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Ab initio phasing by direct computational methods in low-resolution X-ray

crystallography is a long-standing challenge. A common approach is to consider

it as two subproblems: sampling of phase space and identification of the correct

solution. While the former is amenable to a myriad of search algorithms,

devising a reliable target function for the latter problem remains an open

question. Here, recent developments in CrowdPhase, a collaborative online

game powered by a genetic algorithm that evolves an initial population of

individuals with random genetic make-up (i.e. random phases) each expressing a

phenotype in the form of an electron-density map, are presented. Success relies

on the ability of human players to visually evaluate the quality of these maps

and, following a Darwinian survival-of-the-fittest concept, direct the search

towards optimal solutions. While an initial study demonstrated the feasibility of

the approach, some important crystallographic issues were overlooked for the

sake of simplicity. To address these, the new CrowdPhase includes consideration

of space-group symmetry, a method for handling missing amplitudes, the use of

a map correlation coefficient as a quality metric and a solvent-flattening step.

Performances of this installment are discussed for two low-resolution test cases

based on bona fide diffraction data.

1. Introduction

In just a few years, crowdsourcing and gamification have

become important actors in efforts to solve challenging

scientific problems, owing in part to the emergence of cloud

computing and social networks. Crowdsourced initiatives such

as Foldit (Khatib, Cooper et al., 2011; Khatib, DiMiao et al.,

2011), EteRNA (Lee et al., 2014) and numerous others

(Gardner et al., 2011; Kelder et al., 2012; Loguercio et al., 2013)

are convincing examples illustrating that, in certain cases,

nontrivial scientific problems can be subdivided into elemen-

tary tasks and effectively distributed to a collective workforce.

Along these lines, we recently demonstrated that the pattern-

recognition abilities of a group of players could be harnessed

to attack the low-resolution phase problem in X-ray crystallo-

graphy (Jorda et al., 2014). Specifically, we involved non-

expert users in a collaborative game called CrowdPhase in an

attempt to determine ab initio the best sets of phases for

low-resolution data sets. At its core, CrowdPhase is driven

by a modified genetic algorithm that evolves a population of

candidate solutions. Each candidate solution (or individual)

comprises a set of phases for the observed reflections; in the

language of genetic algorithms, each phase is a gene in the

complete genome of an individual. Each individual presents a

unique phenotype, here manifested in the form of an electron-

density map.
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The stochastic exploration of diffraction phase space has

been widely discussed in various contexts (Baker et al., 1993;

Colovos et al., 2000; Holton et al., 2000; Miller et al., 2001;

Terwilliger, 2001; Webster & Hilgenfeld, 2001; Lunina et al.,

2003; Abdurahman & Purwanto, 2008; Dumas & van der Lee,

2008; Uervirojnangkoorn et al., 2013). The exploration of

phase space at low resolution (where the number of reflections

to phase is typically small) has been undertaken in a number

of previous studies aimed at achieving ab initio phasing. A

number of map-evaluation criteria have been investigated for

their utility in identifying good phase sets, including analysis of

electron-density histograms (Lunin, 1993), map connectivity

(Baker et al., 1993; Lunin et al., 2000), topological features

(Fokine et al., 2003), maximization of likelihood (Petrova et al.,

1999, 2000) or figure of merit with atoms approximated as

Gaussian scatterers (Lunin et al., 1995). Solutions with some of

these techniques have been reported with varying degrees of

success, including the low-resolution phasing of human para-

oxonase (Fokine et al., 2003), RNase sa (Lunin et al., 2000), an

AspRS–tRNAAsp complex (Lunin et al., 1995) and Na+-NQR

(Lunin et al., 2013). What differentiates CrowdPhase from

these techniques is the gamification of the problem and the

use of collective human intelligence as a fitness function to

guide the optimization process. In practice, the human deci-

sions are integrated into the genetic algorithm workflow at two

levels. The main contribution occurs during the tournament

step, where each player decides the outcome of a tournament

by selecting the two ‘fittest’ individuals from a large set of

maps based on their visual features; players are subsequently

invited at the very end of the evolutionary process to pick the

best individual from the last generation, which we refer to as

the termination step.

