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�-Helical transmembrane proteins are a ubiquitous and important class of

proteins, but present difficulties for crystallographic structure solution. Here, the

effectiveness of the AMPLE molecular replacement pipeline in solving �-helical

transmembrane-protein structures is assessed using a small library of eight ideal

helices, as well as search models derived from ab initio models generated both

with and without evolutionary contact information. The ideal helices prove to

be surprisingly effective at solving higher resolution structures, but ab initio-

derived search models are able to solve structures that could not be solved with

the ideal helices. The addition of evolutionary contact information results in a

marked improvement in the modelling and makes additional solutions possible.

1. Introduction

Transmembrane proteins are an important class of proteins

that are estimated to comprise about 30% of the proteome

(Tusnády et al., 2004). They reside, at least partly and often

predominantly, within the hydrophobic cell membrane, sand-

wiched between the aqueous cell interior and exterior.

Transmembrane proteins come in two main forms, �-helical

and �-barrel, with the overwhelming majority being of the

�-helical form (White & Wimley, 1999). Estimates of the

number of transmembrane proteins encoded in the human

genome vary. Most studies agree that roughly 26% of proteins

are transmembrane proteins, but this includes a large number

of single-pass transmembrane proteins. Polytopic proteins, as

studied here, are thought to represent around 14% of the

human proteome (Almén et al., 2009; Fagerberg et al., 2010).

Conventional X-ray crystallography is still the predominant

mode of structure solution for transmembrane proteins.

Unfortunately, their hydrophobic nature means that trans-

membrane proteins are particularly challenging to work with

experimentally. Detergents are usually required to extract the

protein from the membrane environment. These surround the

protein, mimicking the membrane environment and forming a

water-soluble protein–detergent complex (PDC). The deter-

gent coating of the PDC reduces the number of protein–

protein contacts available to guide crystal formation, resulting

in large fragile crystals with a high solvent content (Moraes et

al., 2014). The nature of these crystals means that they often

diffract poorly and are unstable in an X-ray beam. As a result

of these complications, of the more than 130 000 protein

structures currently deposited in the PDB (Berman et al.,

2000), fewer than 3% (3084) are classified as transmembrane

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798317016436&domain=pdf&date_stamp=2017-11-22


proteins by the TMDET algorithm (Tusnády et al., 2004). The

low number of structures means that the probability of finding

homologous structures to use for molecular replacement

(MR) can often be low, so that the use of unconventional

approaches may be required. These can include methods

based on fragments or libraries of fragments, such as that

employed by ARCIMBOLDO, ARCIMBOLDO_LITE and

ARCIMBOLDO_BORGES (Rodrı́guez et al., 2009; Sammito

et al., 2013, 2015; Millán et al., 2015), or those that employ ab

initio structure prediction (Bibby et al., 2012; Shrestha et al.,

2011; Shrestha & Zhang, 2015; Wang et al., 2016).

Ab initio protein-structure prediction is the process of

determining the tertiary structure of a protein starting purely

from its sequence, and not relying on the use of an existing

structure as a template. Popular examples of ab initio

modelling software include ROSETTA, QUARK and SAINT2

(Simons et al., 1997; Rohl et al., 2004; Xu et al., 2012; Ellis et al.,

2010). Ab initio modelling for globular proteins, however, is

accurate only for modest chain lengths. For example, in the

absence of additional information, reliable modelling with

ROSETTA is still limited to sequences of up to 130 residues

(Tai et al., 2014), so that models of larger proteins are not

usually sufficiently accurate to be suitable for MR.

Our program AMPLE uses a cluster-and-truncate proce-

dure to extract ensembles for MR from the initial decoys

generated by ab initio programs (Bibby et al., 2012). AMPLE

constructs MR search ensembles by generating 1000 ab initio

models and then taking up to 200 models from the top

SPICKER cluster (Zhang & Skolnick, 2004) and truncating

them into 20 evenly-spaced size bins based on per-residue

structural variance measurements. The truncated models are

then subclustered under 1, 2 or 3 Å radius r.m.s.d. thresholds,

before being subjected to three different side-chain treat-

ments: polyalanine (removal of all side chains), ‘reliable’

(retaining side chains for residues with fewer rotamers) and

all-atom (no editing). The search ensembles are subjected to

MR with Phaser (McCoy et al., 2007; Read & McCoy, 2016)

and MR-positioned models are subjected to density modifi-

cation and automated main-chain tracing using SHELXE

(Thorn & Sheldrick, 2013). Further structure rebuilding of the

SHELXE chain traces with ARP/wARP (Langer et al., 2008)

and/or Buccaneer (Cowtan, 2006) can also be undertaken.

