-chain-fitting algorithm considerably

improved the geometry by reducing the clashscore and the

number of bad rotamers. In the initial data set only 60% of the

structures had a clashscore in the 90th percentile and only



20% had a MolProbity score in the 90th percentile when

compared with structures of similar resolution. After refine-

ment with Fitmunk 84% of structures had a clashscore and

46% had a MolProbity score in the respective 90th percentiles

(Fig. 3).

To systematically assess the broad applicability of Fitmunk,

we tested the program on a large (1100) subset of structures

deposited in the PDB with a fraction of their amino-acid side-

chain conformations randomly changed or removed. These

artificial test sets cover a broad range of different stages of

model building and refinement, and vary significantly in the

type of protein and diffraction data quality. Additionally, by

systematically increasing the number of model perturbations

and by decreasing the model completeness we were able to

simulate how Fitmunk will behave in iterative refinement

scenarios.

Firstly, we observed that refinement using Fitmunk was able

to match or improve the Rfree of almost 50% of structures from

the fully refined test set (TS). Most of the remaining structures

had an Rfree that was at most 0.01 higher than the unrefined

value. For the same set, Fitmunk was able to improve the

MolProbity percentile score (which in the case of Fitmunk

refinement is mostly improved by the selection of better

rotamers and changes in the number of steric clashes); more

than 80% of the structures had improved MolProbity

percentile scores. For the sets that were progressively less

complete and accurate, Fitmunk was able to reproduce similar

or better Rfree values and MolProbity scores when compared

with the original, refined structures, even when half of the side

chains were missing (for this set, 70% of the structures refined

to Rfree values within 0.01 or better than the original). The only

test set for which most of Fitmunk-refined structures (>70%)

failed to refine to similar Rfree values to those of the original

structures was the test set in which only the backbones of the

proteins were present. Removal of all side chains significantly

affects the quality of the electron-density map, and therefore

such behavior was expected. Even then, 90% of structures

have Rfree values that are within 0.02 of the original. Similar

behavior was observed for the MolProbity scores (Fig. 5 and

Supplementary Table S1).

We also assessed the local accuracy of Fitmunk refinement

(Fig. 6). The side-chain conformations of the original protein

models (as deposited) were compared with the conformations

present in the models rebuilt by Fitmunk. We compared the

structures using two different assumptions: (i) the models

present in the PDB are locally optimal and should be treated

as the final target or (ii) the models present in the PDB are

sometimes locally suboptimal and at some positions a

conformation may be found that better explains the electron

density (or the electron density may be insignificant due to the

side-chain disorder, so any modeled conformation would not

be justified). We therefore measured two types of accuracy.

Accuracy that assumes (i) above is calculated as a percentage

of all residues (excluding Ala and Gly) that have all of their �
angles within 20� of the original conformation. Accuracy that

assumes (ii) above, and thus is adjusted by electron density

(ED), is calculated as the percentage of residues with signifi-

cant density (calculated either before or after Fitmunk

refinement, with a Z-score of the density occupied by side

chain as reported by EDSTATS to be >1 for a 2mFo � DFc

ED map) that are either the same as original conformation

(within 20�) or are different from the original conformation

but are occupying more significant density than the original

conformation. The accuracy of Fitmunk was on average

between 96.5 and 70.8% per deposition depending on reso-

lution, while on average the ED-adjusted accuracy was

between 99.5 and 95.7%. If the side chain of a residue had

significant ED, Fitmunk was able to select a conformation that

fitted better to the ED than the deposited conformation for

between 1.7 and 16.8% of residues, depending on resolution.

For some depositions the number of improved residues was

greater than 30% (Fig. 6 and Supplementary Table S2).
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Figure 4
Examples of side-chain position improvement after rebuilding by Fitmunk. (a) Improving the fit by selecting a different side-chain conformation. (b)
Similar fit using a better rotamer. (c) Fixing cascade errors. (d) Fixing conformations of an MR model where the previous model had different crystal
contacts. In all panels, the red lines represent the model before and the green lines represent the model after rebuilding by Fitmunk. Electron-density
maps are 2mFo � DFc maps contoured at the 1 r.m.s.d. level



We have also compared the accuracy

of Fitmunk with the reported accuracy

of MUMBO. As MUMBO is a side-

chain-fitting program that utilizes DEE-

based algorithms similar to those of

Fitmunk, but uses a typical protein-

design framework with an additional

energy term corresponding to the fit to

ED, this comparison demonstrates the

advantage of using algorithms that were

specifically developed for crystal-

lography. The results presented in

Table 1 indicate that Fitmunk out-

performed MUMBO in all tested cases.

