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To determine a substructure from single-wavelength anomalous diffraction

(SAD) data using Patterson or direct methods, the substructure-factor

amplitude (|Fa|) is first estimated. Currently, the absolute value of the Bijvoet

difference is widely used as an estimate of |Fa| values for SAD data. Here, an

equation is derived from multivariate statistics and tested that takes into account

the correlation between the observed positive (F +) and negative (F�) Friedel

pairs and Fa along with measurement errors in the observed data. The

multivariate estimation of |Fa| has been implemented in a new program, Afro.

Results on over 180 test cases show that Afro provides a higher correlation to

the final substructure-factor amplitudes (calculated from the refined, final

substructures) than the Bijvoet differences and improves the robustness of

direct-methods substructure detection.

1. Introduction

In determining a macromolecular crystal structure solely from

its anomalous signal, the first step is to determine the position

of the anomalous substructure that is present. The application

of direct methods combined with Patterson techniques, as

implemented, for example, in the programs SHELXD

(Schneider & Sheldrick, 2002) and HySS (Grosse-Kunstleve &

Adams, 2003), or the application of phase-retrieval techniques

as implemented in PRASA (Skubák, 2018) have proven to be

very powerful in detecting anomalous substructures, particu-

larly when the anomalous substructure contains many atoms

or the signal is very weak.

In all of these approaches, in order to detect the anomalous

substructure an estimate of the substructure-factor amplitude

|Fa| is required. The absolute value of the Bijvoet difference

(�F = ||F +|� |F�||) is typically input to substructure-detection

programs as an estimate for |Fa|.

To improve the methods further, here we propose new

formulas and a new refinement strategy to calculate |Fa| values.

Previously, Terwilliger (1994) and Burla et al. (2002, 2003)

employed Bayesian and multivariate approaches to obtain the

probability distribution of |Fa|. Here, we expand on their work

and derive a probability distribution for P(|Fa|; |F +|, |F�|) that

takes into account measurement errors in |F +| and |F�| and

does not assume any relationship between the Friedel phases.

We report that at least in our practical implementation, better

results were obtained by using the approximation of Burla and

coworkers, probably due to numerical stability issues of

the more general equation. Furthermore, we propose the
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maximum-likelihood refinement of errors and scale para-

meters to obtain the optimal values, given the distributions

that we have obtained. Finally, we apply the newly imple-

mented |Fa| estimation to over 180 test cases and show the

superior performance of these estimates compared with the

�F values when used by the substructure-determination

program PRASA.

2. Methods

To obtain an estimate of the substructure-factor amplitude |Fa|

from a SAD experiment, the expected value of |Fa| given the

observations |F +| and |F�| is required. Let F + denote a

structure factor with Miller indices h, k, l; (F�)* denote the

complex conjugate of a structure factor with Miller indices

�h,�k,�l; Fa denote a substructure factor with Miller indices

h, k, l; and �+ and �� denote the phases of F + and (F�)*,

which we will refer to as Friedel pair phases. Then, assuming a

complex multivariate Gaussian distribution for P[Fa, F +,

(F�)*], the following expression can be obtained:

hjFaj; jF
þj; jF�ji

¼

R1
0

jFaj
R�
��

R�
��

R�
��

PðjFaj; �a; jF
þj; �þ; jF�j; ��Þ d�þ d�� d�a dFa

R1
0

R�
��

R�
��

R�
��

PðjFaj; �a; jF
þj; �þ; jF�j; ��Þ d�þ d�� d�a dFa

¼
1

4ð�a11Þ
1=2I0f2jF

þjjF�j½ða23 �
a12a13þb12b13

a11
Þ

2
þ ðb23 þ

a13b12�a12b13

a11
Þ

2
�
1=2
g

�
R�
��

exp

�
� 2jFþjjF�j

�
a23 �

a12a13 þ b12b13

a11

� �
cosð�Þ

� b23 þ
a13b12 � a12b13

a11

� �
sinð�Þ

��

� �ð� 1
2 ; 1;��Þ d�; ð1Þ

where

�ðjFþj; jF�j; �;�Þ ¼
ða2

12 þ b2
12ÞjF

þj
2
ða2

13 þ b2
13ÞjF

�j
2

a11

þ
2jFþjjF�jða12a13 þ b12b13Þ cosð�Þ

a11

þ
2jFþjjF�jða13b12 � a12b13Þ sinð�Þ

a11

: ð2Þ

The above expression is derived in Appendix A; it does not

assume �+ = �� as was required in earlier publications (Burla

et al., 2002, 2003), it incorporates the effect of measurement

errors in the observed Friedel pair amplitudes and it can be

calculated by a single numerical integration. In the above

expression, � is the (Hermitian) covariance matrix of the

complex Gaussian distribution P[Fa, F +, (F�)*], with the

elements of its inverse denoted zjk = ajk + ibjk, � = �+
� ��,

�(x, y, z) is the Kummer confluent hypergeometric function

and I0 is the modified Bessel function of the first kind and of

zero order. The covariance matrix � was calculated using the

expressions derived previously (Pannu et al., 2003) and the

correlation between structure factors. To ensure that the

matrix remains positive definite, the inverse of the covariance

matrix was calculated from the eigenvalues and eigenvectors

calculated from LAPACK routines (Anderson et al., 1999) to

remove negative eigenvalues.

We have implemented two equations based on equation (1)

in a new program Afro for the multivariate estimation of |Fa|

values. One equation is equation (1) itself, while the other is a

simplified form of equation (1) using the Friedel pair phase

equality assumption as suggested by Burla et al. (2002, 2003):

hjFaj; jF
þj; jF�ji ¼

1

2

�

a11

� �1=2

� �
1

2
; 1;�

�

a11

� �
: ð3Þ

We have found that the simpler equation (3), i.e. assuming that

the Friedel pair phases are equal, led to better performance in

the test cases shown below, which is likely to be due to

improved numerical stability. Thus, results from the imple-

mentation of this equation are shown below.

The covariance matrix � depends on both the number and

the (overall) temperature factor of the substructure atoms. As

these parameters are usually unknown, a likelihood estimate is

obtained by Afro. Thus, after initial estimates of the number

and the overall temperature factor of the substructure atoms

have been input, the parameters are refined using the marginal

distribution P(|F +|, |F�|). The refinement of these parameters

turned out to have a large radius of convergence, and better

results were obtained when refined values were used

compared with when unrefined values. We have previously

discussed the procedure (Pannu, 2007) and a similar approach

was recently reported by Hatti et al. (2021). After the refine-

ment, the |Fa| values are estimated using equation (1). Local

scaling (Blessing, 1997) has been also implemented in Afro

which scales |F +| to |F�| in local spheres.

The multivariate |Fa| calculation using the Friedel pair

phase equality assumption as implemented in Afro was tested

on a sample of 182 SAD data sets as specified in Appendix B

containing a large number of anomalous scatterers (selenium,

sulfur, iodine, zinc, gold, copper, platinum, krypton, manga-

nese, iron, cadmium, nickel, calcium and mercury) and a large

range of data resolutions from 0.94 to 3.9 Å. For each data set,

a complete Crank2 (Skubák & Pannu, 2013) structure-solution

run was performed, with Afro being used for the calculation

of |Fa| and E (normalized |Fa|), PRASA being used for

substructure determination and REFMAC5 (Nicholls et al.,

2018), Parrot (Cowtan, 2010), Buccaneer (Cowtan, 2008) and

SHELXE (Usón & Sheldrick, 2018) being used in the subse-

quent combined phasing, density modification and model

building. Versions of the programs corresponding to CCP4

(Winn et al., 2011) version 8.0.002 were used, except for

Crank2, where the more recent version 2.0.325 was used, and a

bug fix in REFMAC5 implemented by us to prevent the

program from crashing for very large data sets.

The input to Crank2 consisted of the SAD data set, the

protein sequence and a specification of the anomalously

scattering atom type with anomalous scattering coefficients.

For five data sets, a value of the solvent content corresponding

to the correct number of monomers in the asymmetric unit

was specified, otherwise the default options were used. An

incorrect solvent-content estimate would not affect the |Fa|
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estimation as it is not used in it; however, since it is an

important phase-improvement parameter, it would lead to

‘randomly’ incomplete models for data sets that could other-

wise be automatically built, thus making the model-building

analysis less relevant.

For each data set we calculated the overall correlation of

the estimated E values with the ‘final’ substructure E values in

the following way. The final anomalously scattering substruc-

ture (either deposited or, if not available, determined from the

anomalous difference maps) was input to REFMAC5 using 0

refinement cycles. The calculated amplitudes from REFMAC5

were then input to ECALC from CCP4 (Ian Tickle, unpub-

lished work), providing the final substructure E values. The

correlation between the estimated and final E values was

calculated using the SFTOOLS utility from CCP4 (Bart

Hazes, unpublished work), which divided the data-set reflec-

tions into 20 resolution bins and calculated the correlations

per resolution bin. Finally, an average of the bin correlations

up to ‘anomalous resolution’ was calculated. The anomalous

resolution was determined once for each data set, corre-

sponding to the lowest resolution (the largest number)

included in those resolution bins in which the correlation

between the multivariate E values and the final E values was

smaller than 0.05 and an average of correlations from three

consecutive resolution bins was smaller than 0.05.