Despite the usually poor overall quality of the models for

larger proteins (which means that the individual models are

unsuitable for MR), the AMPLE algorithm is able to generate

successful ensembles for MR, and we have seen successes with

targets of up to 250 residues in length for �-helical coiled-coil

proteins (Thomas et al., 2015) and up to 221 residues for cases

where contact predictions (see below) were available to assist

the modelling of gobular proteins (Simkovic et al., 2016). The

more regular and ordered nature of �-helices, as opposed to �-

sheets or loops, facilitates ab initio modelling for structures

containing these secondary-structure elements. In addition,

the membrane-spanning helices of an �-helical transmem-

brane protein can be reliably predicted and assumed to remain

within a layer of finite width. This helpfully limits the

conformational space to be explored during the ab initio

modelling, aiding model accuracy and potentially raising the

upper size limit of tractable targets. Thus, ab initio modelling

might be particularly suitable for transmembrane proteins

(Yarov-Yarovoy et al., 2006) and make the resulting predic-

tions good candidates for solution with AMPLE.

The accuracy of ab initio modelling may also be improved

by the incorporation of additional information, one source of

which is evolutionary covariance. In recent years, there has

been a step change in the accuracy of residue–residue contact

predictions generated from sequence information alone

(Simkovic, Ovchinnikov et al., 2017). These methods infer

which residues are in physical contact by looking at the

evolutionary covariance signal within an alignment of a family

of homologous sequences. We have previously demonstrated

the benefits of using such predictions in addressing challenging

globular domains with AMPLE (Simkovic et al., 2016).

Contact-prediction algorithms can generally be divided into

two distinct categories: evolutionary coupling analysis and

supervised machine learning. The former derives contact

predictions by detecting evolutionary covariance amongst

homologous sequences, and various implementations attempt

this by employing a cooperative statistical model. Examples of

implementations that employ a pseudo-likelihood maximiza-

tion model can be found in applications such as GREMLIN

(Ovchinnikov et al., 2014) and CCMPRED (Seemayer et al.,

2014). Other implementations include sparse covariance

matrix-inversion models such as PSICOV (Seemayer et al.,

2014; Jones et al., 2012) or mean-field direct coupling analysis

models such as EVFold–mfDCA (Kaján et al., 2014).

Supervised machine-learning algorithms are not as effective

as most evolutionary coupling analysis algorithms; however, in

recent studies combining the two has proven to be the most

effective use of both. These meta-predictors have been

developed to combine predictions from a number of different

prediction methods. MetaPSICOV is one such meta-predictor

that uses a neural network to combine predictions from,

amongst others, the PSICOV, mfDCA and CCMPRED scores

(Jones et al., 2015). A related approach is MEMBRAIN, which

is a contact predictor optimized for transmembrane proteins

(Jones et al., 2015; Xiao & Shen, 2015). MEMBRAIN uses a

neural network to combine a covariance-based approach

(PSICOV) with the combination of a number of maximum-

likelihood approaches, each of which trains a statistical model

using sequence-derived features such as residue position along

the transmembrane helix or sequence separation of residues.

Most recently, NeBcon was proposed to combine multiple

contact predictors from both coevolution and machine-

learning techniques through naı̈ve Bayes classifier and neural

network training, which shows an advantage over the best

individual predictors (He et al., 2017).

Here, we explore the ability of AMPLE to solve trans-

membrane-protein structures using MR search ensembles

derived from ab initio models from a variety of sources.

Attempts were made to solve structures using models derived

from ROSETTA’s established ROSETTAMEMBRANE

protocol and the QUARK modelling protocol, both of which

do not use contact information by default. Solution was then
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attempted with ROSETTA models created using contact

information derived from GREMLIN, CCMPRED, Meta-

PSICOV or MEMBRAIN to test whether the additional

contact information improved the success rate. As in our

earlier work (Thomas et al., 2015), we also tried to solve the

structures with a library of short, ideal �-helices ranging in size

from five to 40 residues. These were chosen for comparison

with the highly truncated but model-derived �-helix-rich

search models of a similar size that AMPLE frequently

generates. These latter, unlike the ideal helices, are ensembles

and can contain bent or kinked helices as well as other irre-

gular features. The comparison therefore illuminates the

contribution of the modelling and ensembling to MR success.

2. Methods

2.1. Test-set selection

A set of 14 transmembrane structures was selected by firstly

generating a list of all the �-helical proteins from the PDBTM

(Tusnády et al., 2004). An advanced query was run against the

PDB to extract all structures corresponding to the PDBTM list

but containing a single protein entity (regardless of the

number of copies in the crystallographic asymmetric unit),

with a sequence length less than 250 and where the structure

was resolved to a resolution of better than 2.5 Å. The struc-

tures were then clustered with CD-HIT (Li & Godzik, 2006)

using a sequence-identity threshold of 0.4 and a word length of

2. For each cluster with more than one structure, the shortest,

highest resolution structure was selected where there was a

viable MTZ file [a binary file containing the reflection data

from a crystallography experiment in CCP4 (Winn et al., 2011)

format]. Structures with a chain length of greater than 30

residues or with fewer than 800 residues in the asymmetric

unit were selected to create the final set, as listed in Fig. 1,

which also summarizes key data associated with each target

and the results of running the different modelling protocols.