There was a significant fraction of

structures that were improved by

refinement with Fitmunk when

compared with the originally deposited

structure. Almost 50% of the structures

from the TS sets have their Rfree

improved, and more than 80% of these

have better geometry as measured by

the MolProbity percentile score. This

indicates that Fitmunk is a useful tool

for the re-refinement and validation of

older structures.

3.2. Model validation

We have tested Fitmunk using the TS

set for three types of validation: (i)

validation of conformer selection, (ii)

validation of missing side chains and

(iii) validation of main-chain posi-

tioning. By default, Fitmunk rebuilds all

side chains regardless of the level of

disorder. Therefore, after side-chain

fitting and subsequent refinement, we

assessed the fit to the electron density

with EDSTATS. Similarly to the criteria

for the ED-adjusted accuracy, we treat

side-chain conformations as supported

by ED when the significance (Z-score)

of the density occupied by the side chain

as reported by EDSTATS is >1 for the

2mFo � DFc ED map and if there is no

significant (Z-score >3) difference
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Figure 5
Changes in R, Rfree, MolProbity clashscore and MolProbity score versus resolution after the
refinement of different test sets with Fitmunk compared with a reference test set. The values are
represented as a two-dimensional histogram using hexagonal bins. The color of each bin encodes the
number of models that fall within it. Fitmunk was able to reproduce R and Rfree and improve the
MolProbity score and clashscore (lower is better) even when noisy and incomplete test sets were
used. Supplementary Table S1 shows the median changes for each analyzed resolution bin for the
TS test sets. Black horizontal lines represent no change in the analyzed parameter.

Table 1
Comparison of the accuracy of Fitmunk and MUMBO.

PDB entry 2iim† PDB entry 1thw PDB entry 2hft PDB entry 1dpx

�1 < 20� All �i < 20� �1 < 20� All �i < 20� �1 < 20� All �i < 20� �1 < 20� All �i < 20�

Fitmunk‡ 98 (100) 84 (94) 92 (96) 81 (91) 95 (97) 84 (92) 97 (100) 86 (95)
MUMBO 92 76 85 67 82 70 89 72

† The structure reported in the MUMBO paper has not yet been published. This deposition has a matching protein and authors, but the resolutions reported in the PDB and the
MUMBO paper differ (1.0 versus 1.3 Å). ‡ The values in parentheses show the percentage of correctly fitted residues classified after manual inspection. These included cases where the
wrong conformation was selected in the original deposition, the orientations of Asn, Gln or His residues were corrected or a similarly fitting alternative conformation was selected.



density (either positive or negative). The new side-chain

conformation was considered to better correspond to the

electron density than that from the original deposition when

it occupied significant density and when the EDSTATS

significances were higher for the 2mFo � DFc map and lower

for the mFo � DFc map than for the corresponding values for

the original model.

If Fitmunk selects a better fitting side-chain conformation

than that present in the original

deposition it means that the selection of

the conformer may be suboptimal. This

can be used for validation of conformer

selection. We observe that in our test

data set about 5% of the residues may

have a suboptimal conformation (Fig.

7). Changes that are introduced to many

neighboring residues may indicate more

serious problems that can affect inter-

pretation of the model. For example,

one of the significant cases involved an

RNA-binding protein that forms

different oligomeric states in solution

(Wu et al., 2012). The authors of the

deposition (PDB entry 4emh) wrongly

modeled the conformations of side

chains in different parts of the protein

that were involved in forming the

interfaces (Fig. 8). Moreover, reinter-

pretation of the map in the affected

regions showed that the N-terminal end

of the protein was placed in the wrong

direction. Fortunately, the authors did

not make any conclusions based on the

model itself, but based them on other

experimental data. However, when the

original structure was analyzed with

PDBePISA in order to predict the

probable oligomeric state, no stable

oligomers were identified. When the

structure was corrected the dimers were

identified and trimers were more ener-

getically favorable, which was more

consistent with other experimental data.

