

STRUCTURAL
BIOLOGY

Received 24 January 2023
Accepted 28 April 2023

Edited by E. F. Garman, University of Oxford, United Kingdom

Keywords: β-propellers; crystal engineering landscape; lectins; protein assembly; sulfonatocalix[8]arene form IV; Ralstonia solanacearum.

PDB references: MK-RSL-sulfonatocalix[8]arene complex, H 32 form, 8c9y; RSL-sulfonato-calix[8]arene complex, H32 form, 8 c 9 z

Supporting information: this article has supporting information at journals.iucr.org/d

Protein-macrocycle polymorphism: crystal form IV of the Ralstonia solanacearum lectin-sulfonato-calix[8]arene complex

Niamh M. Mockler, Kiefer O. Ramberg and Peter B. Crowley*

School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland. *Correspondence e-mail: peter.crowley@nuigalway.ie

Controlled protein assembly and crystallization is necessary as a means of generating diffraction-quality crystals as well as providing a basis for new types of biomaterials. Water-soluble calixarenes are useful mediators of protein crystallization. Recently, it was demonstrated that Ralstonia solanacearum lectin (RSL) co-crystallizes with anionic sulfonato-calix[8]arene (sclx_{8}) in three space groups. Two of these co-crystals only grow at $\mathrm{pH} \leq 4$ where the protein is cationic, and the crystal packing is dominated by the calixarene. This paper describes a fourth RSL-sclx 8 co-crystal, which was discovered while working with a cation-enriched mutant. Crystal form IV grows at high ionic strength in the pH range $5-6$. While possessing some features in common with the previous forms, the new structure reveals alternative calixarene binding modes. The occurrence of C_{2}-symmetric assemblies, with the calixarene at special positions, appears to be an important result for framework fabrication. Questions arise regarding crystal screening and exhaustive searching for polymorphs.

1. Introduction

In a recent editorial, Desiraju remarked on the conceptual shift from the structure to a structure, the latter being a point in the crystal-engineering landscape of a small molecule (Desiraju, 2021). Notwithstanding some discussion regarding definitions (Jones \& Ulrich, 2010; Ulrich \& Pietzsch, 2015), protein crystal polymorphism is a well recognized phenomenon (Ebrahim et al., 2019; Gillespie et al., 2014; Lanza et al., 2019; Van Driessche et al., 2018). The tetrameric D-glucose isomerase ($\sim 180 \mathrm{kDa}$) crystallizes in space group I222 or $P 2_{1} 2_{1} 2$ under low or high precipitant concentrations, respectively (Gillespie et al., 2014; Van Driessche et al., 2018; Vuolanto et al., 2003). Despite differences in the crystallization mechanisms, either ammonium sulfate (salting-out) or polyethylene glycol (depletion attraction) can act as the precipitant. Chicken egg-white lysozyme ($\sim 14 \mathrm{kDa}$), which is possibly the best crystallographically characterized protein, with ~ 1000 entries in the Protein Data Bank (PDB), crystallizes in at least six space groups (most frequently in $P 4_{3} 2_{1} 2$), with some evidence that anion binding can select the space group (Lanza et al., 2019; Plaza-Garrido et al., 2018; Vaney et al., 2001; Zalar et al., 2023). Co-crystals of the polyanionic sulfonato-calix[4]arene with lysozyme or methylated lysozyme reveal the polyanion to play key roles in the crystal packing (McGovern et al., 2014, 2015).

Calix[n]arenes are macrocyclic polyphenols with extensive crystal-engineering applications (Atwood et al., 2002; Kravets et al., 2021; Leśniewska et al., 2019; Pasquale et al., 2012). The sulfonato-calixarenes are versatile receptors for protein surfaces (with millimolar to micromolar binding affinities),

Table 1
RSL-sclx 8 co-crystal forms and crystallization conditions.

Form	[Salt] \dagger (M)	$I \ddagger(M)$	pH	Space group	PDB code§	$a, b, c(\AA)$	sclx ${ }_{8}$ share ${ }^{\text {d }}$	SCt† (\%)	Pore diameter+\# (nm)
I	≥ 1.6	≥ 4.8	4.8-9.5	$P 2{ }_{1} 3$	6z60	64, 64, 64	9	36	1.7
II	0.8-1.0	2.4-3.0	≤ 4.0	I23	6 z 5 g	104, 104, 104	12	66	4.2
III	None	~ 0.1	≤ 4.2	P3	6 z q	60, 60, 64	6	59	2.8
IV	1.0-1.2	>4	5.0-6.0	H32	8 c 9 z	76, 76, 114	9	51	2.7