2.2. Ideal helices

Following our work on coiled-coil proteins (Thomas et al.,

2015), AMPLE already contains a library of eight ideal

polyalanine helices with residue lengths of five, ten, 15, 20, 25,

30, 35 and 40. The ideal helices were created using the

AVOGADRO (Hanwell et al., 2012) chemical editor and

visualization application using a ’ angle of �57.8� and a  
angle of �47.0�.

2.3. ROSETTA modelling protocols

The same set of ROSETTA fragments were used in the the

ROSETTAMEMBRANE, GREMLIN, CCMPRED, Meta-

PSICOV and MEMBRAIN protocols to facilitate comparison

between them. The fragments were generated using the
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Figure 1
Selected data for the 14 transmembrane-protein targets with a summary of the MR solutions for each modelling protocol. For each modelling protocol,
the number of successful search models over the total number of ensembles tested in AMPLE is shown, with cells with successful search models
highlighted in green. The table is ordered by the resolution of the target.



ROSETTA make_fragments.pl script supplying the

-nohoms flag to ensure that no homologous fragments were

used and so that no structural information from homologous

structures was included in any modelling.

2.4. ROSETTAMEMBRANE modelling protocol

The original ROSETTAMEMBRANE protocol (Yarov-

Yarovoy et al., 2006) was used. Yarov-Yarovoy and coworkers

recommend only using SAM (Sequence Alignment and

Modeling System; Katzman et al., 2008) to predict the

secondary structure, as the default JUFO (Meiler & Baker,

2003) and PSIPRED (Jones, 1999) predictors often incorrectly

predict the secondary structure for transmembrane proteins.

However, the recommended method for AMPLE users to

generate the fragment database required by ROSETTA is to

use the online ROBETTA server (Kim et al., 2004), which

does not support the use of SAM. Standard ROSETTA frag-

ments, obtained using the default secondary-structure

prediction protocol as used by the ROBETTA server, were

therefore used as this replicates the procedure that will be

followed by AMPLE users. In addition, this allowed the use of

the same fragment databases with all the modelling protocols,

as described above.

The OCTOPUS server (July 2015; Viklund & Elofsson,

2008) was used to predict transmembrane regions and a

lipophilicity prediction was generated using the run_lips.pl

script, which undertakes a PSI-BLAST (Altschul et al., 1997)

multiple sequence alignment of the target sequence against

the NR database (O’Leary et al., 2016). The OCTOPUS and

lipophilicity predictions were then used with the ROSETTA-

MEMBRANE executable to generate the models. ROSETTA

v.2015.22.57859 was used for the ROSETTAMEMBRANE

modelling and all subsequent ROSETTA modelling in this

work.

2.5. QUARK modelling

The online QUARK server is a particularly easy way for

AMPLE users to generate ab initio models, as it does not

require them to install any additional software or use their

local machine for the time-consuming model-generation stage

(Keegan et al., 2015). Although the QUARK modelling

protocol (Xu et al., 2012) does not feature any membrane-

specific protocols, previous work by the developers has

demonstrated success in modelling transmembrane proteins in

Escherichia coli (Xu & Zhang, 2013). The QUARK decoys

were generated on 20 November 2015. For each target, ten

independent replica-exchange Monte Carlo (REMC) simula-

tions were performed by QUARK, where each REMC runs 40

replicas in parallel at different temperatures with each replica

containing 500 Monte Carlo cycles of simulations. This process

output 50 000 decoys from the ten lowest-temperature replicas

(i.e. ten REMC simulations� ten lowest-temperature replicas

� 500 Monte Carlo cycles). From the full decoy set, a subset of

5000 decoys was randomly selected for further consideration.

To reconstruct the full-atomic model from each of the selected

C� decoy structures, an initial all-atom representation was

generated using PULCHRA 3.06 (Rotkiewicz & Skolnick,

2008) or MaxSprout 2006.10 (Holm & Sander, 1991) if

PULCHRA was unsuccessful. Side chains were then added

using SCWRL 4.0 (Krivov et al., 2009).

In order to ensure that no homologous fragments were used

in the modelling, PDB structures with a sequence identity of

>30% to the target or that were detectable by PSI-BLAST (a

criterion used by earlier ab initio folding benchmark tests;

Simons et al., 2001; Zhang et al., 2003) were excluded from the

QUARK fragment library.

2.6. ROSETTA modelling with GREMLIN predicted contacts

The transmembrane-modelling protocol for modelling

transmembrane proteins using contact predictions generated

by the GREMLIN server (http://gremlin.bakerlab.org/) was

developed by Ovchinnikov et al. (2015). Contact predictions

generated by the GREMLIN server in November 2015 were

used to generate the models. This method presents an

attractive alternative to the original ROSETTAMEMBRANE

protocol, as it only requires a user to generate the contact

information using the GREMLIN server and then run the

standard ROSETTA executables. There is no need to perform

OCTOPUS transmembrane prediction or the lipophilicity

prediction, with the associated need for BLAST and the NR

database to be installed, as there is with ROSETTA-

MEMBRANE. The protocol is described further in xS1.