If an original deposition does not

contain a side chain at a particular

position, or the side chain is incomplete,

a conformation selected by Fitmunk and

supported by ED may indicate that the

residue was excluded from the model

unnecessarily and the side chain could

be rebuilt. This feature of Fitmunk may

be used to validate whether a side chain

should be truncated. In the test data set,

about 1% of all residues (64% of

incomplete residues) could be modeled

into electron density meeting

EDSTATS criteria.

Finally, Fitmunk tries to place

side-chain conformations on a fixed

backbone. We observed that Fitmunk is

sometimes not able to select a
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Figure 6
Accuracy of Fitmunk side-chain modeling on different test sets. The values are represented as two-
dimensional histograms using hexagonal bins. The color of each bin represents the number of
models that fall within it. The accuracy (calculated with the assumption that the original depositions
are correct) of Fitmunk was on average between 96.5 and 70.8% per deposition depending on
resolution, while on average the ED-adjusted accuracy (taking into account that for some residues
Fitmunk was selecting a conformation that fitted better to the electron density or that the electron
density was so weak that it did not mandate any conformation) was between 99.5 and 95.7%.
Fitmunk was also able to achieve high accuracy for highly incomplete structures (TS_d0.2_r0.5 test
set) and reasonable accuracy for backbone only (TS_d1). Depending on the resolution, Fitmunk
was able to improve the fit of 1.7–16.8% of residues compared with the original depositions.
Supplementary Table S2 shows the median accuracies, median percentages of residues with
insignificant ED and median percentage of residues with improved fit for each analyzed resolution
bin for the TS set.



side-chain conformation that does not collide (even when

generous distance cutoffs for clash consideration are used)

with the backbone or another neighboring side chain if the

backbone is incorrect or suboptimal. Such situations can also

occur when the sequence is assigned incorrectly, e.g. if Lys is

assigned in the place of Ser. Checking whether Fitmunk is able

to place a conformation on a backbone and is able to solve the

collisions with neighboring residues can therefore be used for

the validation of main-chain placement, conformation and

sequence assignment by ensuring that all side chains can be

correctly packed. Selected cases for each type of validation

that can be performed by Fitmunk are presented in Fig. 7.

4. Limitations and future developments

The application of the algorithm presented in this work

focuses on rebuilding the side chains on a fixed backbone that

is already modeled and has assigned sequence. It is useful as a

standalone tool to finalize and validate the model, but its

use during the earlier stages of model building requires

integration with other tools specializing in main-chain building

and structure refinement. In our experience, the iterative use

of Fitmunk and reciprocal refinement leads to improved

electron-density maps and results in a better model fit and

faster convergence, even with initial models of poor quality.

Fitmunk can also be integrated with software for de novo/

comparative modeling that will aid in rebuilding fragments

without significant density; such integration would allow

better modeling of ‘boundary regions’, in which the observed

electron density is weak but still interpretable, and can

strongly benefit from knowledge-based fitting.