\dagger Approximate concentration of ammonium sulfate (forms I and II) or sodium citrate (form IV) at $1 \mathrm{~m} M$ protein. \ddagger Approximate ionic strength of reservoir components. § Representative PDB entries. © The number of sclx_{8} molecules per RSL trimer in the crystal packing. $\dagger \dagger$ Solvent content estimated from total mass (protein plus $\operatorname{sclx})_{8}$). 㭋 Diameter of the widest pore calculated in MAP_CHANNELS.
acting as molecular glues with pronounced co-crystallization properties akin to 'silver bullets' (Alex et al., 2019; McPherson \& Cudney, 2006). As mediators of controlled assembly, calixarenes can contribute to the fabrication of protein-based materials (Engilberge et al., 2019; Ramberg, Engilberge, Skorek et al., 2021; Rennie et al., 2018; Zhu et al., 2021). The controlled formation of stable, porous protein assemblies may be an enabling technology in the development of biocatalysts (Nguyen et al., 2021). Previously, we reported three co-crystal forms of sulfonato-calix[8]arene ($\mathrm{sclx}_{8}, 1.5 \mathrm{kDa}$; Fig. 1) and cationic yeast cytochrome $c(\sim 13 \mathrm{kDa})$ (Engilberge et al., 2019; Rennie et al., 2018). One of these co-crystal forms is highly porous with $\sim 85 \%$ solvent content and is mediated exclusively by the macrocycle. The crystal packing is devoid of protein-protein contacts. We have also reported three co-crystal forms of sclx_{8} and the bacterial lectin Ralstonia solanacearum lectin (RSL; ~29 kDa) (Ramberg, Engilberge, Skorek et al., 2021). Two of these co-crystals are highly porous and rely on protein-calixarene-protein interfaces. Seemingly, sclx_{8} mediates different protein frameworks (or polymorphs) and functions as a tool for supramolecular isomerism consistent with 'the existence of more than one type of network superstructure for the same molecular building blocks' (Moulton \& Zaworotko, 2001).

RSL has a trimeric, six-bladed β-propeller structure with C_{3} symmetry, an isoelectric point (pI) close to neutral and high thermal stability (Kostlánová et al., 2005). Table 1 lists the three previously described crystal forms of RSL and sclx 8 (Ramberg, Engilberge, Skorek et al., 2021). Forms I and II were obtained using a commercial crystallization screen. Form III was originally obtained in an NMR sample (pH 4 , no precipitant) after overnight storage in the fridge. Form I, a densely packed crystal in space group $P 2_{1} 3$, grows at high ammonium sulfate concentrations and over a wide pH range. The requirement for high salt and the absence of pH depen-

Figure 1
The sulfonato-calix[8]arene (sclx $_{8}$) macrocycle with sodium counterions.
dence suggests that the hydrophobic effect dominates the formation of protein-calixarene and protein-protein interfaces. Crystal forms II (space group I23) and III (space group $P 3$) grow at $\mathrm{pH} \leq 4$ where RSL is cationic, and charge-charge interactions are expected to dominate. Both forms II and III are porous and mediated exclusively by sclx_{8}, with no proteinprotein interfaces, emphasizing the molecular-glue capacity of sclx $_{8}$. Each of the three RSL-sclx 8 co-crystal forms involve calixarene binding by the key residues Val13 and Lys34, albeit with differences in the calixarene conformation.

In our previous study, several mutants and chemical modifications of RSL were also tested (Ramberg, Engilberge, Skorek et al., 2021). The mutant MK-RSL with an extended N-terminus containing the Met-Lys motif that binds cucurbit[6]uril (Ramberg, Engilberge, Guagnini et al., 2021) was hypothesized to bind sclx $_{8}$. Trials using the form III cocrystallization condition were unsuccessful. The present work picked up at this point and a broad co-crystallization screen of MK-RSL and sclx 8 led to the discovery of form IV, which also occurs with native RSL. Interestingly, the calixarenes are at special positions on crystallographic twofold axes. Calixarene binding at Val13 and Lys34 reoccurs but in a substantially altered format. The role of protein charge and pH screening is discussed in the context of the protein-macrocycle crystallization landscape.

2. Materials and methods

2.1. Materials

Stock solutions of sclx_{8} (Tokyo Chemical Industry) were prepared in water and the pH was adjusted to 7.5 . RSL and MK-RSL, produced in Escherichia coli BL21 cells, were purified and quantified as described previously (Ramberg, Engilberge, Guagnini et al., 2021; Ramberg, Engilberge, Skorek et al., 2021). Each protein was studied in the D-fructose-bound form.

