ISSN 2059-7983

Received 23 May 2023
Accepted 2 June 2023

Edited by R. J. Read, University of Cambridge, United Kingdom

Keywords: Phenix; anisotropy; bulk solvent; scaling.

Bulk-solvent and overall scaling revisited: faster calculations, improved results. Corrigendum.

P. V. Afonine, ${ }^{\text {a* }}$ R. W. Grosse-Kunstleve, ${ }^{\text {a }}$ P. D. Adams ${ }^{\text {a,b }}$ and A. Urzhumtsev ${ }^{\text {c,d }}$

${ }^{\text {a }}$ Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA, ${ }^{\mathbf{b}}$ Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA, ${ }^{\text {cIGBMC, CNRS-INSERM-UdS, } 1 \text { Rue }}$ Laurent Fries, BP 10142, 67404 Illkirch, France, and dUniversité Nancy: Département de Physique - Nancy 1, BP 239, Faculté des Sciences et des Technologies, 54506 Vandoeuvre-lès-Nancy, France. *Correspondence e-mail: pafonine@lbl.gov

Equations in Sections 2.3 and 2.4 of the article by Afonine et al. [Acta Cryst. (2013). D69, 625-634] are corrected.

In the article by Afonine et al. (2013) some improper notations and errors in several equations in Sections 2.3 and 2.4 have been corrected. We note that the Computational Crystallography Toolbox (Grosse-Kunstleve et al., 2002) has been using the correct version of these equations since 2013. Updated versions of Section 2.3 and equations (42), (43) and (45) are given below.

2.3. Bulk-solvent parameters and overall isotropic scaling

Assuming the resolution-dependent scale factors $k_{\text {mask }}(\mathbf{s})$ and $k_{\text {isotropic }}(\mathbf{s})$ to be constants $k_{\text {mask }}$ and $k_{\text {isotropic }}$ in each thin resolution shell, the determination of their values is reduced to minimizing the residual

$$
\begin{align*}
\sum_{\mathbf{s}}\left\{\mid \mathbf{F}_{\text {calc }}(\mathbf{s})+\right. & \left.k_{\text {mask }} \mathbf{F}_{\text {mask }}(\mathbf{s})\right|^{2} \\
& \left.-\left[k_{\text {overall }} k_{\text {anisotropic }}(\mathbf{s}) k_{\text {isotropic }}\right]^{-2} F_{\text {obs }}^{2}(\mathbf{s})\right\}^{2}, \tag{22}
\end{align*}
$$

where the sum is calculated over all reflections \mathbf{s} in the given resolution shell, and $k_{\text {overall }}$ and $k_{\text {anisotropic }}(\mathbf{s})$ are calculated previously and fixed. This minimization problem is generally highly over-determined because the number of reflections per shell is usually much larger than two.
Introducing $w_{\mathrm{s}}=\left|\mathbf{F}_{\text {mask }}(\mathbf{s})\right|^{2}, \quad v_{\mathrm{s}}=\frac{1}{2}\left[\mathbf{F}_{\text {calc }}(\mathbf{s}) \mathbf{F}_{\text {mask }}^{*}(\mathbf{s})+\right.$ $\left.\mathbf{F}_{\text {calc }}^{*}(\mathbf{s}) \mathbf{F}_{\text {mask }}(\mathbf{s})\right], u_{\mathbf{s}}=\left|\mathbf{F}_{\text {calc }}(\mathbf{s})\right|^{2}, I_{\mathrm{s}}=\left[k_{\text {overall }} k_{\text {anisotropic }}(\mathbf{s})\right]^{-2} F_{\text {obs }}^{2}(\mathbf{s})$ and $K=k_{\text {isorropic }}^{-2}$ and substituting them into (22) leads to the minimization of

$$
\begin{equation*}
\operatorname{LS}\left(K, k_{\text {mask }}\right)=\sum_{\mathrm{s}}\left[\left(k_{\text {mask }}^{2} w_{\mathrm{s}}+2 k_{\text {mask }} v_{\mathrm{s}}+u_{\mathrm{s}}\right)-K I_{\mathrm{s}}\right]^{2} \tag{23}
\end{equation*}
$$

with respect to K and $k_{\text {mask }}$. This leads to a system of two equations:

$$
\left\{\begin{align*}
\frac{\partial}{\partial K} \mathrm{LS}\left(K, k_{\text {mask }}\right)= & -2 \sum_{\mathrm{s}}\left[\left(k_{\text {mask }}^{2} w_{\mathrm{s}}+2 k_{\text {mask }} v_{\mathrm{s}}+u_{\mathrm{s}}\right)-K I_{\mathrm{s}}\right] I_{\mathrm{s}} \tag{24}\\
= & 0, \\
\frac{\partial}{\partial k_{\text {mask }}} \mathrm{LS}\left(K, k_{\text {mask }}\right)= & 4 \sum_{\mathbf{s}}\left[\left(k_{\text {mask }}^{2} w_{\mathrm{s}}+2 k_{\text {mask }} v_{\mathrm{s}}+u_{\mathrm{s}}\right)-K I_{\mathrm{s}}\right] \\
& \times\left(k_{\text {mask }} w_{\mathrm{s}}+v_{\mathrm{s}}\right) \\
= & 0
\end{align*}\right.
$$