In the initial work, we devised two synthetic phasing puzzles

in which the phases were known from a model and perfect

(calculated) structure-factor amplitudes were assumed. This

allowed us to assess the capability of the human-powered

genetic algorithm in highly idealized situations. The first

puzzle involved two C atoms extracted from an arbitrary

structure in the PDB (Miller et al., 1996), while the second

corresponded to a six-stranded �-barrel structure referred

to as cylindrin (Laganowsky et al., 2012). The data sets were

expanded to a synthetic P1 unit cell and restricted to resolu-

tions of 25 Å for the two-atom puzzle and 18 Å for the

cylindrin, leading to final data sets with 37 and 67 reflections

(or genes) to phase, respectively. In both cases, CrowdPhase

was able to arrive at good phase sets based on the players’

choices, and low-resolution molecular boundaries were

obtained in agreement with the true solutions. While these

results constituted a proof of concept that crowdsourcing can

be used to obtain ab initio phases at low resolution in ideal

situations, several crystallographic concerns were not consid-

ered at the time of the initial study. Further developments

were necessary to account for crystal symmetry (i.e. non-P1

space groups), the existence of unmeasured data (e.g. at low

resolution) and nonzero bulk-solvent density in real-case

scenarios. Here, we present improved treatments of these

issues in CrowdPhase and discuss the results obtained when

using this new version to solve two puzzles that were built on

true experimental data.

2. Materials and methods

2.1. Space-group symmetry implementation

The set of symmetry operators for each space group was

represented by transformation matrices, and a list of equiva-

lent origin shifts for map (and phase) comparisons was

incorporated. Information relating to space-group symmetry

comes under consideration at two levels: the Fourier trans-

form and our custom map-alignment method (Jorda et al.,

2014).

2.2. Unmeasured amplitudes

Particularly in the lowest resolution range, diffraction data

sets often include a number of unmeasured reflections. Given

the relatively small number of total reflections under consid-

eration in the present work, these missing reflections can

dramatically affect the resulting electron-density map if not

addressed. To circumvent this problem, we developed a

method in which these amplitudes are considered as addi-

tional genes to be explored, similar to the phases. In our

framework, the discrete values that a short binary string can

encode are scaled by multiplication to give a set of possible

structure-factor amplitudes. In this case, a three-bit binary

string can return any integer between 0 and 7, where 0

corresponds to a decoded amplitude of 0 and 7 is the maximal

amplitude allowed for the studied case. To determine this

maximal amplitude, we calculate a Wilson plot and fit a least-

squares regression line through ln(Fobs)
2 against sin2(�)/�2 to

the data. The intercept of this regression line has a dual use in

CrowdPhase: inferring the value of the maximal amplitude as

four times the intercept and a scale factor to put the ampli-

tudes on an absolute scale for later comparison with the

structure factors of the true model. Upon defining this

maximal amplitude, the gene is initialized with a random

binary string and is subsequently submitted to the canonical

genetic algorithm evolutionary procedure.

2.3. Solvent flattening

Density-modification methods typically involve a cyclic

protocol that alternates between modifications of the electron-

density map in real space and a combination of the initial

structure-factor amplitudes with the modified phases. In the

original solvent-flattening procedure proposed by Wang

(1985), the electron density at each grid point is replaced by

the weighted average density of grid points that are within a

sphere of radius R. The resulting map is subsequently Fourier-

analyzed and the phases of the calculated structure factors

replace or modify those before the real-space modification.

Our adaptation of solvent flattening differs in two points.

The modification is performed directly in reciprocal space

following published equations (Leslie, 1988) and involves only

one cycle. For unmeasured reflections, the calculated ampli-

tudes and phases from the density-modification step are both
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retained. The radius of the sphere used to apply the weighting

function is defined in CrowdPhase as twice the grid spacing of

the map.

2.4. Map correlation coefficient

The map correlation coefficient is a measure commonly

used in model building or refinement for phase comparison.

While a simple approach would be to operate at the level of

real space and consider the correlation of the density for each

grid point (Read, 1986), applying the procedure to each

electron-density map newly generated by CrowdPhase is

cumbersome because of its space and time complexity. For this

reason, we preferred the implementation of the map correla-

tion calculation as defined by Lunin & Woolfson (1993), which

operates at the level of reciprocal space and involves only

structure factors.