2.7. Contact modelling (excluding GREMLIN)

For each target, a multiple sequence alignment (MSA) was

generated using the conkit-predict script from the

CONKIT package (Simkovic, Thomas et al., 2017) and using

HHblits v.2.0.16 (Alva et al., 2016) against UniProt20

v.2016_02 (The UniProt Consortium, 2017). A contact meta-

prediction using MetaPSICOV v.1.04 (Jones et al., 2015) was

generated, which in turn used the following contact-prediction

pipelines: CCMPRED v.0.3.2 (Seemayer et al., 2014), Free-

Contact v.1.0.21 (Kaján et al., 2014) and PSICOV v.2.1b3

(Jones et al., 2012). The predictions from MetaPSICOV stage 1

(MetaPSICOV_S1) were used as the contact predictions for

MetaPSICOV as recommended in Jones et al. (2015). The

CCMPRED predictions generated by MetaPSICOV were

used as the CCMPRED predictions. A set of contacts was also

generated using the MEMBRAIN server v.2015-03-15.

For each set of contact predictions, the top L contact pairs

were then turned into a set of restraints for ROSETTA, where

L is the number of residues in the target sequence. The FADE

energy function was employed with parameters identical to

those reported in Michel et al. (2014). Modelling was then

carried out with the ROSETTA ABINITIO protocol.

2.8. Molecular replacement

All of the models were run in the automated MR pipeline

AMPLE v.1.0 using default parameters (Bibby et al., 2012) and

with the CCP4 suite v.6.5.13 (Winn et al., 2011), SHELXE

v.2014/14 and ARP/wARP v.7.5.
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To be considered a successful MR solution, the positioned

models were required to yield a SHELXE correlation coeffi-

cient (CC) of at least 25.00 and an average chain length (ACL)

of greater than 10.00. We imposed as an additional condition

of success that structure rebuilding of the SHELXE chain

traces with ARP/wARP (Langer et al., 2008) and/or Buccaneer

(Cowtan, 2006) resulted in an Rfree value of 0.45 or better. A

further validation was provided by measuring the weighted

mean phase error between each rebuilt model and the crystal

structure.

3. Results

The weighted mean phase error for all of the final rebuilt

models was measured to confirm that the structure had been

correctly determined. In all cases the error was less than 30�.

3.1. Ideal helices

Attempting solution with the AMPLE library of ideal

helices solved six of the targets, as shown in Figs. 1 and 2.

The library of ideal helices was able to solve six targets in

total. All targets smaller than 261 residues and with a reso-

lution better than 1.9 Å were solved using this protocol, with

the exception of target 3gd8. Considering that transmembrane

proteins are considered to be relatively hard targets to solve,

that so many of this set can be solved using a small library of

ideal helices and a simple MR protocol is an encouraging

result to set alongside other advances in the use of ideal

helices (Millán et al., 2015).

3.2. ROSETTAMEMBRANE

Solution was then attempted using the ROSETTA-

MEMBRANE protocol. Fig. 1 shows that ROSETTA-

MEMBRANE performs more poorly than the AMPLE library

of ideal helices, solving four targets. Three of the solved

targets could be solved with the ideal helices. The single

exception is 3gd8, which could now be solved for the first time.

Targets 3hap, 2xov and 2o9g were not solved, despite being

solvable with the ideal helices.

An analysis of the quality of the models was then made to

determine how the effectiveness of the modelling affected the

ability of AMPLE to solve the targets using ROSETTA-

MEMBRANE. The TM score of the complete model that

became the centroid of the search ensemble was used as a

metric for the quality of the models within the ensemble. A

TM score of greater than 0.5 is generally considered to indi-

cate correct prediction of the overall fold. The results of the

analysis are displayed in Supplementary Fig. S2. The results

show that there was no correlation between the quality of the

models and the success of the ensembles, with the successful

search models all coming from ensembles where the TM score

of the complete centroid model was between 0.21 and 0.33.

Targets 3u2f and 2wie failed to solve, despite some ensembles

being derived from models with TM scores of 0.739 and 0.715,

respectively.

Target 3gd8 could be solved with four ensembles, despite

none of the successful ensembles being derived from a model

with a TM score of better than 0.227. Selected data for the

ensembles are listed in Supplementary Table S1. The RIO

score (Thomas et al., 2015), which assesses the in-sequence and
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Figure 2
Results for attempting solution of transmembrane proteins with ideal
helices mapped against target resolution and number of residues in the
asymmetric unit of the crystallographic cell. Successes are in blue and
failures are in red.

