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Equations in Sections 2.3 and 2.4 of the article by Afonine et al. [Acta Cryst.

(2013). D69, 625–634] are corrected.

In the article by Afonine et al. (2013) some improper notations

and errors in several equations in Sections 2.3 and 2.4 have

been corrected. We note that the Computational Crystal-

lography Toolbox (Grosse-Kunstleve et al., 2002) has been

using the correct version of these equations since 2013.

Updated versions of Section 2.3 and equations (42), (43) and

(45) are given below.

2.1. Bulk-solvent parameters and overall isotropic scaling

Assuming the resolution-dependent scale factors kmask(s)

and kisotropic(s) to be constants kmask and kisotropic in each thin

resolution shell, the determination of their values is reduced to

minimizing the residualP
s

fjFcalcðsÞ þ kmaskFmaskðsÞj
2

� ½koverall kanisotropicðsÞkisotropic�
�2F2

obsðsÞg
2; ð22Þ

where the sum is calculated over all reflections s in the given

resolution shell, and koverall and kanisotropic(s) are calculated

previously and fixed. This minimization problem is generally

highly over-determined because the number of reflections per

shell is usually much larger than two.

Introducing ws = |Fmask(s)|2, vs ¼
1
2 ½FcalcðsÞF

�
maskðsÞ +

F�calcðsÞFmaskðsÞ�, us = |Fcalc(s)|2, Is ¼ ½koverall kanisotropicðsÞ�
�2F2

obsðsÞ

and K ¼ k�2
isotropic and substituting them into (22) leads to the

minimization of

LSðK; kmaskÞ ¼
P

s

½ðk2
maskws þ 2kmaskvs þ usÞ � KIs�

2
ð23Þ

with respect to K and kmask. This leads to a system of two

equations:

@

@K
LSðK; kmaskÞ ¼ �2

P
s

½ðk2
maskws þ 2kmaskvs þ usÞ � KIs�Is

¼ 0;
@

@kmask

LSðK; kmaskÞ ¼ 4
P

s

½ðk2
maskws þ 2kmaskvs þ usÞ � KIs�

� ðkmaskws þ vsÞ

¼ 0:

8>>>>>>><
>>>>>>>:

ð24Þ
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Developing these equations with respect to kmask,

k2
mask

P
s

wsIs þ 2kmask

P
s

vsIs þ
P

s

usIs � K
P

s

I2
s ¼ 0;

k3
mask

P
s

w2
s þ 3k2

mask

P
s

wsvs þ kmask

P
s

ð2v2
s þ usws � KIswsÞ

þ
P

s

usvs � K
P

s

Isvs ¼ 0;

8>>><
>>>:

ð25Þ

and introducing new notations for the coefficients, we obtain

k2
maskC2 þ kmaskB2 þ A2 � KY2 ¼ 0;

k3
maskD3 þ k2

maskC3 þ kmaskðB3 � KC2Þ þ A3 � KY3 ¼ 0:

�
ð26Þ

Multiplying the second equation by Y2 and substituting KY2

from the first equation into the new second equation, we

obtain a cubic equation with fixed coefficients

k3
maskðD3Y2 � C2

2Þ þ k2
maskðC3Y2 � C2B2 � C2Y3Þ

þ kmaskðB3Y2 � C2A2 � Y3B2Þ þ ðA3Y2 � Y3A2Þ ¼ 0: ð27Þ

The senior coefficient in equation (27) satisfies the Cauchy–

Schwarz inequality:

D3Y2 � C2
2 ¼

P
s

w2
s

P
s

I2
s �

P
s

wsIs

P
s

wsIs > 0: ð28Þ

Therefore, equation (27) can be rewritten as

k3
mask þ ak2

mask þ bkmask þ c ¼ 0 ð29Þ

and solved using a standard procedure.

The corresponding values of K are obtained by substituting

the roots of equation (29) into the first equation in equation

(26),

K ¼ ðk2
maskC2 þ kmaskB2 þ A2Þ=Y2: ð30Þ

If no positive root exists, kmask is assigned a zero value, which

implies the absence of a bulk-solvent contribution. If several

roots with kmask � 0 exist then the one that gives the smallest

value of LS(K, kmask) is selected.

If desired, one can fit the right-hand side of expression (10)

to the array of kmask values by minimizing the residualP
s

½kmask � ksol expð�Bsol s2=4Þ�2 ð31Þ

for all kmask > 0. This can be achieved analytically as described

in Appendix A. Similarly, one can fit koverall exp(�Boverall s2/4)

to the array of K values.

Equations (42), (43) and (45) in Section 2.4 of Afonine et al.

(2013) are also updated as follows

b ¼
P

s

IðsÞI1ðs1Þ; . . . ;
P

s

IðsÞINðsNÞ; 1

� �t

; ð42Þ

LSðK; kmaskÞ ¼
P

s

PN
j¼1

�jjFcalcðsjÞ þ kmaskFmaskðsjÞj
2

" #
� KIs

( )2

;

ð43Þ

LSðK; kmaskÞ ¼
P

s

ðk2
maskws þ 2kmaskvs þ usÞ � KIs

� �2
: ð45Þ
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