3. Results

3.1. Crystallographic improvements

One of the first modifications in CrowdPhase was to inte-

grate the handling of crystallographic symmetry. In our initial

study, structure factors were expanded to an artificial unit cell

in P1, thus avoiding symmetry calculations in the original

pipeline (Jorda et al., 2014). To extend the approach to higher

order symmetry data sets, we enabled in this new installment

the possibility of implementing, for any space group, its

corresponding crystal lattice, symmetry operators and alter-

nate origins (and corresponding phase shifts) that need to

be considered when comparing two phase sets. The second

practical extension was to implement the use of observed

structure-factor amplitudes for phasing instead of those

calculated from a model. However, a challenge arose from the

fact that experimental data sets typically present at least a few

unmeasured reflections, which, if ignored, could significantly

affect the resulting electron-density maps. To address this

problem in the context of our genetic algorithm, we consid-

ered the unobserved amplitudes as additional genes whose

values needed to be optimized during the search. We repre-

sent the unobserved amplitudes as genes by encoding them as

binary strings, following the formalism established for the

phases. While the inclusion of missing amplitudes expanded

the size of the search space, we were able to partially offset

this increase by reducing the number of bits in the binary

string for each phase to three (or one for centric reflections);

the nine bits per phase in our initial study were judged

unnecessary. Another significant change was made in the

monitoring of the fitness or phase quality of generated indi-

viduals. Our initial study relied on the weighted r.m.s. phase

error, but this measure of agreement does not lend itself to

assessing the correctness of estimated amplitudes for unob-

served reflections. For this reason, we replaced the weighted

r.m.s. phase error with the map correlation coefficient as

defined by Lunin & Woolfson (1993), a commonly used metric

for comparing phases and electron-density maps. One last

modification was to improve the molecule-like features of

each new individual. We implemented a one-pass solvent-

flattening step (Wang, 1985; Leslie, 1988), a density-

modification procedure that is routinely used for improving

the quality of maps and delineating molecular boundaries. The

flattening was applied to the electron-density map of each

newly generated individual after the usual genetic operations

used to combine the genes (or phase sets) of two parents. A

Fourier transform of the flattened map yields modified phases

that are assigned to the new individual. A final improvement

was brought to the definition of the contouring level of the

displayed maps. Instead of fixing this level at a defined contour

value (e.g. 1� in previous studies), we adjusted the contouring

based on the solvent:protein content ratio in the unit cell,

ensuring consistency of the displayed volume in all maps.

3.2. Other improvements

During our monitoring of games in CrowdPhase, we noticed

a harmful side effect of the gamification: players that do not

perform well tend to play more rounds than others in an

attempt to keep their scores up with the other players in

competition. In several cases, this degraded the overall

performance. Another important issue was that a highly active

player could play an unlimited number of tournament rounds

in a single generation, allowing single users to evolve whole

generations on their own. To mitigate these potentially

detrimental influences, we established a credit system that

restricts each player to 20 credits (or tournament rounds) per

generation; a new generation is filled up typically by a total of

120 tournaments, each producing one new individual.

To assess the newly implemented features, two games

aiming at phasing ab initio cases with higher order symmetry

were run in CrowdPhase: the first puzzle was based on the

crystal structure of the Cucumber necrosis virus capsid (PDB

entry 4llf; Li et al., 2013), while a second involved a racemic
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Figure 1
Monitoring the phasing evolution across generations for two low-
resolution experiments in CrowdPhase. The plot shows the evolution of
the average map correlation coefficient at each generation for the viral
capsid puzzle (blue) and the centrosymmetric polypeptide puzzle
(purple). The first game reached its termination step at the 40th
generation, while the centrosymmetric experiment ended at generation
15.



mixture of the synthetic cyclic peptide

kalata B1 (kB1; PDB entry 4ttm; Wang et al.,

2014). As was the case in previous puzzles,

the true phases were taken as known

quantities for the sake of evaluating the

quality of the phasing as the generations

progressed.

3.3. The viral capsid puzzle

The viral capsid structure is in the cubic

space group I23, with two capsids in the

centered unit cell and a solvent content of

68% (Fig. 2a). We treated this problem at

45 Å resolution, where there are 70 possible

reflections. All reflections had their

unknown phases encoded in the genome of

each individual, while 38 of the genes were

reflections that were not observed during

data collection and had their unknown

amplitudes encoded in the genome as well.