Figure 3
Successful solutions from ensembles c1_tl11_r2_allatom and
c1_tl6_r3_reliable (blue and magenta, respectively) overlaid on the
crystal structure of PDB entry 3gd8 (green).



out-of-sequence register overlap of the placed search-model

residues (fragments of at least three residues) with the

corresponding crystal structure, was zero for all solutions,

indicating that the helices were not placed correctly with

regard to sequence. Although the successful ensembles

(c1_t11_r3_polyAla, c1_t11_r2_allatom, c1_t6_r3_reliable and

c1_t6_r2_allatom) had undergone different subcluster radii

and side-chain treatment, the final models for the successful

search models c1_t11_r3_polyAla and c1_t11_r2_allatom were

almost identical, as were those for c1_t6_r3_reliable and

c1_t6_r2_allatom. [Ensembles in AMPLE are named using a

quartet of identifiers separated by underscores. The first

identifier is the number of the SPICKER cluster that the

models were derived from, prefixed with a c, the second the

truncation level, prefixed with a t, the third the subcluster

radius, prefixed with an r, and the last the side-chain mode].

Fig. 3 shows the first of each pair (c1_t11_r2_allatom and

c1_t6_r3_reliable) overlaid on the crystal structure.

The two solutions appeared to be largely straight helices of

lengths of 25 and 14 residues, respectively. It is therefore

interesting that the ideal helices of lengths 25 and 15 were

unable to solve target 3gdb. An analysis of the placement

of the helical segment in the

two solutions of 3gd8 with

HELANAL (Kumar & Bansal,

2012) identified the search

models as being ‘curved’ and the

helix of 3gd8 as being ‘kinked’

(Bansal et al., 2000). A ‘kink’ is

defined by the authors when the

bending angle of a given residue

is greater than 20� but less than

60�. The search ensembles

generated by AMPLE contained

between 19 and 30 search models,

so it appears that the approx-

imation of the slightly kinked

helix by the slightly curved search

model and/or diversity within the

search-model ensembles is what

enabled the AMPLE search

ensemble to succeed where the

AMPLE set of ideal helices

failed. The HELANAL analysis

and models of the search ensem-

bles are displayed in Supplemen-

tary Table S2 and Supplementary

Fig. S3, respectively.

3.3. QUARK

Solution was then attempted

with QUARK models. The results

are displayed in Fig. 1, with a

graphical summary in Supple-

mentary Fig. S4 and an analysis of

the TM scores in Supplementary

Fig. S5. QUARK was able to

solve three targets, all of which

could be solved with the AMPLE

library of ideal helices. An

analysis of the TM scores for the

models similar to that undertaken

for ROSETTAMEMBRANE

showed that the quality of the

models again had little effect on

solution. The QUARK models for

target 3u2f were of even better
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Figure 4
Successful search models (blue) overlaid on the crystal structure of PDB entry 1gu8 (green). Clockwise
from top left: c1_t70_r2_polyAla (167 residues), c1_t40_r2_polyAla (95 residues), c1_t25_r1_polyAla (59
residues) and c1_t10_r1_allatom (23 residues).



quality than those for ROSETTAMEMBRANE (maximum

TM score of 0.792), but the target could still not be solved.

Overall, the quality of the QUARK models was rather better

than for ROSETTAMEMBRANE (median TM score across

all models of 0.385 as opposed to 0.263), but as the general

quality of the modelling is poor, even the better models rarely

seem to have the potential to generate solutions.

3.4. GREMLIN

Solution was then attempted with models generated by the

GREMLIN modelling protocol. The results are displayed in

Fig. 1, with a graphical summary shown in Supplementary Fig.

S6 and an analysis of the TM scores shown in Supplementary

Fig. S7. GREMLIN was able to solve four targets, including

1gu8, which could not be solved with AMPLE’s simple

approach to ideal helices, QUARK or ROSETTA-

MEMBRANE. However, targets 3ldc, 3ouf and 2o9g were not

solved, all of which could be solved with the ideal helices, and

neither was 3gd8, which could be solved with ROSETTA-

MEMBRANE. The contact information used by GREMLIN

dramatically improved the quality of the models, so that the

median TM score across all models was 0.667, as opposed to

0.263 for ROSETTAMEMBRANE and 0.385 for QUARK. It

also appears that the better models are contributing more to

the solutions. 20 successful models were generated for target

1gu8, with a wide range of model sizes (23, 35, 47, 59, 71, 83,

95, 107, 119 and 167 residues). A selection of four of the

successful solutions, covering the whole span of sizes, is shown

in Fig. 4.

Fig. 4 shows that all of the solutions were derived from the

same cluster, with the smaller ensembles being heavily trun-

cated versions of the larger ones. The models for target 1gu8

are much better than with any of the previous methods (a

maximum TM score for successful/unsuccessful of 0.829/0.856)

and this is what appears to have made solution possible. The

modelling has captured the packing and helical curvature of

six of the helices. It is interesting that for the smallest solution

(c1_t10_r1_allatom with 23 residues), just two short helical

segments correctly packed against each other are sufficient to

elicit a solution, whereas an ideal helical segment of the same

length cannot. Interestingly the ensemble derived from the

untruncated cluster of models, the centroid of which had a TM

score of 0.856, was unable to solve the target.

