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Protein conformational dynamics that may inform biology often lie dormant in

high-resolution electron-density maps. While an estimated �18% of side chains

in high-resolution models contain alternative conformations, these are under-

represented in current PDB models due to difficulties in manually detecting,

building and inspecting alternative conformers. To overcome this challenge, we

developed an automated multi-conformer modeling program, FLEXR. Using

Ringer-based electron-density sampling, FLEXR builds explicit multi-conformer

models for refinement. Thereby, it bridges the gap of detecting hidden alternate

states in electron-density maps and including them in structural models for

refinement, inspection and deposition. Using a series of high-quality crystal

structures (0.8–1.85 Å resolution), we show that the multi-conformer models

produced by FLEXR uncover new insights that are missing in models built

either manually or using current tools. Specifically, FLEXR models revealed

hidden side chains and backbone conformations in ligand-binding sites that may

redefine protein–ligand binding mechanisms. Ultimately, the tool facilitates

crystallographers with opportunities to include explicit multi-conformer states in

their high-resolution crystallographic models. One key advantage is that such

models may better reflect interesting higher energy features in electron-density

maps that are rarely consulted by the community at large, which can then be

productively used for ligand discovery downstream. FLEXR is open source and

publicly available on GitHub at https://github.com/TheFischerLab/FLEXR.

1. Introduction

Flexibility underscores many aspects of protein function such

as ligand binding, catalysis and allostery (Buhrman et al., 2010;

Krojer et al., 2020; Henzler-Wildman & Kern, 2007; Eisen-

messer et al., 2005). Rather than a single static structure,

proteins exist as an ensemble of states, which repopulate in

response to different perturbations and environments (Fraser

et al., 2011; Girard et al., 2022; Russi et al., 2017). Developing

comprehensive movies of protein motion can communicate a

deeper understanding of the relationship between structure

and function and reveal new opportunities to design thera-

peutics (Carlson, 2002; Meagher & Carlson, 2004).

X-ray crystallography is one of the foremost techniques

used to develop three-dimensional protein structures with

near-atomic spatial resolution. Crystallography is intrinsically

an ensemble measurement, where the final electron-density

map represents an average across all protein copies in the

lattice. Therefore, maps contain information about confor-

mational heterogeneity, which is often transient, sparse and

difficult to detect. There has been a recent surge of new and

sensitive crystallographic methods that link shifting confor-

mational ensembles to different stimuli such as temperature

(Stachowski et al., 2022; Bradford et al., 2021), photoactivation

(Tenboer et al., 2014) and ligand binding (Krojer et al., 2020;
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Stachowski & Fischer, 2022; Pearce, Krojer & von Delft,

2017). For example, electron-density maps developed at

elevated temperatures often contain a richer picture of protein

dynamics that includes side-chain and backbone repositioning,

which is often hidden or frozen out at cryogenic temperatures,

at which crystallographic studies are typically performed

(Fischer, 2021). Time-resolved experiments can interrogate

femtosecond conformational changes at X-ray free-electron

laser facilities (Pandey et al., 2020) and microsecond dynamics

at third-generation synchrotron light sources (Pearson &

Mehrabi, 2020). These experiments are progressing towards

‘molecular movies’ that show complete real-time conforma-

tional trajectories (Martin-Garcia et al., 2016). The recent

emergence of high-throughput protein–ligand crystallography

can reveal weakly populated ligand-bound states (Pearce,

Krojer, Bradley et al., 2017) and allosteric sites (Krojer et al.,

2020). Together, these new methods are creating large amounts

of crystallographic data and require corresponding advances

in computational modeling that accurately, thoroughly and

quickly describe alternate conformational states that either

occur simultaneously or transition from one state to another.

While there are several automatic approaches for building

single-conformer models (Joosten et al., 2009; Langer et al.,

2008; Cowtan, 2006; Terwilliger, 2004), there are fewer options

for building multi-state models.

Conformational heterogeneity in protein crystal structures

can be represented by B factors, multi-copy and multi-

conformer modeling (Riley et al., 2021; van den Bedem &

Fraser, 2015). Firstly, B factors represent the thermal displa-

cement of individual atoms around a mean position isotopi-

cally and, at a sufficient ratio of observations to parameters,

anisotropically (Merritt, 1999). Yet, B factors also reflect the

general uncertainty of the position of each atom and do not

describe correlated positional changes of groups of atoms, for

example transitions of side-chain rotamers (Lovell et al.,

2000). Secondly, multi-copy modeling produces more than one

discrete and complete protein structure to explain a single set

of experimental data. This is commonly practiced in cryo-

electron microscopy via multi-body refinement (Nakane et al.,

2018), but one tool for crystallographic data is Phenix-MD

(phenix.ensemble_refinement; Burnley et al., 2012). Phenix-

MD combines traditional Phenix crystallographic refinement

with density-restrained molecular-dynamics (MD) simulations

that focus on sampling local dynamics. However, MD using

crystal structures as simulation starting points can be limited

by energy barriers (Ploscariu et al., 2021), especially with

structures solved at cryogenic temperatures (Bradford et al.,

2021). While multi-copy approaches do comprehensively

describe conformational heterogeneity, the main drawback is

that they often unnecessarily inflate the number of parameters

that are needed to describe the data. For instance, many of the

atoms in each model that are not flexible will share the same

position across copies, so there is no need to describe them

more than once. In crystallography, this overfitting is detri-

mental and will overextend the data-to-parameter ratio and

increase Rgap (Ginn, 2021). Lastly, multi-conformer modeling

aims to explain both areas of conformational heterogeneity

and homogeneity in a single parsimonious model (Keedy,

2019). A popular implementation of this is qFit, which has

been developed through several iterations (Keedy et al., 2015;