This operation extended the total number of

genes to 108 in this case. The genetic algo-

rithm parameters were defined as follows:

120, 12, 0.2, 0.3 and 40 for the population

size, tournament size (the number of

randomly chosen individuals presented to a

player for the selection of two parents),

mutation rate, crossing-over rate and the

generation number for the termination step,

respectively. For this game, 78 participants,

mostly non-expert students, were invited to

evolve the population of individuals with

initially random phase sets after being given

instructions on the shape they might expect,

in this case a roughly spherical viral capsid.

Of these 78, 52 passed the training step

defined in our earlier work (Jorda et al.,

2014); this required some ability to select

maps that were better than random. At the

40th generation, the average map correla-

tion of the whole population reached a value

of 0.33 when compared with the true solu-

tion (Fig. 1), while the fittest individual from

this population featured a map correlation
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Figure 2
Stereoviews of electron-density maps derived from
the viral capsid game. The atomic model of the viral
capsid is represented sitting at one corner and the
center of the centered cubic unit cell (a). The
electron-density map calculated using model phases
is depicted as a blue mesh in (b). The electron-
density map obtained with CrowdPhase was calcu-
lated by combining the observed amplitudes with
predicted phases and amplitudes and is shown in
purple (c); (d) represents the same map after NCS
averaging. All electron-density maps were displayed
with a contour level of 1�.



of 0.38. Additionally, the standard deviation between the set of

map correlation values at each generation decreased steadily

until reaching a value of around 0.03 in the final generation.

As a final selection step, the players were asked to pick the

individual that they judged to be the most fit from this final

generation. The map chosen by the majority exhibited a

correlation of 0.37 with the true solution (Figs. 2b and 2c). A

very rough approximation of the capsid structure appeared at

the correct location.

As a further step, we evaluated whether this phase set,

obtained ab initio from crowdsourcing, could be improved by

noncrystallographic symmetry (NCS) averaging. In applicable

cases NCS can serve as a powerful constraint in phasing

(Rossmann & Blow, 1962; Bricogne, 1976); the required

routines have been implemented in widely used crystallo-

graphic programs (Jones, 1992; Terwilliger, 2003; Cowtan et al.,

2012). Previous studies on viral capsid structures at low

resolution have demonstrated that phase sets, either experi-

mental or generated ab initio, could have their quality

substantially improved by NCS averaging (Winkler et al., 1977;

Luo et al., 1987; Rossmann, 1995; Miller et al., 1996). In this

case, we applied a round of iterative 15-fold NCS averaging

(the internal symmetry arising from the icosahedral fivefold

symmetry combined with a T = 3 triangulation) to the final

map chosen by the CrowdPhase players using AVE (Jones,

1992). The resulting map showed a marked improvement

visually, a map correlation of 0.75 with a map based on correct

phases and very clear agreement with the known structure

(Fig. 2d). As a control, we also applied the same NCS aver-

aging procedure to ten randomly phased starting map. The

mean starting correlation for these maps was 0.001 and the

mean final correlation was �0.20, with a standard deviation of

0.45; these maps generally appeared noisy.

Finally, in order to evaluate how this result compares with

automated methods, we tried to phase the viral capsid data set

using a spherical-shell model following the protocol described

in Tsao et al. (1992). As a starting point, we positioned a

uniform spherical density of 155 Å radius on the origin as

an initial approximation of the envelope of the Cucumber

necrosis virus capsid. The correlation of the map to the correct

solution began at 0.34 for the spherical model and increased to

0.45 after 100 cycles of solvent flattening. An additional step of

NCS averaging identical to that described above brought the

map correlation to 0.68. This value is only slightly inferior to

the value yielded by the CrowdPhase solution, but we note

that the starting point for the CrowdPhase study was random

phases, whereas the starting point in this latter comparison

benefited from being able to unambiguously identify the

origin of the capsid in advance and assign a spherical starting

shape; these advantages would not be available in a more

typical problem.