3.5. CCMPRED, MEMBRAIN and MetaPSICOV_S1

Solution was then attempted with models built with

the assistance of contact predictions from CCMPRED,

MEMBRAIN or METAPSICOV_S1. The results are

summarized in Fig. 1, with graphical summaries of the results

shown in Supplementary Figs. S8, S10 and S12, and analyses of

the TM scores shown in Supplementary Figs. S9, S11 and S13.

The successes across the three modelling protocols were

mixed. CCMPRED solved three targets, MEMBRAIN solved

five and METAPSICOV_S1 solved four; thus, none solved as

many targets as the ideal helix run. However, CCMPRED and

METAPSICOV_S1 both solved target 4dve, which could not

be solved with any other method, and METAPSICOV_S1 also

solved target 2o9g, which had previously only been solved

with the AMPLE library of ideal helices.

Figs. 5 and 6 show the successful search models for target

4dve. It can be seen that for the CCMPRED solution

c1_t34_r1_allatom the modelling has created a kinked helix

that has captured the packing and alignment of a slightly

curved helix with a shorter helix that follows it. For the
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Figure 5
Successful search model c1_t34_r1_allatom from the CCMPRED run in
blue overlaid on the crystal structure of PDB entry 4dve in green.

Figure 6
Successful search model c1_t90_r3_polyAla from the MetaPSICOV_S1
run in blue overlaid on the crystal structure of PDB entry 4dve in green.



METAPSICOV_S1 search model c1_t90_r3_polyAla, the

modelling performed extremely well (TM score of 0.7201 for

the full model used as the ensemble centroid) and has

captured both the overall packing and curvature of the helices.

3.6. Analysis of model quality

A boxplot of the overall TM scores for all the different

modelling runs is displayed in Fig. 7.

The plot shows that there is a very wide variation in the

quality of the models produced by all of the modelling

protocols. However, it is clear that the contact-assisted

models (GREMLIN, CCMPRED, MEMBRAIN and Meta-

PSICOV_S1) are generally better than those without contact

information (ROSETTAMEMBRANE and QUARK).

3.7. Analysis across all runs

When looking across all targets and all runs, as displayed in

Fig. 1 and Supplementary Figs. S14 and S15, it is clear that

resolution plays an important factor, although the modelled

chain length and number of residues also influence success to

some extent. It is not surprising that the target with the lowest

resolution and the largest number of residues in the unit cell

(PDB entry 2bhw) could not be solved at all.

Analysing the successes and failures against the median TM

score for the centroid model of the top cluster from SPICKER

for the different runs, with the targets ordered by resolution,

in Fig. 8 sheds some light on the performance of the various

modelling protocols. It shows that improved modelling as

indicated by the TM score is not indicative of a better chance

of MR success and that instead resolution is the dominant

parameter. Almost all structures with a resolution of better

than 2.0 Å were solved with the library of ideal helices. The

notable exception is 3gd8, which has been addressed earlier.

For structures with a resolution poorer than 2.0 Å, good

modelling is occasionally able to generate models from which

AMPLE can create successful search models. Notable exam-

ples are targets 4dve and 1gu8, where solution only becomes

possible when the TM score rises to 0.69 and 0.8, respectively.

For targets 3u2f, 3rlb and 2wie solution is never achieved,

despite the QUARK models for 3u2f achieving a median TM

score of 0.79, the CCMPRED models for 2wie achieving a TM

score of 0.744 and the GREMLIN models for 3rlb achieving a

TM score of 0.78.
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Figure 7
Boxplot of the distribution of TM scores of the models from the top
cluster for all targets across each type of modelling run. For each
distribution, the red line indicates the median value, the upper and lower
edges of the blue rectangle indicate the first and third quartile values,
respectively, and the the black horizontal lines represent the minimum
and maximum values with the exception of outliers, which are shown as
crosses.

Figure 8
Plot of the median TM scores of the models in the top cluster for the different targets ordered by resolution. Points are coloured green if the target was
solved and red otherwise. The ideal helix solutions are plotted as squares along the bottom with a TM score of 0.0.



That targets 3u2f, 3rlb and 2wie were not solved despite

reasonable models being generated could be an indication that

the crystallographic data were particularly poor. However, an

analysis of crystallographic quality metrics in Supplementary

Table S3, such as the redundancy, Rmerge and I/�(I), did not

indicate that any of these targets differed systematically from

the others. An example of such an analysis is Supplementary

Fig. S16, which shows the TM score plotted against the I/�(I)

of the highest resolution shell and demonstrates that there is

no particular pattern between the data quality as measured by

this metric, the quality of the models and what could be

solved.

It is interesting to examine any correlation between the

quality of the modelling and the size of the search model that

is able to solve a structure. It would be expected that better

modelling would enable larger search models to be successful,

whereas as the modelling became poorer more of the model

would be need to be truncated away to leave an accurate core

that could facilitate solution. Fig. 9 overlays a plot of the

maximum TM score of the ensemble centroid model for all

successful ensembles on a histogram showing the size distri-

bution of successful models.