van den Bedem et al., 2009) and expanded to interrogate

protein, ligand (van Zundert et al., 2018) and cryo-EM data

(Riley et al., 2021). qFit works by computing an occupancy-

weighted set of both main-chain and side-chain conformations

that together best describe the electron density. qFit initially

creates many conformations using mixed-integer quadratic

programming and iteratively whittles the possibilities down to

a handful of conformers using a convex optimization algo-

rithm (Keedy et al., 2015).

Another tool is Ringer, which falls into its own class of

‘conformation-detection’ programs (Lang et al., 2010). Ringer

measures the electron density around side-chain dihedral

angles, where peaks in density correspond to side-chain

conformations. Ringer was used to systematically interrogate a

subset of the PDB with resolution better than 1.5 Å and it was

found that a surprisingly high number (�18%) of side chains

have alternative conformations, many of which are not

accounted for in the deposited models (Lang et al., 2010).

Ringer detects weakly populated rotamers in electron density

down to 0.3� and can interrogate conformational changes

from temperature (Stachowski et al., 2022) and ligand binding

(Bradford et al., 2021) and validate cryo-EM models (Barad et

al., 2015). While Ringer typically requires complete manual

inspection of per-residue ‘Ringer plots’, we have recently

automated peak detection to highlight regions of interest and

reveal ‘conformational barcodes’ (Stachowski et al., 2022). Yet,

for all its usefulness, explicitly including information from Ringer

into protein models still requires tedious manual model building.

To bridge this gap, we combined our previous Ringer peak-

finding tools with the model-building functions of Coot

(Emsley & Cowtan, 2004) into a pipeline: FLEXR. FLEXR

automatically detects alternative side-chain conformations in

Ringer measurements and builds them into protein models. To

assess its utility, we compared R factors, geometry metrics and

properties of side chains in FLEXR models against deposited

and qFit-derived models using a test set of high-quality X-ray

structures. We also inspected ligand-binding sites and found

examples where FLEXR detected and built minor side-chain

conformations that are missing in models produced by other

methods. Although not inherently detected by Ringer,

combining models from FLEXR with traditional refinement

exposed examples of backbone heterogeneity. Ultimately,

FLEXR simplifies initial and systematic examinations of

protein flexibility in crystal structures and, more importantly,

enables this information to be automatically incorporated in

deposited models for the community at large. To facilitate this,

we have made FLEXR freely available at https://github.com/

TheFischerLab/FLEXR.

2. Materials and methods

2.1. FLEXR algorithm

2.1.1. Overview. FLEXR automatically finds and builds

alternative side-chain conformations into models based on
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Ringer electron-density measurements (Fig. 1). FLEXR is a

command-line tool and is written in Python (version 3.9) using

the Pandas, SciPy and NumPy packages. Automatic model

building is performed using Coot (version 1.0.05; Emsley &

Cowtan, 2004; Casañal et al., 2020; Emsley et al., 2010).

FLEXR was tested on MacOS Monterey with Apple M1 and

Intel processors. Instructions on how to use FLEXR can be

found in the supporting information and at https://github.com/

TheFischerLab/FLEXR.

2.1.2. FLEXR Part 1: electron-density peak detection.

FLEXR relies on the original Ringer algorithm for electron-

density sampling around each dihedral of each residue in the

input model (Lang et al., 2010). Ringer is available through the

mmtbx module in the cctbx library (Grosse-Kunstleve et al.,
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Figure 1
FLEXR workflow. FLEXR builds multi-conformer models based on electron-density sampling around side-chain dihedrals (�) performed by Ringer. (a)
FLEXR detects peaks in the electron-density measurements above a user-defined � threshold (default 0.3�). Peak angles from each dihedral are
assembled into possible rotamers and checked against the ideal rotamer library (Lovell et al., 2000). Valid alternate conformers are automatically built
using Coot. Refining the multi-conformer models estimates occupancies and improves the geometry. (b) An example of the workflow is shown for
Met313 in prostaglandin reductase 3 (MGC45594), which is modeled in a single conformation in the A chain of the 1.45 Å resolution structure (PDB
entry 2c0c). Top: two peaks (stars) are detected in electron density sampled around �3 using data > 0.3� (red dashed line). Bottom: combining the
detected peaks across the three dihedrals yields two possible rotamers. (c) After automated building with Coot, a visual inspection shows that the two
rotamers (green sticks) satisfy the deposited electron density. A final refinement with Phenix shows that the two rotamers have roughly equal
occupancies. The deposited 2mFo � DFc map (blue) is contoured at 1� and the mFo � DFc difference density map (green) is contoured at 3�.



2002). FLEXR uses the peak-detection algorithm that we have

recently implemented (Stachowski et al., 2022) to find heigh-

tened levels of density that correspond to potential alterative

side-chain positions. The angle where each density peak

occurs is recorded.