3.4. The cyclic peptide puzzle

As a second test, we sought to assess the ability of

CrowdPhase to phase a structure in a centrosymmetric space

group; the prospects for determining structures of (synthetic)

racemic mixtures of d and l polypeptides and small proteins

have been discussed previously (Zawadzke & Berg, 1992,

1993; Hung et al., 1998; Yeates & Kent, 2012). In this case, we

used diffraction data collected from crystals of a racemic

mixture of the 29-residue cyclic polypeptide abbreviated kB1

(Wang et al., 2014). The centrosymmetric

crystal belongs to space group P�11 and has a

solvent content of 31%. From this data set,

43 structure factors were calculated to 10 Å

resolution and the genetic algorithm form-

alism was used to encode their phases. In

this case, the parameters of population size,

tournament size, mutation rate, crossing-

over rate and the terminal generation

number were set to 80, 12, 0.2, 0.3 and 15,

respectively. The gene size was also

restricted to a single bit, a representation

that is sufficient to account for the two phase

values (0 and 180�) allowed by the centro-

symmetric space group. This game was

played by 43 noncrystallographers with only

a rough description of the molecule of

interest (i.e. its size and its cyclic nature).

Among the 43 initial players, 21 reached the

required level to participate actively in the

game. This game showed clear improvement

over the random starting point. The evolu-

tion of the map correlation is shown in Fig. 1,

where the average map correlation of the

population consistently improves through

the 15th generation, the value defined by the

research papers

450 Jorda et al. � Low-resolution ab initio phasing Acta Cryst. (2016). D72, 446–453

Figure 3
Stereoviews of electron-density maps for the centrosymmetric data set. The electron-density
map calculated with model phases is depicted in blue (a), the map calculated using phases
obtained from CrowdPhase is in purple (b) and an atomic model of the molecules found in one
asymmetric unit is shown in gray. We defined the contour level at 0.6� in both cases.



preset termination condition. Here again the standard devia-

tion of the set of map correlation values across individuals in a

generation steadily decreased from 0.2 to a value of around

0.04, at which point the population had begun to converge.

Individuals of the final generation embodied phase informa-

tion that was significantly better than the initially random

phases. Indeed, the average map correlation of the whole

population was 0.51, while the best individual of this genera-

tion featured a correlation of 0.61 (Fig. 1). As in the viral

capsid game, players were asked to vote for a winning map.

The chosen solution featured a correlation of 0.52 compared

with the correct map based on model phases (Fig. 3). In the

final solution the rough boundary is evident, although more

detailed features are not.

Similarly to the previous puzzle, we sought to assess the

performance of CrowdPhase by exploring the phasing of this

centrosymmetric problem using existing methods. We first

tried to obtain phases using SHELXD (Sheldrick, 2010). This

program generally requires high-resolution data for success,

and as a control we tested the ability to phase the given

structure at 1 Å resolution (using synthetic calculated

structure-factor magnitudes). This phasing test at 1 Å was

successful in producing an essentially correct structure. We

then attempted to obtain phases at the low resolution of our

test problem (30 reflections extending to 10 Å). As antici-

pated, the program was not able to identify a correct solution

at such low resolution. This prompted us to evaluate a

previously developed program (GENMEM) specifically

designed for ab initio low-resolution phasing based on map

connectivity (Lunina et al., 2003). The GENMEM program

was used to generate 5000 phase sets, of which the top 100

were averaged by the program AVERAGE, which is also

provided in the GENMEM package. In this case, the map

correlation obtained between the resulting data set and the

true solution was only 0.14.

4. Discussion

A series of additions and improvements have been made to

the CrowdPhase program. One of the main modifications was

the consideration of crystal symmetry, enabling the system

to handle a complete range of problem cases. Additional

modifications such as the special treatment of unmeasured

reflections, a solvent-flattening step and a map correlation

coefficient were also implemented, with similar objectives.

To evaluate the new CrowdPhase functionalities, we

designed two games involving higher order symmetry and

analyzed their results following a similar protocol as in the

former version (Jorda et al., 2014). The first puzzle was based

on a roughly spherical viral capsid, while the second one was

a racemic mixture of a cyclic polypeptide and its enantiomer.

The two games were initialized with essentially identical

genetic algorithm parameters, with the exception of the

termination step, which was set to generation 40 and 15 for

the viral capsid and the centrosymmetric case, respectively.