2.2. Co-crystallization trials

Solutions of $\sim 1 \mathrm{~m} M$ RSL in water or MK-RSL in $20 \mathrm{~m} M$ potassium phosphate, $50 \mathrm{~m} M \mathrm{NaCl} \mathrm{pH} 6.0$ were co-crystallized with sclx_{8} at $20^{\circ} \mathrm{C}$. MK-RSL was tested with 4,16 or 32 mM sclx $_{8}$ via sitting-drop vapour-diffusion experiments in MRC plates. Drops were prepared with a commercial screen (JBScreen JCSG++ HTS, Jena Bioscience) using an Oryx8 robot (Douglas Instruments). Hanging-drop vapour diffusion in 24-well Greiner plates was used to test solutions comprising

RSL or MK-RSL and $32 \mathrm{~m} M$ sclx $_{8}$ in combination with $1-2 M$ sodium citrate at $\mathrm{pH} 4-6$ or unbuffered. Crystallization drops were imaged using an Olympus SZX16 stereomicroscope and an Olympus DP25 digital camera.

2.3. X-ray data collection, processing and model building

Crystals were cryoprotected in the crystallization solution supplemented with $20-25 \%(v / v)$ glycerol and cryocooled in liquid nitrogen. Diffraction data were collected at 100 K on the PROXIMA-2A beamline at the SOLEIL synchrotron, Saint-Aubin, France using an EIGER X 9M detector. Data were processed using the autoPROC pipeline (Vonrhein et al., 2011) with integration in $X D S$ (Kabsch, 2010) and scaling and merging in AIMLESS (Evans \& Murshudov, 2013) and POINTLESS (Evans, 2011). AIMLESS was used to cut the data to $1.18 \AA$ resolution, with $I / \sigma(I)=1.80$. Structures were solved via molecular replacement in Phaser (McCoy et al., 2007) using the RSL monomer (PDB entry 2bt9) as a search model. The coordinates of sclx_{8} (PDB ID EVB) and D-fructose (PDB ID BDF) were added to each model in Coot (Emsley et al., 2010). Model building in Coot and refinement in phenix. refine (Adams et al., 2010) were performed iteratively until no further improvements in the $R_{\text {free }}$ or electron density could be made. The structures were validated in MolProbity (Williams et al., 2018) and deposited in the PDB with accession codes 8 c 9 y and 8 c 9 z . PDBePISA was used to determine proteincalixarene interface areas (Krissinel \& Henrick, 2007). MAP_CHANNELS was used to calculate crystal pore diameters (Juers \& Ruffin, 2014).

3. Results and discussion

3.1. Form IV crystallization conditions and structure determination

The JBScreen JCSG++ HTS screen applied to mixtures of MK-RSL and sclx_{8} gave rise to crystals (Fig. $2 a$) in condition B11, unbuffered 1.6 M sodium citrate (nominally $\mathrm{pH} \sim 8$), at $32 \mathrm{~m} M$ calixarene. Previous (Ramberg, Engilberge, Skorek et al., 2021) and reiterated trials with RSL and sclx ${ }_{8}$ did not yield crystals in this condition. The pH of condition B11 in situ is unknown. In the case of MK-RSL, which is prepared in
potassium phosphate buffer, it is likely that the crystallization condition is $\mathrm{pH} 6-7$. In the case of RSL, which is prepared in water, the pH may be ~ 7 or higher. The elevated pI of MK-RSL with respect to RSL further hinted that the protein net charge may be important for co-crystallization in this condition. Consequently, hanging-drop vapour-diffusion trials were prepared in 1-2 M sodium citrate buffered at $\mathrm{pH} 4-6$. Rhombohedral crystals of dimensions of $\sim 150 \mu \mathrm{~m}$ appeared in 1-2 days at 1.0-1.2 M sodium citrate pH 6 or 5 (Fig. 2). This crystal morphology, while similar to that obtained with MK-RSL, was distinct from those reported previously for RSL and sclx $_{8}$ (Ramberg, Engilberge, Skorek et al., 2021). Two morphologies, including rod-shaped crystals, grew in drops at pH 5 . At pH 4 only the rods were obtained. Similarly, at $>1.4 \mathrm{M}$ sodium citrate pH 5 or 6 only the rods grew.