The plot shows that there is a good correlation between the

quality of the models and the size of successful models, as

expected. A notable exception is 2o9g, which was solved with

a search model of size 234 residues (95% of the length of the

full target), despite the full ensemble centroid model having a

relatively poor TM score of 0.42, indicating that the overall

fold has not been accurately modelled. An examination of this

unexpected success revealed an interesting explanation.

Analysis of the largest successful search model for target 2o9g,

which was from the ensemble c1_t95_r3_reliable generated by

MetaPSICOV modelling, showed that the search model was

placed in the unit cell so as to partially overlap both with the

crystal structure and with one of its symmetry mates, as shown

in Figs. 10 and 11.

Although the search model is a poor match for the crystal

structure, the overlap with the symmetry mate places the

search model so as to overlap with almost the entire content of

the asymmetric unit. Supplementary Fig. S17 shows the search

model placed so that the section that overlaps the symmetry

mate has been wrapped onto the original copy of the crystal to

demonstrate the full extent of the overlap. This shows that the

search model is an excellent match for the overall crystal

structure, as demonstrated by a TM score of 0.77 for the

wrapped model with the crystal structure. Target 2o9g

contains a monomer of an aquaporin membrane channel, the

biological assembly of which is a homotetramer of four

subunits related by a fourfold symmetry axis. As shown in
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Figure 9
Boxplot of the size of successful search models for the different targets
ordered by resolution. The maximum TM score for the ensemble centroid
model is also plotted for comparison.

Figure 10
Search model from ensemble c1_t95_r3_reliable in blue overlaid on the
crystal structure of PDB entry 2o9g in green, with the symmetry mate of
2o9g in grey: side view.

Figure 11
Search model from ensemble c1_t95_r3_reliable in blue overlaid on the
crystal structure of PDB entry 2o9g in green, with the symmetry mate of
2o9g in grey: top view.



Supplementary Fig. S18, the search model sits perfectly on the

interface between two monomers.

Where a protein is active as an obligate oligomer, evolu-

tionary covariance will emerge in an intermolecular fashion at

the subunit interfaces. Since there are no reliable methods

to distinguish between intramolecular and intermolecular

contact pairs in homo-oligomers, and the latter were also

present in the sets used to drive modelling, the folding will try

to satisfy all corresponding restraints. The aquaporin chain

contains two subdomains that are structurally similar and are

considered to have arisen by evolutionary duplication (Park &

Saier, 1996). The METAPSICOV_S1 model represents two

subdomains spanning a subunit interface, rather than two

subdomains within a single chain, yet the accurate interface

packing unexpectedly captured by the modelling allows

successful structure solution.

In order to test our hypothesis that intermolecular contact

predictions drove the successful METAPSICOV_S1 model-

ling, we compared the set of predictions against the crystal

structure. A comparison of the predicted METAPSICOV_S1

contact pairs against the contact pairs extracted from the

monomer at 8 Å distance between C� and C� (C� in case of

Gly) atoms indicated a high precision of 62.4%. Indeed,

looking only at the dimer interface, 21 contacts in the top L

pairs were predicted correctly with an average confidence

score of 0.435. In particular, two hotspot residues alone, 45

and 102, cover seven correctly predicted contacts (Supple-

mentary Fig. S19). Similarly, in the CCMPRED top L contact

pairs, 23 contacts were found in the dimer interface, although

the corresponding models were unsuccessful. The

MEMBRAIN server did not predict a single contact pair

across the dimer interface.

The placing of a search model so as to overlap with a

symmetry mate is something that has been observed

previously with AMPLE. In part, it was inaccurate positioning

of long helical fragments so as to overlap with a neighbouring

symmetry mate in the first AMPLE paper (Bibby et al., 2012)

that prompted our work on coiled-coil proteins (Thomas et al.,

2015), where we also observed this phenomenon. In these

cases, though, it was largely the fortuitous placement of a

fragment that happened to cross the boundary of the asym-

metric unit that facilitated solution, although correct generic

helical packing modes were correctly captured. The solution

of target 2o9g is different as the addition of the contact

information has explicitly resulted in the modelling, albeit in

an intramolecular fashion, of the intermolecular interface.

4. Discussion

This exploration of the ability of AMPLE to solve �-helical

transmembrane proteins was prompted by our earlier

successes solving small globular proteins, where 80% of the

entirely �-helical structures could be solved (Bibby et al.,

2012), and with coiled-coil proteins (Thomas et al., 2015),

where again 80% of the structures could be solved. A notably

positive outcome of this work is the solution of all bar one of

the targets with a resolution of better than 2.0 Å using a small

library of eight ideal helices.

Using ideal helical fragments to solve structures has

been demonstrated before by programs such as ARCIM-

BOLDO_LITE (Sammito et al., 2015), and a transmembrane

structure was solved with helical fragments using ARCIM-

BOLDO_BORGES (Sammito et al., 2013; Millán et al., 2015),

for example. However, these approaches use a more

sophisticated MR procedures than AMPLE does, and

ARCIMBOLDO_BORGES employs a curated library of

fragments derived from existing structures. That a simple MR

approach with a small library of ideal helices can solve so

many of this test set is encouraging, as it shows that neither

laborious experimental phasing nor relatively computationally

expensive modelling or MR protocols may be required to

solve transmembrane proteins with a resolution better than

2.0 Å.