Estimation of E values from Friedel pair differences (�E)

was also implemented in Afro and was tested on the 182 SAD

data sets to compare its performance against the multivariate

estimation. Complete structure solution from �E was

attempted with Crank2 using the same pipeline and default

options as used in the runs from multivariate Afro.

The anomalous substructure obtained by PRASA is

considered to be ‘correctly determined’ if at least one third of

the atoms in the final anomalous substructure had a matching

atom (within 2 Å distance) in the substructure obtained after

transformation by SITCOM (Dall’Antonia & Schneider,

2006). Similarly to as in Skubák (2018), we have observed that

typically if approximately 1/3 of the substructure atoms have

been correctly identified in substructure determination, the

remaining significant anomalous scatterers can either be

added by Crank2 from the anomalous maps or their absence

does not affect the success of model building.

The model-building performance is judged by the fraction

of the PDB-deposited model backbone that is ‘correctly built’.

A residue is considered to be correctly built if its C� position is

at a distance of at most 2 Å from a deposited model C�

(‘C�-deposited’) position and a neighbouring C� position is

at a distance of at most 2 Å from a neighbour of the C�-

deposited position (sequence identity or directionality is not

checked). A custom script evaluating the model-building

performance using these criteria was used.

For all data sets where one of the pipelines failed to

determine the substructure, a ‘thorough’ substructure-

determination protocol was tested: the number of PRASA

trials was increased to 100 000 trials from the default

maximum of 2000 trials, more high-resolution cutoffs were

tested (the high-resolution cutoff step was decreased to 0.1

from the default of 0.25) and the initial high-resolution cutoff

was set to be identical to the anomalous resolution. The

thorough protocol aims to estimate whether it is possible to

determine the substructure by PRASA from the input E

values at all.

3. Results and discussion

The correlation of the multivariate E values estimated by Afro

with the final substructure E is typically significantly larger

than that for �E, as demonstrated by Fig. 1. In tests on the

182 SAD data sets, the average correlation improved by 13%

(from 0.197 to 0.223) and an improved correlation was

observed for 94% of the data sets.

The overall better quality of the E estimates calculated

by Afro allowed successful substructure determination by

PRASA for six data sets that did not work using �E. As

summarized in Table 1, the total number of data sets with the

substructure correctly determined increased from 162 (89.0%)

using �E to 168 (92.3%) using multivariate Afro. If these six
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Figure 1
The correlation of �E (x axis) and multivariate E from Afro (y axis) with
the ‘final’ substructure E for each of the 182 tested data sets. The data sets
for which the substructure was correctly determined from the multi-
variate E but not from �E are displayed in black (comparing the results
of the default substructure-determination protocol) and magenta (the
‘thorough’ substructure-determination protocol).

Table 1
Number of data sets for which the substructure was determined and the
majority of the model was built by the two tested pipelines: starting from
E calculated as Friedel pair differences and by multivariate Afro.

The first number in each cell denotes the number of successes using the default
substructure-determination protocol and the second number that using the
‘thorough’ substructure-determination protocol with a substantially larger
number of trials and a larger number of high-resolution cutoffs.

No. of data sets (default/thorough)

Delta Multivariate

Substructures determined 162/163 168/170
Models built 156/157 161/162



data sets were removed from the comparison, the average

fraction of the substructure that was correctly determined

remained similar (0.774 versus 0.760). This indicates that the

improvement in the quality of the multivariate E values from

Afro may not be of great practical importance if the

substructure can be obtained using the �E values; however, it

may allow successful substructure determination for data sets

where the substructure could not be determined using the �E

values.

A majority of the model was correctly built for 156 data sets

(85.7%) starting from substructure determination using �E

and for 161 data sets (88.5%) starting from substructures

determined by multivariate E from Afro.

Using the ‘thorough’ substructure-determination protocol

with a large number of substructure trials and resolution

cutoffs for the data sets where substructure determination

failed led to the determination of another two substructures

starting from the multivariate Afro. Similarly, one more

substructure could be determined using the thorough protocol

starting from �E; this substructure was obtained starting from

the multivariate E using the default protocol.