Diffraction data were collected at the SOLEIL synchrotron. The rod crystals proved to be sclx ${ }_{8}$ only. The crystals with MK-RSL or RSL diffracted to beyond $1.2 \AA$ resolution and essentially identical structures were solved in space group H32 (Table 2) with electron density for sclx_{8} evident in the unbiased maps (Fig. 3). In the MK-RSL-sclx 8 structure the extended N -terminus is disordered, with no electron density for either Met0 or Lys1. Thus, while this mutant aided the discovery of crystal form IV, the extended N -terminus apparently does not bind calixarene.

3.2. Calixarenes at special positions

Crystal form IV was solved in space group H32, with an asymmetric unit comprising one RSL monomer and two molecules of sclx $_{8}$. Each calixarene is located at a special position on a crystallographic twofold axis. One sclx ${ }_{8}$ molecule occurs in the fully extended, pleated loop conformation, with all atoms on a special position and was modelled at 50% occupancy (Fig. 3a). This sclx 8 molecule is highly ordered with low average temperature factors $\left(\sim 15 \AA^{2}\right)$ similar to those of the protein $\left(\sim 18 \AA^{2}\right)$. The other sclx ${ }_{8}$ molecule, modelled at 70% occupancy, adopts a double-cone conformation (Fig. 3b). This calixarene is less well defined ($\sim 24 \AA^{2}$), with three partly disordered phenol-sulfonate subunits, one of which is located on a special position.

(a) MK-RSL-sclx x_{8} co-crystals obtained in JBScreen JCSG++ HTS condition B11. (b, c, d) RSL-sclx ${ }_{8}$ co-crystallization trials in $1.0 M$ sodium citrate at $\mathrm{pH} 6,5$ or 4 . Images are to scale and the scale bar is $100 \mu \mathrm{~m}$ in length.

Table 2
Crystallization conditions and X-ray data-collection, processing and refinement statistics for crystal form IV of RSL-sclx ${ }_{8}$ and MK-RSL-sclx 8 .

Structure	RSL-sclx 8	MK-RSL-sclx ${ }_{8}$
Sequence	SSVQTAATSWGTVPSIRVYTANNGKITERCWDGKGWYTGAFNEP	MKSVQTAATSWGTVPSIRVYTANNGKITERCWDGKGWYTGAFNE
	GDNVSVTSWLVGSAIHIRVYASTGTTTTEWCWDGNGWTKGAY	RVYTANNGKITERCWDGKGWYTGAFNEPGDNVSVTSWLVGSA
	TATN	IHIRVYASTGTTTTEWCWDGNGWTKGAYTATN
Crystallization		
[Sodium citrate] (M)	1.2	1.6
pH	6.0	Unknown
Data collection		
Light source	PROXIMA-2A, SOLEIL	PROXIMA-2A, SOLEIL
Wavelength (A)	0.98011	0.98011
Temperature (K)	100.0	100.0
Space group	H32	H32
a, b, c (\AA)	76.114, 76.114, 113.659	75.933, 75.933, 113.851
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90.0, 90.0, 120.0	90.0, 90.0, 120.0
Resolution (\AA)	57.02-1.18 (1.20-1.18)	56.94-1.18 (1.20-1.18)
No. of reflections	722097 (17558)	633389 (15353)
No. of unique reflections	41706 (1963)	41673 (2023)
Multiplicity	17.3 (8.9)	15.2 (7.6)
$\langle I / \sigma(I)\rangle$	19.0 (1.8)	20.4 (1.8)
Completeness (\%)	99.8 (96.3)	100.0 (99.8)
$R_{\text {meas }}$ (\%)	6.7 (138.3)	5.8 (131.4)
$R_{\text {p.i.m. }}$ (\%)	1.6 (44.8)	1.5 (46.4)
$\mathrm{CC}_{1 / 2}$	1.000 (0.622)	1.000 (0.697)
Solvent content (\%)	51	51
Refinement		
$R_{\text {work }}$	0.165	0.163
$R_{\text {free }}$	0.178	0.175
R.m.s.d., bond lengths (\AA)	0.005	0.005
R.m.s.d., angles (${ }^{\circ}$)	0.852	0.769
No. of molecules in asymmetric unit		
Protein chains	1	1
sclx_{8}	2	2
Waters	103	93
Average B factor (\AA^{2})	18.93	20.09
Clashscore	3.59	2.96
Ramachandran analysis, residues in		
Favoured regions (\%)	98.86	98.88
Allowed regions (\%)	1.14	1.12
PDB code	8 c 9 z	8c9y

We note two examples of protein-macrocycle co-crystal structures with features at special positions relevant to this study. A structure of concanavalin A in complex with tetra-sulfonato-phenyl porphyrin (PDB entry 1 jn 2) solved in space group $F 222$ includes half the porphyrin on crystallographic twofold axes (Goel et al., 2001). A structure of Rhodobacter capsulatus bacterioferritin (PDB entry 1 jgc) solved in space group $I 422$ includes pseudo- C_{2}-symmetric heme groups modelled at 50% occupancy on crystallographic twofold axes (Cobessi et al., 2002).