In the present work, we have somewhat arbitrarily selected

both the rotamer library that is used for deriving conformation

frequencies and the force field for calculating interaction

energies, and a thorough investigation of these two parameters

is warranted. For example, using a backbone-dependent

library such as that used in Rosetta (Shapovalov & Dunbrack,

2011) might be beneficial. We do not expect major differences

in the final result, because the electron-density term domi-

nates the energy function in most cases. However, the use of
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Figure 7
The results of Fitmunk refinement can be used for different types of validation. In the left panel, ‘conformation change’ gives the fraction of all side
chains (by residue type) that had their conformation changed by Fitmunk and had an improved fit to electron density as evaluated by EDSTATS after
REFMAC refinement; ‘missing side chain’ gives the fraction of missing side chains that were rebuilt by Fitmunk and were fitted to significant electron
density as evaluated by EDSTATS. Right panel, examples of corrections introduced into models and problems spotted resulting from Fitmunk
refinement. Original models are represented as white sticks and Fitmunk-corrected models as blue sticks. Original 2mFo � DFc density at the 1 r.m.s.d.
level is displayed as a gray mesh. In selected cases 2mFo�DFc electron density resulting from the refinement of a Fitmunk-corrected model is displayed
at the 1 r.m.s.d. level as a blue mesh. Top row, conformational changes introduced by Fitmunk. A.1, correction of wrong conformation selection: several
alternative conformations and a water were replaced by better fitting conformations. A.2, selection of a rotamer that forms better interactions. A.3,
selection of a conformation that has a better density fit. Middle row, missing side chains that were rebuilt by Fitmunk. B.1, small residues such as Ser can
be rebuilt most of the time. B.2, missing side chains were improperly compensated for by the introduction of water. B.3, rebuilding of missing residues
allowed better packing and better main-chain placement after refinement. Bottom row, problems spotted after Fitmunk was unable to fit any
conformation or resolve steric clashes for a given residue. C.1, possible wrong sequence or register shift; Fitmunk was unable to fit Asp in the space
available. C.2, main-chain break and wrong main-chain orientation; Fitmunk was unable to fit any conformation of Ile with the given backbone
orientation. C.3, wrong loop conformation; Fitmunk was unable to resolve collisions in the tight loop because of the incorrect backbone conformation.



backbone-dependent frequencies in regions of poor electron

density may increase the energy difference between different

conformations and thereby reduce the time that is needed to

find an optimal solution. Nevertheless, selection of the best

rotamer library for frequency calculation and the best force

field for Fitmunk requires additional, systematic studies.

5. Conclusions

We have developed a new algorithm for amino-acid side-chain

conformation modeling based on DEE theory, which is

specifically tailored for applications in MX. The resulting

implementation of the algorithm, in the form of the program

Fitmunk, has been tested and evaluated both on newly

collected data as well as on artificial test sets based on

previously deposited structures. Evaluation of the program

demonstrated that the DEE-based algorithm is both robust

and effective, and can improve protein structures during the

early and middle stages of model building and refinement.

Specifically, Fitmunk was able to improve the fit of side chains,

select better rotamers, resolve various cascading errors and
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Figure 8
Example of the incorrect interpretation of an electron-density map that can be detected on the basis of multiple side-chain conformation changes made
by Fitmunk. (a) Original deposition with PDB code 4emh (yellow lines) shown with 2mFo � DFc (blue; at the 1 r.m.s.d. level) and mFo � DFc (green,
positive; red, negative; both at the 3 r.m.s.d. level) electron-density maps. Multiple regions of low model–data correspondence can be seen. (b) Model
refined with Fitmunk. All incorrectly fitted side chains have been corrected. (c) Fragment of a screenshot from the Fitmunk server showing differences
between the original model and the model refined with Fitmunk. Analysis of regions with multiple differences led to the identification of the fragments
shown in (a) and (b).



significantly reduce the number of steric clashes, even in

models already deposited in the PDB. Our evaluation of the

program led us to the conclusion that some of the structures

that have already been deposited can be improved by our

program, especially those at medium and low resolutions. We

have therefore investigated the possibility of using Fitmunk

for model validation. We have demonstrated that Fitmunk can

validate the selection of side-chain conformations and rota-

mers and help to answer the question whether a side chain is

optimally fitted or could be fitted better. In conjunction with

programs calculating local model to electron-density correla-

tions, Fitmunk can be used to evaluate whether a side chain

was unnecessarily removed from a model. The ability of

Fitmunk to score very dense libraries also makes it a good tool

to evaluate the probity of potentially problematic main-chain

traces that lack side chains owing to low resolution or poor

local electron density, and ultimately to support positioning

the side chains to result in a properly packed fragment.

Fitmunk is available as a web service (at http://

fitmunk.bitbucket.org/ or at http://kniahini.med.virginia.edu/

fitmunk/server/) and can also be accessed in HKL-3000.
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