2.1.3. FLEXR Part 2: assembling peaks into side-chain
rotamers. The angle for each detected peak from Part 1 is

assembled across all dihedrals for a side chain into all possible

combinations. Each combination is tested using the ideal

rotamer library (Lovell et al., 2000) to determine whether the

measured dihedral angles are close to ideal rotameric angles

based on a user-defined threshold (see below). Combinations

that have tolerable geometry are assigned a ‘rotamer name’

from the matching entry, for instance ‘p’, ‘t’ or ‘m’ for the three

ideal threonine rotamers, and will be incorporated based on

this name into the model using Coot in Part 3. In the case

where a measured rotamer matches multiple entries in the

rotamer library, the rotamer that is most frequent in the PDB

is selected for building. One caveat of this approach is that

determining rotamers from density peaks alone is inherently

ambiguous. For example, a residue with two dihedrals and two

peaks at each dihedral creates up to four possible rotamers,

but no less than two. This situation is exacerbated at moderate

resolutions and especially with flexible residues such as lysine

and arginine that have four dihedrals and often do not have

well resolved electron density at higher dihedrals. FLEXR is

designed to systematically build all possible rotamers (with

reasonable geometry). Therefore, we strongly recommend

that users refine the final model and manually inspect alter-

native conformers.

2.1.4. FLEXR Part 3: multi-conformer model building. The

alternative side-chain conformations assembled in Part 2 are

automatically built into models using Coot. FLEXR auto-

matically iterates through options that are available in the

familiar GUI windows used for manual model building.

Conformers are added according to the ‘rotamer name’

assigned in Part 2. Users have the option to build conformers

beginning at the C� atom or with the entire residue including

backbone atoms.

2.1.5. FLEXR Part 4: refinement. FLEXR multi-conformer

models can be refined using any macromolecular refinement

program that the user desires. Here, we used Phenix to

improve geometries and estimate occupancies and used ten

macrocycles with default settings and water picking followed

by three refinement cycles that optimize the B factor and

coordinate weighting.

2.2. Evaluating FLEXR

To test FLEXR, we used a set of 15 models with resolutions

ranging from 0.80 to 1.85 Å that was first curated by Keedy

and coworkers to evaluate qFit versions 2.0 (Keedy et al., 2015)

and 3.0 (Riley et al., 2021). We chose this established bench-

marking set as it contains high-quality data sets with missing

alternative side-chain conformations and includes biomedical

and ligand-bound targets. Coordinates and structure factors

were obtained from the Protein Data Bank (Burley et al.,

2022). Alternate conformations in the deposited models were

discarded prior to multi-conformer modeling. The deposited

models were compared using the original deposited models

(‘deposited’) and the deposited models after refinement using

the same Phenix protocol as the FLEXR models (‘dep-

refined’). FLEXR was performed with a peak-detection

threshold of � � 0.35 and a tolerance for matching ideal

rotameric geometries of �30�. The values of both parameters

are close to those suggested by Lang et al. (2010) to maximize

sensitivity while avoiding false positives. FLEXR models were

refined as described in Section 2.1.5. Alternate side-chain

conformations were built using completely new residues (as

opposed to branching at the C� atom). qFit (version 3.0) was

performed with backbone modeling (‘qFit’) and without

(using the --no-backbone option; ‘qFit-no-bb’), using

default settings otherwise. qFit models were refined using

their packaged refinement script (qfit_final_refine_

xray.sh) using default settings. Phenix (version 1.20) was

used throughout for refinement and R-value calculations

(Liebschner et al., 2019). Model-quality metrics were calcu-

lated with MolProbity (Williams et al., 2018). Phenix tools

were used to calculate real-space correlation coefficients

(RSCCs; phenix.real_space_correlation) and rotamer geome-

tries (phenix.rotalyze). Normalized B-factor values (Bnorm)

were calculated according to Bnorm = (B� B�)/B�, where B� is

the mean and B� is the standard deviation. Bnorm values were

calculated using all protein atoms. Other alternate side-chain

characteristics were calculated using custom Python scripts.

Images were rendered using PyMOL (Schrödinger).

3. Results

3.1. Validation of rotamers in FLEXR models

To evaluate the performance of FLEXR we used a test set

of 15 high-resolution X-ray structures (Keedy et al., 2015).

Running on a single processor, detecting and building side-

chain conformers with FLEXR took �2 min for most struc-

tures. Notably, this step only trivially increased the total

average time of 107 min spent to refine these structures with

Phenix (Supplementary Fig. S1). To validate the placement of

rotamers in FLEXR models, we monitored the real-space

correlation coefficient (RSCC), normalized B factors (Bnorm)

and occupancies. Some 65% of rotamers have all side-chain

atoms with RSCC > 0.70 (the suggested cutoff for modeling by

MolProbity) and 19% of these rotamers have low occupancies

(occupancy < 0.25; Fig. 2a). Meanwhile, 85% of rotamers

had a median side-chain atom RSCC > 0.8, 30% of which

have low occupancies (Fig. 2b). Similarly, less than 14% of

rotamers exhibited high (>1) Bnorm values (Supplementary

Fig. S2). Interestingly, some of the rotamers with the

highest Bnorm values had reasonable occupancy and RSCC

values.

Considering that the proportions of alternative conforma-

tions are often inferred from Ringer peaks without being

directly estimated from refinement, we next sought to test the

relationship of occupancies to Ringer electron-density
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measurements. Since serines have a single, unbranched dihe-

dral angle they present the most straightforward test case.