3.3. Details of the calixarene binding sites

The pleated-loop sclx ${ }_{8}$ is nestled between two RSL trimers related by a 180° rotation (Fig. $3 a$). Each protein buries $\sim 350 \AA^{2}$ in the protein-sclx ${ }_{8}$-protein interface. Lys 25 , Asn 42 , Pro44 and Lys83 each contribute $\geq 45 \AA^{2}$ to the interface area. The core of the interface is polar, involving Asn 42 , Glu43, the phenolic rim of sclx_{8} and several water molecules. Glu43 is likely to be protonated as it has an unusually high $\mathrm{p} K_{\mathrm{a}}$ value due to coplanar stacking of the carboxyl group with the indole of Trp74 (Ramberg, Engilberge, Skorek et al., 2021). A central water molecule, at a special position, is within van der Waals
distance of all eight phenol hydroxyls and is hydrogen-bonded to the carbonyl backbone of Asn42 and the side chain of Glu43. Lys 25 and Lys83, the side-chain termini of which are disordered, occur on the binding-site periphery, making weak salt-bridge interactions with the sulfonic acids.

The double-cone sclx_{8}, although partly disordered, also interacts with two RSL trimers related by a 180° rotation. This assembly resembles the sclx $_{8}$-mediated crystallographic dimer of Penicillium antifungal protein (PDB entry 6haj; Alex et al., 2019), as well as features in sclx_{8}-cytochrome c complexes (for example PDB entry 6rsi; Engilberge et al., 2019; Rennie et al., 2018). To describe the calixarene binding mode at this site we must reconsider the previously reported RSL-sclx ${ }_{8}$ structures (Ramberg, Engilberge, Skorek et al., 2021). The β-propeller fold of the RSL monomer comprises two four-stranded antiparallel β-sheets. Val13 and Lys34 are located in adjacent loops of one of the sheets. In crystal forms I, II and III, Val13 and Lys34 are extensively encapsulated by sclx $_{8}$ cavities comprising either two or three phenol-sulfonate subunits. The calixarene conformation at this site in crystal form IV most resembles that in form I, with four contiguous subunits superposing with an r.m.s.d. of $<1 \AA$. However, in crystal form IV the double-cone sclx_{8} spans two RSL molecules binding

Val13 in one trimer and Lys34 in the other trimer. The larger interface buries $\sim 350 \AA^{2}$ of the protein, with major contributions ($\geq 45 \AA^{2}$) from Val13 and Ser57, while the smaller interface buries $\sim 180 \AA^{2}$ of the second protein with Lys 34 and Tyr37 as the main contributors. In this novel arrangement, Val13 forms CH- π bonds with just one phenol-sulfonate, and Lys34, while partly disordered, is within the vicinity of four phenolic hydroxyls. Overall, a C_{2}-symmetric assembly is mediated by two adjacent sclx_{8} molecules and the junction of the two calixarenes (on a special position) is disordered. The model is approximate at the special position, with the phenolsulfonates of the two molecules being interchangeable (Fig. $3 b$). A curious consequence of the C_{2} symmetry and the 70% occupancy at this site comprising two calixarene bridging ligands is that the framework is maintained even if only one calixarene is present. Apparently, the molecular-glue capacity of one calixarene is sufficient to maintain this junction.