In total (default + thorough protocol), seven substructures

were determined from the multivariate E values that were not

determined from the �E values. Furthermore, determination

of one other substructure required the thorough protocol

starting from �E, while the default protocol was sufficient if

multivariate Afro was used. Analysis of the success rates for

this data set (PDB entry 2pgc) shows that this was not a

coincidence: only four solutions were obtained in 100 000

trials from �E (a success rate of 1 in 25 000) and 27 solutions

were obtained using the multivariate Afro (1 in 3704).

The data sets used in this paper may not be fully repre-

sentative of user data. In particular, a large fraction (almost

45%) of the data sets come from the automated JCSG pipeline

(Elsliger et al., 2010), which may differ from more recent data-

collection methods. Furthermore, a limited number of data

sets for which the structure could not be solved are included in

the sample used for the paper; such data sets are typically

neither deposited nor shared. Thus, the differences in results

between the pipelines should not be considered as a quanti-

tative estimate of success-rate improvement for user data but

rather as qualitative evidence that the improved |Fa| and E

estimates by Afro may lead to successful substructure deter-

mination and model building for data sets where it failed using

�E.

The multivariate |Fa| estimation by Afro has been integrated

into the Crank2 pipeline for automated structure solution

from experimental phases and is distributed as part of the

CCP4 package, which is available as a binary and as open source.

APPENDIX A
Derivation of the expected value of |Fa|

The expected value of |Fa| is calculated, by definition, from the

conditional probability distribution P(|Fa|; |F +|, |F�|),
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The top and bottom integrals are the first and zeroth

moments of the distribution P(|Fa|; |F +|, |F�|), which can be

obtained from the joint distribution of structure factors

Fa, F +, (F�)*, which can be approximated by a complex

multivariate normal of mean zero and covariance �,
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where ajk and bjk denote the real and imaginary components of

the inverse covariance matrix. The zeroth, first and second

moments of |Fa| can be obtained by integrating out the

unknown phase angles (�a, �+ and ��) and averaging over |Fa|:
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Changing variables (� = �+
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an expression in � and ’; thus, �a can be integrated out:

hjFaj
n
i ¼

2jFþjjF�j

�2 detð�Þ

� expð�a22jF
þ
j
2
� a33jF

�
j
2
Þ
R1
0

jFaj
nþ1 expð�a11jFaj

2
Þ

�
R�
��

R�
��

expf�2jFþjjF�j½a23 cosð�Þ � b23 sinð�Þ�g

� expf�2jFþjjFaj½a12 cosð�þ ’Þ � b12 sinð�þ ’Þ�g

� expf�2jF�jjFaj½a13 cosð’Þ � b13 sinð’Þ�g djFaj d� d’;

ð7Þ

research papers

342 Pannu and Skubák � Substructure amplitudes for SAD experiments Acta Cryst. (2023). D79, 339–344



hjFaj
n
i ¼

2jFþjjF�j

�2 detð�Þ

� expð�a22jF
þ
j
2
� a33jF

�
j
2
Þ
R1
0

jFaj
nþ1 expð�a11jFaj

2
Þ

�
R�
��

R�
��

expf�2jFþjjF�j½a23 cosð�Þ � b23 sinð�Þ�g

� exp ð�2jFajfcosð’Þ½jFþja12 cosð�Þ � jFþjb12 sinð�Þ þ jF�ja13�

þ sinð’Þ½Fþja12 sinð�Þ � jFþjb12 sinð�Þ þ jF�jb13�g
�

djFaj d� d’:

ð8Þ

Using the formula
R �
�� exp½a cosðxÞ þ b sinðxÞ� dx =

2�I0½ða
2 þ b2Þ

1=2
�, the following equation results:

hjFaj
n
i ¼

4jFþjjF�j

� detð�Þ
expð�a22jF

þ
j
2
� a33jF

�
j
2
Þ

�
R1
0

jFaj
nþ1 expð�a11jFaj

2
Þ

�
R�
��

expf�2jFþjjF�j½a23 cosð�Þ � b23 sinð�Þ�g

� I0ð2jFaj�
1=2Þ djFaj d�; ð9Þ

where

� ¼ ½jFþja12 cosð�Þ � jFþjb12 sinð�Þ þ jF�ja13�
2

þ ½jFþja12 sinð�Þ � jFþjb12 sinð�Þ þ jF�jb13�
2

¼ ða2
12 þ b2

12ÞjF
þ
j
2
þ ða2

13 þ b2
13ÞjF

�
j
2

þ 2jFþjjF�j½ða12a13 þ b12b13Þ cosð�Þ

þ ða12b13 � a13b12Þ sinð�Þ�: ð10Þ

The integral over |Fa| has an analytical solution:
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To derive the equation that assumes that the phases of the