Comparing refined occupancies with integrated electron-

density peak areas relative to conformers of the same residue

in FLEXR models showed a strong positive relationship with a

Pearson correlation coefficient (r) of 0.83 (Fig. 2c). Unsur-

prisingly, this relationship was weakest where electron-density

peaks were also weak. For example, electron-density peaks

with relative areas varying between 0.01 and 0.10 generally

varied in refined occupancy between 0.00 and 0.40 and

sometimes exceeded 0.60. Additionally, relative electron

density does not appear to be a strong predictor of refined

Bnorm (r = �0.15; Fig. 2d). For example, 26% of rotamers

identified from weak Ringer peaks refined with low Bnorm

values, whereas 18% of rotamers identified from strong peaks

had large Bnorm values.

Flexible residues such as arginine and lysine and aromatic

residues are the most poorly modeled residues, while the

sulfur-containing residues (cysteine and methionine) and

small residues (such as serine and threonine) were modeled

best (Supplementary Fig. S3). Yet, relating RSCC (Figs. 3a and

3b) and Bnorm (Figs. 3c and 3d) of C� atoms to those of the

more distant side-chain C atoms C� and C� showed strong

correlations throughout. Only 1–2% of side chains contained

C� and C� or C� with RSCC values both below 0.7. This

suggests that while there might not be density to support the

modeling of entire side chains there is sufficient electron

density to identify flexibility at most sites. Inspecting the two

side chains with the most egregious C� RSCC values showed

that these side chains still have convincing density for the

placement of an alternative conformation (Supplementary

Fig. S4).

3.2. Improved multi-conformer model quality with FLEXR

To assess model quality, we compared five different varia-

tions of model building using the same 15 data sets: (i)

deposited models, (ii) deposited models re-refined with the

Phenix protocol outlined in Section 2 (‘dep-refined’), (iii)

FLEXR, (iv) qFit without backbone sampling (‘qFit-no-bb’)
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Figure 2
Map–model fit properties validate the newly built rotamers. (a) Comparison of side-chain rotamer occupancy and the lowest atomic real-space
correlation coefficient (RSCC; considering non-H atoms), where the vertical gray dotted line is atom RSCC = 0.7 (which represents the cutoff suggested
by MolProbity) and the horizontal gray dotted line is occupancy = 0.25. (b) Comparison of side-chain rotamer occupancy with the median side-chain
atom RSCC, where the vertical gray dotted line is RSCC = 0.8 (confident modeling; Burley et al., 2022) and the horizontal gray dotted line is occupancy =
0.25. (c, d) The relationship between (c) rotamer occupancy or (d) O� Bnorm and the relative electron-density peak area of serine rotamers. To calculate
the relative peak area, peaks from Ringer plots were integrated and normalized across peaks of the same residue. Data were fitted to a linear regression
model, where r is the Pearson correlation coefficient.



and (v) qFit. B-factor refinement was treated identically for

each model across protocols except in one case (Supplemen-

tary Table S1). qFit did not converge into a parsimonious

model in five of 15 cases (Supplementary Fig. S5); FLEXR

generated models for all 15 cases. With neither qFit approach

converging for one case, PDB entry 1w0n, this left 14 cases

with at least one qFit model. Firstly, we compared how the R

values of the various modeling approaches deviate from the

original deposited models (Fig. 4). Re-refining the deposited

structures produced models with the lowest Rfree in nine out of

14 cases. qFit without backbone sampling produced models

with a lower Rfree than when including backbone sampling in

seven out of ten cases (Supplementary Fig. S5). Relative to

either qFit approach, FLEXR models had a lower Rfree in nine

out of 14 cases and for PDB entry 2c6z FLEXR produced the

model with the lowest Rfree overall (Fig. 4a and Supplementary

Fig. S5). The median FLEXR Rfree was 0.002 less than that for

the deposited models, 0.01 greater than that for dep-refined

models, equal to that for qFit-no-bb models and 0.004 lower

than that for qFit models. As expected, both qFit approaches

typically produced models with lower Rwork than the deposited

and FLEXR models (Fig. 4b and Supplementary Fig. S6), and

the qFit-no-bb models generally had the lowest Rwork overall.

FLEXR models have the smallest Rgap in five out of 15 cases

and in 12 out of 14 comparisons to either qFit models (Fig. 4c

and Supplementary Fig. S7). The clashscores for FLEXR

models were close (<5 points) to the deposited models in ten

out of 15 cases and lower than the respective qFit model in

four out of 14 cases (Fig. 4d and Supplementary Fig. S8). Yet,

three FLEXR models had egregiously high clashscores, with

one even exceeding a value of 100, whereas deposited models

all had scores of less than 12. Inspecting some of these cases

showed that weak alternative conformations were built in the

interior of the protein in impossible positions despite having

Ringer peaks at rotameric angles (Supplementary Fig. S9).

Notably, the FLEXR models with high clashscores were at

higher resolutions. FLEXR models also generally had poorer

Ramachandran statistics, which were the worst values overall

in five out of 15 cases (Fig. 4e and Supplementary Fig. S10).