3.4. A comparison of RSL-sclx ${ }_{8}$ co-crystal frameworks

Table 1 shows the breadth of conditions leading to RSLsclx_{8} co-crystals, all of which were obtained at $\sim 1 \mathrm{~m} M$ protein. Crystallization of forms II and III requires ≤ 10 equivalents of calixarene to protein. In contrast, forms I and IV require >30 equivalents. Such high concentrations of the octa-anionic calixarene greatly increase the ionic strength ($30 \mathrm{~m} M$ $\mathrm{Na}^{+} \mathrm{sclx}_{8}$, is approximately 1.1 M ionic strength) and are likely to combine with the effects of $\sim 1 M$ precipitant (ammonium sulfate or sodium citrate) to achieve supersaturation. High ionic strength and a broad pH range leads to the densely
packed form I ($P 2_{1} 3$). In contrast, the porous forms II (I23) and III (P3) grow at pH 4 or lower, where RSL is cationic. The former grows at $\sim 3 M$ ionic strength while the latter requires low salt. Previously, we noted that a pH trigger involving the protonation of one or two Asp side chains enables forms II and III (Ramberg, Engilberge, Skorek et al., 2021). Interestingly, crystal form IV appears to be a hybrid structure requiring a relatively narrow pH range (5-6) and high ionic strength. A pH trigger may also be relevant here. Glu43 is centrally located on either side of the calixarene glue, forming hydrogen bonds to two of the phenolic hydroxyls and to the central water molecule (Fig. 3a). The two symmetry-related Glu43 side-chain carboxylates are separated by $<5.5 \AA$. With a $\mathrm{p} K_{\mathrm{a}}$ of ~ 6 (Ramberg, Engilberge, Skorek et al., 2021) this side chain is likely to be protonated, thus facilitating assembly of the protein-calixarene-protein junction. This proposed mechanism differs from the previously described pH trigger, in which calixarene binding was coupled to protonation of Asp32 and/or Asp46 at a pH of ~ 4. Attempts to obtain crystal form IV at pH 4 failed. It is plausible that sclx_{8} consumption within the rod crystals (Fig. 2d) compromised the growth of RSL-sclx 8 co-crystals. Considering the high ionic strength, form IV is relatively porous, contrasting with the densely packed form I that also grew at high ionic strength. Porous cytochrome $c-$ sclx $_{8}$ frameworks were obtained at high ionic strength, for example $>1.8 \mathrm{M}$ ammonium sulfate (Engilberge et al., 2019; Rennie et al., 2018).

Forms III and IV have similar (trigonal) packing, with each protein trimer connected to six other trimers via calixarene junctions. The RSL trimer is a toroid (Kostlánová et al., 2005),

(a)
(b)

Figure 3
The RSL-sclx ${ }_{8}$ interfaces in crystal form IV showing the unbiased electron-density maps ($2 F_{\mathrm{o}}-F_{\mathrm{c}}$, calculated at $1.18 \AA$ resolution prior to adding calixarenes to the model and contoured at 1σ). Two C_{2}-symmetric interfaces are mediated by (a) one sclx 8 molecule in the pleated loop and (b) two sclx 8 molecules in a double-cone conformation. The sclx ${ }_{8}$ molecules are either wholly (a) or partly (b) located on a special position. Interface side chains are shown as sticks. For clarity, water molecules are omitted.

Figure 4
The asymmetric units and unit cells of RSL^{2} sclx $_{8}$ forms IV (H32) and II (I23). The unit cell is depicted with one RSL trimer in ribbon representation and the corresponding calixarenes in colour. The remaining components are in grey with proteins as transparent surfaces. The unit cells are drawn to scale and the approximate c dimension is indicated in form IV.

Figure 5
The RSL-sclx inder $_{8}$ interfaces at Glu43 in crystal forms (a) IV (H32) and (b) II (I23). Glu43 and the flanking side chains Asn42, Pro44 and Trp74 are shown as sticks. For clarity, water molecules are omitted.
like a tube cake, with a wide end $(\sim 4.5 \mathrm{~nm})$ and a narrow end ($\sim 2.5 \mathrm{~nm}$). Lys 34 is located at the wide end, Lys 25 at the narrow end and Lys83 is midway between the two. In form III (P3) the wide ends and narrow ends are bridged together by calixarenes. Each protein trimer shares six calixarenes with symmetry-related proteins in the crystal packing. In form IV (H32), two symmetry-related calixarenes (Figs. $3 b$ and 4) mediate packing between the wide ends. Protein-calixareneprotein packing also occurs via the mid-regions of the toroids. Notwithstanding the reduced occupancy, each trimer effectively shares nine calixarenes with symmetry mates. Form I also involves nine shared calixarenes, albeit with several small ($<90 \AA^{2}$) interfaces. Form II (I23) has eight calixarene-coated trimers making up the cubic unit cell. In this packing, each RSL trimer shares 12 calixarenes (arranged as dimers) with symmetry mates. Thus, it appears that form IV is intermediate to forms II and III. Strikingly, form IV utilizes a new calixarene binding arrangement at the wide end of RSL, while the calixarene binding site at Lys25/Lys83 replicates a feature found in form II (Figs. 4 and 5). Fig. 4 shows the asymmetric units and unit cells of forms II and IV. The calixarenes coloured green are similar in the two structures. The calixarenes coloured mauve, although in different conformations, bind to similar regions of the protein. In form II, the two calixarenes dimerize to mediate the cubic packing (Figs. 4 and 5). In form IV, each calixarene acts as an independent molecular glue to mediate two distinct C_{2}-symmetric interfaces. Apparently, the polymorph selection is controlled by the choice of precipitant (ammonium sulfate or sodium citrate), the ionic strength and the pH (Table 1).