Friedel pairs are equal while considering measurement errors

in the observed structure-factor amplitudes, we assume that

� = 0 and the equations reduce to the following:
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Substituting equation (11) for n = 1 in the numerator of

equation (3) and for n = 0 in its denominator and using the
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In the case of the marginal distribution P(F +, F�) without

the Friedel pair phase equality assumption, substituting n = 0
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The covariance matrix � is calculated as follows:
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"�H "ð�H � i�f 0f 00Þ "ð�H þ i�f 0f 00Þ

"ð�H þ i�f 0f 00Þ k2ð"�N þ �
2
Fþ Þ "ð�N ��f 002 � 2i�f 0f 00Þ

"ð�H � i�f 0f 00Þ "ð�N ��f 002 þ 2i�f 0f 00Þ k2ð"�N þ �
2
F� Þ

0
B@

1
CA;

ð16Þ

where �Fþ and �F� denote the measurement errors of |F +| and

|F�|, respectively, �N = (h|F +|2 + |F�|2i)/2, �H = �(fo + f 0)2 +

f 002, fo is the non-anomalous scattering factor of the anom-

alously scattering atom type, f 0 and f 00 are the real and

imaginary anomalous scattering factors, k is a refinable local

scale factor and " is a symmetry-related statistical weight of

reflection counting how many times the symmetry operations

map the reflection to itself. All of the covariance matrix terms

and summations are calculated per resolution bin, except for

�Fþ , �F� and " which are applied per reflection.
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APPENDIX B
Complete list of PDB codes of the data sets used for
testing

A total of 182 SAD data sets for 170 macromolecular struc-

tures were used for testing. The sample consisted of 169 data

sets for 157 structures used by Skubák (2018): PDB entries

1c8u, 1djl, 1dpx, 1dtx, 1dw9, 1e3m, 1e42, 1e6i, 1fj2, 1fse, 1ga1,

1hf8, 1h29, 1i4u, 1lvy, 1lz8, 1m32, 1mso, 1ocy, 1of3, 1rgg, 1rju,

1vjn, 1vjr, 1vjz, 1vk4, 1vkm, 1vlm, 1vqr, 1z82, 1zy9, 1zyb, 2a3n,

2a6b, 2ahy, 2aml, 2avn, 2b78, 2b79, 2b8m, 2etd, 2etj, 2ets, 2etv,

2evr, 2f4p, 2fdn, 2fea, 2ffj, 2fg0, 2fg9, 2fna, 2fqp, 2fur, 2fzt,

2g42, 2g4h, 2g4j, 2g4k, 2g4l, 2g4m, 2g4n, 2g4o, 2g4p, 2g4q,

2g4r, 2g4s, 2g4t, 2g4u, 2g4v, 2g4w, 2g4x, 2g4y, 2g4z, 2g51, 2g52,

2g55, 2gc9, 2hba, 2ill, 2nlv, 2nuj, 2nwv, 2o08, 2o0h, 2o1q, 2o2x,

2o2z, 2o3l, 2o62, 2o7t, 2o8q, 2obp, 2oc5, 2od5, 2od6, 2oh3,

2okc, 2okf, 2ooj, 2opk, 2osd, 2otm, 2ozg, 2ozj, 2p10, 2p4o,

2p7h, 2p7i, 2p97, 2pg3, 2pg4, 2pgc, 2pim, 2pn1, 2ppv, 2pr7,

2prr, 2prv, 2prx, 2pv4, 2pw4, 2q2l, 2rkk, 2v0o, 3bpj, 3fki, 3gyv,

3k9g, 3km3, 3lmt, 3lmu, 3men, 3njb, 3o2e, 3oib, 3p96, 3s6l,

4us7, 4xvz, 4xxt, 4yf1, 5b82, 5gwd, 5ifg, 5irr, 5j4r, 5kjh, 5lg6,

5llw, 5loi, 5lsq, 5sus and 5suu, and three undeposited data sets.

Furthermore, 13 more recent data sets for 13 different struc-

tures deposited in the previous few years were randomly

chosen from the PDB and added to the sample: PDB entries

6kvr, 6tke, 6xjn, 6xqi, 6ygu, 6yrl, 7cdw, 7eiv, 7fad, 7fi4, 7lt1,

7oc3 and 7yx8.
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