Despite this, in terms of MolProbity scores, which compress

many validation metrics, including clashscore, into a single

score, FLEXR models scored well overall. Lower scores

correspond to better models and FLEXR models had a

median score of 1.66, which falls between those for dep-

refined (1.58) and qFit-no-bb models (1.74). qFit models have

the highest (worst) scores overall, with a median of 1.86 (Fig.
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Figure 3
Atomic properties validate newly built rotamers. (a, b) The relationship between C� and (a) C� or (b) C� atoms of the respective rotamer (dark gray
dotted lines, RSCC = 0.7). (c, d) The relationship between Bnorm of C� and (c) C� or (d) C� atoms. The solid black line represents a fit of the data to a
linear regression model, where r is the Pearson correlation coefficient.



4f and Supplementary Fig. S11). Taking the final FLEXR

models and re-refining them with the qFit refinement protocol,

which contains an occupancy-based rotamer-culling step,

removed many of these problematic side chains but notably

produced models with worse Rfree values (Supplementary Figs.

S12 and S13). Together, these results show that multi-

conformer models produced by FLEXR typically have similar

or better model quality metrics compared with models

produced by the two qFit approaches that we tested.

3.3. FLEXR produces models with diverse side-chain
populations

To evaluate the model details, we next compared how side

chains were modeled across methods. In the original Ringer

paper, the authors estimated that �18% of side chains in

models with resolutions <1.5 Å had alternative conformations

(Lang et al., 2010). As expected, the deposited models typi-

cally have �5% of side chains with modeled alternative

conformations (Fig. 5a and Supplementary Fig. S14). While

FLEXR models have more alternate conformers, by <10%

on average, these are still much fewer than the anticipated

18%, but this could be caused by the lower resolution (up to

1.85 Å) of the test set that we used. However, qFit-no-bb

models detected a median of >40% alternate conformers,

while qFit had a median of �35%, both of which are much

higher than the expected frequency. Looking at the number of

conformations per residue with multiple conformations shows

that most deposited models typically contain two alternative

conformers (for example A and B) and in these cases usually

have even occupancies, suggesting that occupancies were not

refined prior to deposition (Figs. 5b and 5c and Supplementary

Figs. S15 and S16), which may explain the improvement of

Rfree in deposited models using our simple refinement protocol

(Fig. 4a). This is also supported by the more heterogeneous

distribution of occupancies after refinement (Fig. 5b). Median
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Figure 4
Multi-conformer modeling with FLEXR results in similar or better model-quality metrics than other methods. A test set of 15 high-resolution models
(Keedy et al., 2015) was used to compare changes in each metric relative to the original deposited models: (a) Rfree, (b) Rwork, (c) Rgap, (d) clashscore, (e)
percentage of side chains with favorable Ramachandran geometry and ( f ) MolProbity score. We compared five different modeling approaches:
deposited models (used as a reference, not shown), re-refined deposited models (light orange), FLEXR (green), qFit with no backbone sampling (qFit-
no-bb; dark orange) and qFit with backbone sampling (pink). The values shown (�) were calculated by taking the difference between the property of the
target model and that of the deposited model. Raw values for individual models are given in Supplementary Figs. S5–S8 and S10-S11.
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Figure 5
FLEXR produces different multi-conformer models. (a) The fraction of residues with alternative conformations in deposited models (light blue),
re-refined deposited models (light orange), FLEXR (green), qFit with no backbone modeling (dark orange) and qFit (pink). (b) The distribution of
occupancies of alternative side-chain conformations; bars indicate medians. (c) Distribution of the number of alternative conformations for each residue
with more than one conformation (i.e. multi-conformer residues), on a log scale. Values for individual models are given in Supplementary Figs. S14–S16.
(d) Venn diagram of rotamers shared between the structures (n = 9) across modeling methods. (e) The percentage of rotamers produced by qFit and
FLEXR that match rotamers present in the deposited models. ( f ) The percentage of non-identical rotamers.



occupancies in both qFit approaches are also generally lower

than in the deposited models (Fig. 5b) due to the larger

number of built conformers compared with the other methods

(Fig. 5a). While side chains in FLEXR models have the

lowest median occupancy, this is deflated by the 8% of

conformers with occupancies of zero (Supplementary Fig.

S17). We recommend removing zero-occupancy conformers

prior to the final refinement as described in the supporting

information; including them can lead to issues with occupancy

refinement, bulk-solvent masking, map calculation and inter-

pretation. Almost half of all zero-occupancy conformers were

found in PDB entry 1x9i (Supplementary Fig. S17). Counting

the number of alternate conformations per multi-conformer

residue further reveals the differences between manual model

building, FLEXR and qFit approaches (Fig. 5d). Again, most

manually built models generally use only two alternative

conformations to explain side-chain flexibility. qFit models

contain a larger proportion of side chains with 3–4 confor-

mations, and surprisingly qFit with backbone sampling allows

some side chains to be modeled with up to five conformers.

FLEXR models have the most heterogenous side-chain

modeling as most side chains with alternative states contain

2–4 conformers and, rarely, up to nine (Supplementary Figs.