Overall, both game scenarios led from a random starting

point to a visible improvement in the phases and the map

correlation coefficients, especially in the early stages of the

evolutionary process (Fig. 1).

In the viral capsid game, there was already substantial

agreement between the correct map and that chosen by

CrowdPhase players (Fig. 2). However, given the general

ability of NCS averaging to improve the quality of phasing for

problems with higher internal symmetry such as icosahedral

viruses, we sought to determine whether the phase quality of

the winning map in the viral capsid game could be improved.

Substantial improvement was evident after NCS averaging,

resulting in a map in which the essential features of the viral

capsid were clear (Fig. 2d). For comparison, an NCS averaging

procedure starting from random phase sets (but without phase

evolution by CrowdPhase) did not on the whole lead to

significant improvement. Some starting phase sets did show

improvement, while others were made worse by averaging (an

outcome possibly related to the formation of Babinet negated

images, as discussed previously; Miller et al., 2001). Additional

comparison of our results with a spherical shell ab initio

approach relying on prior knowledge of the capsid origin

showed that CrowdPhase produced a map with slightly better

agreement with the true solution.

Likewise, the best map of the last generation in the racemic

polypeptide game recapitulates some of the map features

found in the correct solution (Fig. 3). CrowdPhase succeeded

in delivering phase sets that were well correlated with the true

solution in only 15 generations, which represented a more

rapid convergence compared with the case of the viral capsid.

This is a result that we had anticipated as this case was of lower

complexity; a lower number of reflections, and fewer bits to

describe the centric phases, made this second problem more

tractable. The phase improvement in this case also exhibited

an approach to a limiting value, although this point may not

have been fully reached in the game conducted; some incre-

mental gains may have been possible before the final plateau

(Fig. 1). Here again, a comparison with existing ab initio

phasing methods demonstrated that CrowdPhase was able to

achieve greater improvements starting with random phases.

The plateau behavior observed in these studies, especially

the case of the viral capsid, suggests that human visualization

is better at discriminating totally spurious maps and is less

capable of selecting better maps among a progressively

improving set of maps. This is a trend that we have already

discussed in the context of the minimal phase difference to

preserve the discriminatory power of the human eye (Jorda et

al., 2014). In these two cases, using the map correlation as a

metric for map comparison, the stagnation effect seems to

happen when the standard deviation of the map correlation

coefficient values falls below about 0.04. Hence, while the

fitter choices are evidently identifiable among randomly

generated individuals during the initial steps, the task becomes

more challenging as the genetic algorithm progresses. The

large proportion of users who succeeded in levelling up from

the training phase in the first game (52 out of 78 players)

supports this idea.

User training is another consideration that may relate to the

degradation of the accuracy in the fitness evaluation along the

research papers

Acta Cryst. (2016). D72, 446–453 Jorda et al. � Low-resolution ab initio phasing 451



evolutionary process. In these new studies, two drawbacks in

the current training scheme were evident. Firstly, new users

entering a game are trained on data (i.e. electron-density

maps) that are related to the generation being examined by

CrowdPhase at that point in time. For example, a user entering

the game at generation 10 will be trained on maps from that

generation. However, after such a user develops successful

visual rules for identifying good maps, those rules might not

hold up in later generations. The second issue comes from the

fact there is no guidance for users besides the scoring function,

which currently relies on the existence of a known solution.

We plan to address the first problem by offering several short

training sessions, not necessarily based on the current data,

during the whole process rather than just one at the beginning.

A second improvement would consist of the design of a more

generalized training guide independent of any specific game

data in CrowdPhase. A first step towards this goal was offered

during the racemic peptide game, where users were presented

with maps with different amounts of phase error based on the

crystal structure of a different cyclic peptide.

In terms of new directions, we are currently working on new

metrics that could guide human decisions based on compu-

tational analysis of topological and geometrical features of

electron-density maps, following ideas introduced in an earlier

study (Colovos et al., 2000). Within our CrowdPhase frame-

work, such a metric could be implemented as the sole fitness

function for automatic phasing or as a guide combined with

human visual discrimination. Future developments also

include methods that would extend the ab initio phasing

approach to higher resolution. These upcoming modifications

combined with the presented crystallographic improvements

should advance CrowdPhase as a potentially useful approach

for low-resolution ab initio phasing.
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