For the current target set, where the resolution is poorer

than 2.0 Å some form of ab initio modelling is required in

order to generate a sufficiently large search model to enable

solution. The two contact-free modelling protocols,

ROSETTAMEMBRANE and QUARK, were able to generate

solutions, but the overall quality of the modelling was poor

and the protocols could only solve one structure that could not

be solved with AMPLE’s set of ideal helices.

The addition of inter-residue contact pairs results in a

marked increase in the overall quality of the models and

facilitates the solution of two structures that could not be

solved using any other protocol. These two structures were

both at moderate resolution (2.09 Å for target 4dve and

2.27 Å for target 1gu8), and target 4dve, with 594 residues, was

the second largest by number of residues in the asymmetric

unit. This improvement of the modelling when contact-

prediction information is included is especially encouraging, as

contact prediction is a fast-moving field that is evolving and

improving rapidly: deep learning, for example, seems to hold

particular promise (Wang et al., 2017), and metagenomic data

will inevitably spread the availability of this information

across more protein families (Ovchinnikov et al., 2017).

Transmembrane proteins seem to offer both particular chal-

lenges and opportunities. On the one hand their low packing

densities and water-containing cavities are likely to weaken

the covariance signal that contact prediction relies on (Rose et

al., 2014) and the relatively limited number of transmembrane-

protein structures available limits the accuracy with which

biophysical parameters relevant to methods development can

be determined (Li et al., 2017). On the other hand, the

fundamentally limited range of intramembrane packing

interactions facilitates the development of bespoke trans-

membrane-protein methods of contact prediction (see, for

example, Li et al., 2017). For the same reason, there are good

reasons to think that specific transmembrane-protein ab initio

modelling protocols will produce better results than general

methods. It is unfortunate that the one attempted here

(ROSETTAMEMBRANE) does not appear to be being

actively developed, but other methods are in development

(Law et al., 2017).
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A particularly interesting feature of the contact modelling

was the generation of a homodimer interface for the target

2o9g by METAPSICOV_S1. Although this facilitated the

solution of target 2o9g, it demonstrates the current inability of

contact-generation algorithms to separate the intramolecular

and intermolecular contacts. Although either set of contacts

can be useful for different purposes (Simkovic, Ovchinnikov et

al., 2017), until it becomes possible to separate them the

modelling will attempt to satisfy both sets at the same time,

which can confidently be predicted to result in poorer models

than if a single set were used. Curiously, high-quality models

with TM scores of around 0.8 were calculated for this target,

but clusters containing them were not sources of successful

search models.

As well as highlighting the value of a putative method to

distinguish intramolecular and intermolecular contact

predictions, the results offer other pointers towards future

productive algorithmic developments. When the modelling

performs well, AMPLE is often able to generate an ensemble

that can solve the structure; this applies to both high-

resolution and low-resolution structures. With high-resolution

structures, SHELXE is able to trace up to a full structure, even

when only a small fragment has been placed correctly, as is the

case for ideal helices. With high-resolution structures, when

the modelling is relatively poor, AMPLE must prune away

enough of the incorrect structure to leave a sufficiently

accurate substructure suitable for MR and tracing with

SHELXE. Sometimes the truncation algorithm in AMPLE is

able to perform this (examples include targets 3ouf and

2xov), although at other times it fails and the truncated

ensemble is unable to solve the structure, whereas

an ideal helix of the same length can. In these cases, it

will be of value to explore whether bespoke truncation

protocols for transmembrane proteins could improve

performance.

All of this work was undertaken with CCP4 v.6.5.3

(including SHELXE v.2014/14 and ARP/wARP v.7.5), which

was released on 3 July 2015. This was necessary to ensure that

the different runs of AMPLE with the different modelling

protocols were comparable. As of the time of writing CCP4 is

at v.7.0.045 (including SHELXE v.2017/1) and considerable

improvements have been made in the CCP4 software

packages that AMPLE relies on. In related work (unpub-

lished) we have run a number of the cases in this work with a

newer version of CCP4 and observed significant improve-

ments in our success rate. We therefore expect that a user of

AMPLE using the very latest version of CCP4 would have an

even better chance of solving their structure than the work in

this paper suggests.

In summary, this work shows that AMPLE can already

solve many (9/14) of a set of �-helical transmembrane

proteins. Higher resolution cases can be attempted first using

ideal helices, while others yield to the ability of AMPLE to

construct MR search ensembles from ab initio models. Targets

for which contact predictions can be calculated show a distinct

benefit from their use. As data volume and methods devel-

opment push contact prediction to better performance in the

future, the overall success rate of AMPLE can be expected to

improve further.
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