S15 and S16). Comparing the commonality of rotamers

revealed that surprisingly few rotamers were found in all

methods and each method produced many rotamers that were

unique (Fig. 5d). Specifically, FLEXR reproduced 32% of

rotamers present in deposited models and qFit and qFit-no-bb

reproduced 50% and 77%, respectively (Fig. 5e). However,

FLEXR produced the highest percentage of non-identical

rotamers at 91% compared with �60% for both qFit

approaches (Fig. 5f).
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Figure 6
FLEXR models reveal side-chain repositioning in ligand-binding sites that is missing in other models. (a) Tyr215 in the B chain of the 1.45 Å resolution
prostaglandin reductase 3 (MGC45594) structure bound to NAP (PDB entry 2c0c). The qFit (b) and deposited (a) models both share the A
conformation. (c) FLEXR detects and models a weak conformation (arrow in the Ringer plot) of Tyr215 oriented away from and no longer hydrogen
bonding to the ligand. This feature is not present in either the deposited or qFit models. (d) Lys298 in the B chain of the 1.16 Å resoluton Pyrobaculum
aerophilum phosphoglucose isomerase structure bound to glucose 6-phosphate (G6Q; PDB entry 1x9i). (e) qFit-no-bb produces two near-identical
rotamers. ( f ) FLEXR detects a minor side-chain conformation (arrow in the inset Ringer plot) which is oriented away from and no longer interacts with
the ligand. The deposited 2mFo � DFc maps are contoured at 1.0� and the mFo � DFc maps are contoured at �2.0�/2.0� (a) or �1.5/1.5� (c, d, e).
Dotted lines represent predicted hydrogen bonds.



3.4. FLEXR reveals new side-chain conformations at
protein–ligand interfaces

To explore the sensitivity of each method, we manually

investigated flexibility in ligand-binding sites. We identified

two instances where FLEXR finds hidden side-chain confor-

mations that are missing in the deposited and qFit models and

would likely have an impact on how ligand binding is inter-

preted. The first example is Tyr215 in the B chain of the 1.45 Å

resolution structure of prostaglandin reductase 3 (MGC45594)

bound to NAP (PDB entry 2c0c; Fig. 6a). In the deposited and

qFit models (Fig. 6b) there is a single conformation of Tyr215

(occupancy of 1.0) which hydrogen bonds to NAP. Yet,

inspection of the electron density around �1 with Ringer shows

a second minor conformation (Fig. 6c). This is automatically

detected with FLEXR and built into the model, which reveals

that in this minor conformation the tyrosine is positioned away

from and no longer interacts with the ligand 12% of the time.

The second example is Lys298 in the B chain of the 1.16 Å

resolution Pyrobaculum aerophilum phosphoglucose isomerase

structure complexed with glucose 6-phosphate (PDB entry

1x9i). Despite clear electron density, the deposited model

contains a single conformation of the lysine (occupancy of 1.0)

that forms two hydrogen bonds to the ligand (Fig. 6d). qFit

built two, apparently redundant, conformations of the lysine

(occupancies of 0.69 and 0.31; Fig. 6e). FLEXR detects a

second peak in the �3 Ringer plot and builds the conformer

accordingly (occupancies of 0.74 and 0.26; Fig. 6f). The weak

conformer is positioned away from the ligand and no longer

interacts with the ligand 26% of the time based on refined

occupancies. These examples show that FLEXR can find and

build hidden side-chain conformations and enable a more

rigorous investigation of protein–ligand interactions.

3.5. FLEXR can reveal backbone conformational
heterogeneity

Ringer measurements are limited to side-chain dihedrals;

they do not provide any information on glycine and alanine

residues or backbone conformations. To overcome the

limitation of only modeling side-chain heterogeneity, we have

given users the option to build in backbone atoms when

adding alternative conformations as opposed to adding

conformers beginning from the C� atom. Aside from

improving geometries, this can reveal backbone conforma-

tional heterogeneity when combined with conventional crys-

tallographic refinement of the FLEXR multi-conformer

model. This feature is most powerful in cases where adjacent

residues have alternative side-chain conformations. One

example of this is a ligand-binding site loop formed by

Pro181–Ile185 in the B chain of the 1.28 Å resolution structure
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Figure 7
FLEXR models reveal backbone heterogeneity. FLEXR includes the option to model alternate side-chain conformations starting at the C� atom or
create an entirely new residue. Model building using the latter approach and refining the models can reveal alternative backbone orientations. One
example of this is the ligand-binding site loop containing Pro181–Ile185 in the B chain of the 1.28 Å resolution HIV-1 protease I50V mutant structure
(PDB entry 2qd6). (a) The deposited structure has several alternate side-chain conformers but no backbone heterogeneity. (b) FLEXR recapitulates
these alternative side-chain conformations, finds additional ones and reveals backbone conformational heterogeneity. The deposited 2mFo�DFc map is
contoured at 1� (blue) and the mFo � DFc map is contoured at 2.0� (green) and �2.0� (red). Arrows indicate areas of conformational heterogeneity.



of HIV-1 protease mutant bound to the inhibitor GRL-98065

(PDB entry 2qd6; Fig. 7). The deposited model contains a

single backbone conformation, although most side chains

contain multiple conformers. qFit did not converge to a multi-

conformer model for this data set. The FLEXR model reca-

pitulates most of the conformers contained in the original

model and adds some additional weakly populated ones. By

building in backbone atoms, FLEXR enables conventional

refinement of backbone atoms to reveal conformational

heterogeneity.