4. Conclusions

The commercially available sclx $_{8}$ is a versatile mediator of protein crystallization (Alex et al., 2019; Engilberge et al., 2019; Rennie et al., 2018). This flexible macrocyclic anion can bind to the same protein surface in different ways, leading to distinct assemblies. Using RSL and sclx ${ }_{8}$ building blocks, four crystalline frameworks with a range of porosities (36-66\% solvent content) can be generated (Table 1). Apparently, crystal engineering is relatively straightforward with selection via the choice/concentration of precipitant and the pH . Three of the co-crystal forms were discovered previously (Ramberg, Engilberge, Skorek et al., 2021). Two of these were hits in a commercial screen, while the third occurred in an NMR sample. Crystal form IV was not obtained in the original trials with RSL because the effect of pH on the sodium citrate condition was not studied. Testing the cation-enriched variant MK-RSL led to the discovery of form IV. Future proteincalixarene co-crystallization trials will include focused testing in sodium citrate at $\mathrm{pH} 4-6$. Such simple crystallization conditions are attractive in the context of protein-based materials and industrial applications.

While the strict definition of a polymorph, an 'identical chemical composition but different crystal structure', does not necessarily apply to protein crystals (Jones \& Ulrich, 2010; Ulrich \& Pietzsch, 2015), it is reasonable to assert that the

RSL-sclx $_{8}$ co-crystals are polymorphs. Crystal form IV is another point on the $\mathrm{RSL}-\mathrm{sclx}_{8}$ crystal-engineering landscape. Form IV appears to be a hybrid with properties (including crystallization conditions, calixarene binding sites and crystal packing) intermediate to the original forms. It remains to be seen whether yet other polymorphs will be discovered. Interestingly, three of the four RSL-sclx 8 co-crystal forms are porous (solvent contents ranging from 51% to 66%) and are mediated exclusively by the calixarene (Fig. 4). Such engineered frameworks hold promise for the design and development of new protein-based materials.

Acknowledgements

We thank the SOLEIL synchrotron for beam-time allocation and the staff at the PROXIMA-2A beamline for their assistance with data collection. We acknowledge S. Engilberge (Grenoble) for helpful discussions and the anonymous referees who contributed to improving the paper. The authors report no conflicts of interest. Open access funding provided by IReL.

Funding information

We thank the University of Galway, the Irish Research Council (grant GOIPG/2021/333 to NMM), the National University of Ireland (Travelling Studentship to KOR) and Science Foundation Ireland (grants 13/CDA/2168 and 12/RC/ 2275_P2) for funding.

References

Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., GrosseKunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. \& Zwart, P. H. (2010). Acta Cryst. D66, 213-221.
Alex, J. M., Rennie, M. L., Engilberge, S., Lehoczki, G., Dorottya, H., Fizil, Á., Batta, G. \& Crowley, P. B. (2019). IUCrJ, 6, 238-247.
Atwood, J. L., Barbour, L. J., Jerga, A. \& Schottel, B. L. (2002). Science, 298, 1000-1002.
Cobessi, D., Huang, L.-S., Ban, M., Pon, N. G., Daldal, F. \& Berry, E. A. (2002). Acta Cryst. D58, 29-38.

Desiraju, G. R. (2021). IUCrJ, 8, 148-149.
Ebrahim, A., Appleby, M. V., Axford, D., Beale, J., Moreno-Chicano, T., Sherrell, D. A., Strange, R. W., Hough, M. A. \& Owen, R. L. (2019). Acta Cryst. D75, 151-159.