4. Discussion

Emerging crystallographic methods attempt to link confor-

mational ensembles to function, especially as conformations

repopulate in response to changing environments. These

structural transitions are often subtle and require sensitive and

accurate computational modeling tools. Ringer is a popular

approach that successfully identifies conformational changes

in a variety of contexts. Yet, the insights are not readily

incorporable into protein models. This is problematic for two

reasons. Firstly, it means that flexibility is underrepresented in

deposited models and, since PDB users are often unaware of

the specifics of the original study, such structural nuances are

lost. Secondly, any flexibility incorporated into the deposited

models can be biased by the original scientific question

(Wankowicz et al., 2022). To enable modeling of hidden, low-

occupancy conformations in electron-density maps measured

by Ringer, which is not currently possible, we combined tools

that detect conformations in Ringer plots and Coot model-

building functions into an automated multi-conformer model-

building tool, FLEXR. Using a high-quality test set of 15

models, we validated the placement of FLEXR rotamers and

compared the results of FLEXR with the original, deposited

models and qFit models. The method is quick, and the longest

step remains conventional crystallographic refinement. Three

main strengths of FLEXR emerge from this work. Firstly,

despite its simplicity, FLEXR generally performed similarly or

better than other methods based on model validation and

quality metrics, while avoiding overfitting. Secondly, the side-

chain conformations in the models produced by FLEXR were

more heterogeneous than other models. Thirdly, FLEXR

captured conformations in ligand-binding sites that remained

undetected using other methods.

Modeling conformational ensembles requires extensive

parameterization and is generally prohibitive even at high

resolutions (Levin et al., 2007; Burnley et al., 2012). As such,

while modeling additional states can better explain the elec-

tron density, Rfree metrics usually do not improve significantly

(Keedy et al., 2015). Yet, nine out of 15 FLEXR models

exhibited a lower Rfree than their qFit counterpart. What could

be perceived as a limitation of Ringer, i.e. its restriction to

sampling side-chain dihedrals, is perhaps one of the strengths

of the approach. FLEXR focuses only on local flexibility

without making unnecessary alterations to other areas of the

structure and, in the process, avoids overfitting. This is

supported by the drastically smaller Rgap and the higher

percentage of nonredundant rotamers in FLEXR models

compared with qFit models. Due to the rigidifying effect of

crystal packing (Halle, 2002) or ligand binding (Wankowicz et

al., 2022), this restriction to local flexibility might be incon-

sequential for many proteins or at least might be a reasonable

starting point for interrogating flexibility. For example, in large

surveys of holo–apo pairs in the PDB by Wankowicz and

coworkers and Clark and coworkers (Wankowicz et al., 2022;

Clark et al., 2019), both found that most conformational

heterogeneity was present at the side-chain level. In the case

that larger, correlated motions are discovered, other available

tools will be more suitable. Nonetheless, we integrated some

modeling functions from Coot to reveal backbone conforma-

tional features and overcome the limitations set by simply

starting from individual dihedrals. This can be useful for

consecutive residues where including subtle backbone flex-

ibility may improve the geometry without generally over-

parameterizing the model. Our results show that users can

have the most confidence in finding rotamers with occupancies

of �0.25 at resolutions better than 2 Å. Beyond 2 Å resolu-

tion, the retrieval of rotamers with occupancies between 0.1

and 0.25 becomes more difficult but may be informative for

high-quality or high-flexibility data sets (manuscript in

preparation).

One caveat of our approach was found in monitoring

clashscores, which is an important metric that is often omitted

in validating multi-state models. Models with missing or

improperly labeled alternate conformer IDs can inflate

clashscores and complicate validation (Richardson et al.,

2018). Although on average FLEXR produced models with

acceptable clashscores, there were three models with exces-

sively high scores. Manual inspection revealed that these cases

were largely driven by FLEXR building alternative confor-

mations of bulky side chains in the protein core (Supple-

mentary Fig. S9). Confusingly, while these conformations were

justified by Ringer plots and represented allowable rotamers,

this demonstrated that seemingly genuine Ringer peaks can

still reflect noise. From a user standpoint this might not be

discernable from a true positive peak without placing the

alternative conformation in the context of the rest of the

protein via building and refinement. A second contribution to

high clashscores arises from how FLEXR relies on combining

peaks in the electron density across dihedrals to construct

rotamers, which is inherently ambiguous. This ambiguity can

lead to some overbuilding, especially with large, flexible resi-

dues such as arginine and lysine, and can create crowded

regions with many clashes. Specifically, the FLEXR models

with the worst clashscores tended to have the most residues

with >5 conformers. Hence, we advise the user to inspect these

instances and pick relevant conformers carefully. While the

automatic removal of seriously clashing side chains is possible,

from the perspective of a Ringer user we believe that all of

these potential rotamers should be built and inspected. This is

especially true since we also noticed examples in which weak

alternative conformations incorrectly displace water mole-

cules that can be key to understand ligand binding (Darby et

al., 2019; Supplementary Fig. S18). This is a common liability
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in current refinement programs (Richardson et al., 2018) and

remains so in FLEXR. A third contribution to high clash-

scores can be found in inconsistent alternative conformation

labels (also known as ‘altloc ID’). By default, FLEXR builds

in conformers with the largest electron-density peaks first, so

conformers with lower alphabetic IDs generally correspond to

the most common conformers. Yet, this approach is ignorant

of the space in which the side chain is built so it does not

necessarily agree with the conformations of nearby side

chains. Although some progress has been made in creating an

agreeable network of altloc labels, such as the simulated-

annealing approach in qFit, it remains an unsolved problem in

automated model building.

Investigating model content also revealed distinct modeling

patterns between methods. For example, comparing the

number of alternative conformations in the deposited and

multi-conformer models showed that the deposited models

vastly underrepresent side-chain flexibility. Even when alter-

native conformations are present in the deposited models,

they rarely contain more than A and B conformations. While

FLEXR detected a similar number of flexible residues as the

deposited models, it modeled these residues with greater

heterogeneity than manually built models since it detects even

weakly occupied states. We also observed that qFit built nearly

identical alternative side-chain conformers about 40% of the

time. The large discrepancy in the side-chain content between

qFit models built with and without backbone sampling

suggests that side-chain modeling is biased by other factors,

such as, perhaps, satisfying backbone geometry or density.

FLEXR also produced models with substantially fewer alter-

native side-chain conformations, <10% on average, than

previous Ringer-based estimates [�35% (Fraser et al., 2011)

and �18% (Lang et al., 2010)]. This might be particular to the

small test set used here, which also includes lower resolution

models than the previous test sets used by Lang and cowor-

kers with resolutions of <1.5 Å. Nonetheless, it is notable that

both qFit approaches had the opposite behavior and modeled

two or three times more than prior estimates. Lastly, about 8%

of the alternative conformations built with FLEXR had

occupancies of zero. Although we observed that generally

there is a strong relationship between occupancy and electron-

density peak size for serines (Fig. 2c), this relationship varied

greatly when the density peaks are small. We therefore advise

against directly inferring occupancy from individual weak

Ringer peaks, but also discourage disregarding conformers

with prima facie low occupancy. We only investigated serines

for this purpose, since distal atoms in more flexible or bran-

ched side chains will confound the relationship between

occupancy and electron-density peak height. 50–75% of all

low-occupancy conformers (occupancy < 0.25) had acceptable

RSCC and Bnorm values (Fig. 2). Occupancy refinement is an

ongoing area of research and several more rigorous methods

are available to potentially tease out these subtleties (Pearce,

Krojer, Bradley et al., 2017; Pearce, Krojer & von Delft, 2017;

De Zitter et al., 2022), which might be key components in

biological processes such as ligand binding. Until occupancy

refinement improves, the user has the final word in inter-

preting the conformations in the context of the rest of the

structure. The same logic applies to not limiting the number of

conformers even though the >5 rotamers per side chain that

FLEXR sometimes identifies are rarely needed. In the spirit of

reducing legwork, deleting unwanted conformers from the

model before deposition is easier than including desired

conformers manually. When it comes to automated model

building, there is no one-fits-all solution. Creating deposition-

quality models will require a combination of optimizing

FLEXR parameters and manually inspecting individual cases:

the responsibility is still with the crystallographer (Pozharski et

al., 2013).

Lastly, we also noticed examples in which FLEXR detected

weak conformations of side chains at the protein–ligand

interface that were undetected by other methods. Firstly, it is

worrisome that deposited models are missing these features,

since binding sites often receive the most attention by crys-

tallographers. Secondly, when using these structures as

templates for molecular docking such changes in the protein

conformation will produce different small molecules as

starting points for drug design (Fischer et al., 2014). While

both approaches are automated, other models did miss these

conformations despite clear electron density. In addition to

the previously discussed possibilities, another reason for the

behavior of qFit might be found in the iterative culling process

that it uses to remove low-occupancy states (where occupancy

< 0.09) between many rounds of refinement. While this has the

potential to reduce over-modeling, it might also be liable to

removing the same weak conformers that structural biologists

are searching for. For instance, the missing alternative Tyr215

conformer in prostaglandin reductase 3 (Figs. 6a–6c) could

indicate either that the residue contributes less binding energy

than anticipated or that the ligand may not be present at full

occupancy, with the alternative Tyr215 conformer reflecting

the apo state (Pearce, Krojer & von Delft, 2017). In the

process of our analysis, we did not test the effects of varying

qFit parameters or inspect intermediate qFit models that may

unearth such features. Like most users would, we used qFit

with default settings to benchmark the sensitivity and

performance of our approach. Likewise, we used Ringer

parameters that are suggested to maximize sensitivity and to

minimize false positives (Lang et al., 2010). Changing these

parameters, especially the electron-density threshold for peak

detection and geometric tolerances, will certainly vary the

results. While the defaults worked well for most models in the

test set, those with high clashscores are examples where these

parameters should be optimized through a simple grid search.

To facilitate parameter optimization, a script on the FLEXR

GitHub repository will enable users to perform a grid search.

The overall goal of this project was to produce a tool that

automatically incorporates weakly populated, high-energy

alternative side-chain conformations from Ringer measure-

ments into models. This enables a more thorough examination

of local flexibility in the context of the rest of the protein,

especially for downstream users of deposited models such as

ligand discoverers. FLEXR liberates the user from the tedious

legwork of detecting conformations and model building.
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However, the final validation should always be performed by a

meticulous crystallographer. FLEXR is a fast program that

runs well on a personal laptop. It is open-source, freely

available and installation is simple (see supporting informa-

tion). In the context of other model-building tools, FLEXR

stands as an unassuming tool to explore flexibility in protein

structures. Applied to high-resolution structures in the PDB,

FLEXR can help reveal new information from old data (Touw

et al., 2016; Wankowicz et al., 2022).

5. Data availability

FLEXR is open source and publicly available on GitHub at

https://github.com/TheFischerLab/FLEXR.
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