Emsley, P., Lohkamp, B., Scott, W. G. \& Cowtan, K. (2010). Acta Cryst. D66, 486-501.
Engilberge, S., Rennie, M. L., Dumont, E. \& Crowley, P. B. (2019). ACS Nano, 13, 10343-10350.
Evans, P. R. (2011). Acta Cryst. D67, 282-292.
Evans, P. R. \& Murshudov, G. N. (2013). Acta Cryst. D69, 1204-1214.
Gillespie, C. M., Asthagiri, D. \& Lenhoff, A. M. (2014). Cryst. Growth Des. 14, 46-57.
Goel, M., Jain, D., Kaur, K. J., Kenoth, R., Maiya, B. G., Swamy, M. J. \& Salunke, D. M. (2001). J. Biol. Chem. 276, 39277-39281.
Jones, M. J. \& Ulrich, J. (2010). Chem. Eng. Technol. 33, 1571-1576.
Juers, D. H. \& Ruffin, J. (2014). J. Appl. Cryst. 47, 2105-2108.
Kabsch, W. (2010). Acta Cryst. D66, 125-132.
Kostlánová, N., Mitchell, E. P., Lortat-Jacob, H., Oscarson, S., Lahmann, M., Gilboa-Garber, N., Chambat, G., Wimmerová, M. \& Imberty, A. (2005). J. Biol. Chem. 280, 27839-27849.

Kravets, K., Kravets, M., Kędra, K. \& Danylyuk, O. (2021). Supramol. Chem. 33, 666-676.
Krissinel, E. \& Henrick, K. (2007). J. Mol. Biol. 372, 774-797.
Lanza, A., Margheritis, E., Mugnaioli, E., Cappello, V., Garau, G. \& Gemmi, M. (2019). IUCrJ, 6, 178-188.
Leśniewska, B., Coleman, A. W., Perret, F. \& Suwińska, K. (2019). Cryst. Growth Des. 19, 1695-1708.
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. \& Read, R. J. (2007). J. Appl. Cryst. 40, 658-674.
McGovern, R. E., McCarthy, A. A. \& Crowley, P. B. (2014). Chem. Commии. 50, 10412-10415.
McGovern, R. E., Snarr, B. D., Lyons, J. A., McFarlane, J., Whiting, A. L., Paci, I., Hof, F. \& Crowley, P. B. (2015). Chem. Sci. 6, 442-449.

McPherson, A. \& Cudney, B. (2006). J. Struct. Biol. 156, 387-406.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Nguyen, T. K., Abe, S., Kasamatsu, M., Maity, B., Yamashita, K., Hirata, K., Kojima, M. \& Ueno, T. (2021). ACS Appl. Nano Mater. 4, 1672-1681.
Pasquale, S., Sattin, S., Escudero-Adán, E. C., Martínez-Belmonte, M. \& de Mendoza, J. (2012). Nat. Commun. 3, 785.
Plaza-Garrido, M., Salinas-Garcia, M. C. \& Camara-Artigas, A. (2018). Acta Cryst. D74, 480-489.

Ramberg, K. O., Engilberge, S., Guagnini, F. \& Crowley, P. B. (2021). Org. Biomol. Chem. 19, 837-844.

Ramberg, K. O., Engilberge, S., Skorek, T. \& Crowley, P. B. (2021). J. Am. Chem. Soc. 143, 1896-1907.
Rennie, M. L., Fox, G. C., Pérez, J. \& Crowley, P. B. (2018). Angew. Chem. Int. Ed. 57, 13764-13769.
Ulrich, J. \& Pietzsch, M. (2015). Cryst. Res. Technol. 50, 560-565.
Van Driessche, A. E. S., Van Gerven, N., Bomans, P. H. H., Joosten, R. R. M., Friedrich, H., Gil-Carton, D., Sommerdijk, N. A. J. M. \& Sleutel, M. (2018). Nature, 556, 89-94.
Vaney, M. C., Broutin, I., Retailleau, P., Douangamath, A., Lafont, S., Hamiaux, C., Prangé, T., Ducruix, A. \& Riès-Kautt, M. (2001). Acta Cryst. D57, 929-940.
Vonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek, W., Womack, T. \& Bricogne, G. (2011). Acta Cryst. D67, 293-302.

Vuolanto, A., Uotila, S., Leisola, M. \& Visuri, K. (2003). J. Cryst. Growth, 257, 403-411.
Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S. \& Richardson, D. C. (2018). Protein Sci. 27, 293-315.
Zalar, M., Bye, J. \& Curtis, R. (2023). J. Am. Chem. Soc. 145, 929943.

Zhu, J., Avakyan, N., Kakkis, A., Hoffnagle, A. M., Han, K., Li, Y., Zhang, Z., Choi, T. S., Na, Y., Yu, C. J. \& Tezcan, F. A. (2021). Chem. Rev. 121, 13701-13796.