Developing these equations with respect to $k_{\text {mask }}$,

$$
\left\{\begin{array}{l}
k_{\text {mask }}^{2} \sum_{\mathbf{s}} w_{\mathrm{s}} I_{\mathrm{s}}+2 k_{\text {mask }} \sum_{\mathbf{s}} v_{\mathbf{s}} I_{\mathrm{s}}+\sum_{\mathbf{s}} u_{\mathbf{s}} I_{\mathrm{s}}-K \sum_{\mathbf{s}} I_{\mathrm{s}}^{2}=0, \tag{25}\\
k_{\text {mask }}^{3} \sum_{\mathbf{s}} w_{\mathrm{s}}^{2}+3 k_{\text {mask }}^{2} \sum_{\mathbf{s}} w_{\mathrm{s}} v_{\mathrm{s}}+k_{\text {mask }} \sum_{\mathbf{s}}\left(2 v_{\mathrm{s}}^{2}+u_{\mathrm{s}} w_{\mathrm{s}}-K I_{\mathrm{s}} w_{\mathrm{s}}\right) \\
\quad+\sum_{\mathbf{s}} u_{\mathrm{s}} v_{\mathrm{s}}-K \sum_{\mathbf{s}} I_{\mathrm{s}} v_{\mathbf{s}}=0,
\end{array}\right.
$$

and introducing new notations for the coefficients, we obtain

$$
\left\{\begin{array}{l}
k_{\text {mask }}^{2} C_{2}+k_{\text {mask }} B_{2}+A_{2}-K Y_{2}=0, \tag{26}\\
k_{\text {mask }}^{3} D_{3}+k_{\text {mask }}^{2} C_{3}+k_{\text {mask }}\left(B_{3}-K C_{2}\right)+A_{3}-K Y_{3}=0 .
\end{array}\right.
$$

Multiplying the second equation by Y_{2} and substituting $K Y_{2}$ from the first equation into the new second equation, we obtain a cubic equation with fixed coefficients

$$
\begin{align*}
& k_{\mathrm{mask}}^{3}\left(D_{3} Y_{2}-C_{2}^{2}\right)+k_{\mathrm{mask}}^{2}\left(C_{3} Y_{2}-C_{2} B_{2}-C_{2} Y_{3}\right) \\
& \quad+k_{\mathrm{mask}}\left(B_{3} Y_{2}-C_{2} A_{2}-Y_{3} B_{2}\right)+\left(A_{3} Y_{2}-Y_{3} A_{2}\right)=0 \tag{27}
\end{align*}
$$

The senior coefficient in equation (27) satisfies the CauchySchwarz inequality:

$$
\begin{equation*}
D_{3} Y_{2}-C_{2}^{2}=\sum_{\mathbf{s}} w_{\mathbf{s}}^{2} \sum_{\mathbf{s}} I_{\mathbf{s}}^{2}-\sum_{\mathbf{s}} w_{\mathbf{s}} I_{\mathbf{s}} \sum_{\mathbf{s}} w_{\mathbf{s}} I_{\mathbf{s}}>0 . \tag{28}
\end{equation*}
$$

Therefore, equation (27) can be rewritten as

$$
\begin{equation*}
k_{\text {mask }}^{3}+a k_{\text {mask }}^{2}+b k_{\text {mask }}+c=0 \tag{29}
\end{equation*}
$$

and solved using a standard procedure.
The corresponding values of K are obtained by substituting the roots of equation (29) into the first equation in equation (26),

$$
\begin{equation*}
K=\left(k_{\text {mask }}^{2} C_{2}+k_{\text {mask }} B_{2}+A_{2}\right) / Y_{2} . \tag{30}
\end{equation*}
$$

If no positive root exists, $k_{\text {mask }}$ is assigned a zero value, which implies the absence of a bulk-solvent contribution. If several roots with $k_{\text {mask }} \geq 0$ exist then the one that gives the smallest value of $\mathrm{LS}\left(K, k_{\text {mask }}\right)$ is selected.

If desired, one can fit the right-hand side of expression (10) to the array of $k_{\text {mask }}$ values by minimizing the residual

$$
\begin{equation*}
\sum_{\mathrm{s}}\left[k_{\mathrm{mask}}-k_{\mathrm{sol}} \exp \left(-B_{\mathrm{sol}} s^{2} / 4\right)\right]^{2} \tag{31}
\end{equation*}
$$

for all $k_{\text {mask }}>0$. This can be achieved analytically as described in Appendix A. Similarly, one can fit $k_{\text {overall }} \exp \left(-B_{\text {overall }} s^{2} / 4\right)$ to the array of K values.

Equations (42), (43) and (45) in Section 2.4 of Afonine et al. (2013) are also updated as follows

$$
\begin{equation*}
\mathbf{b}=\left[\sum_{\mathbf{s}} I(\mathbf{s}) I_{1}\left(\mathbf{s}_{1}\right), \ldots, \sum_{\mathbf{s}} I(\mathbf{s}) I_{N}\left(\mathbf{s}_{N}\right), 1\right]^{t} \tag{42}
\end{equation*}
$$

$\operatorname{LS}\left(K, k_{\text {mask }}\right)=\sum_{\mathbf{s}}\left\{\left[\sum_{j=1}^{N} \alpha_{j}\left|\mathbf{F}_{\text {calc }}\left(\mathbf{s}_{j}\right)+k_{\text {mask }} \mathbf{F}_{\text {mask }}\left(\mathbf{s}_{j}\right)\right|^{2}\right]-K I_{\mathrm{s}}\right\}^{2}$,

$$
\begin{equation*}
\mathrm{LS}\left(K, k_{\mathrm{mask}}\right)=\sum_{\mathrm{s}}\left[\left(k_{\mathrm{mask}}^{2} w_{\mathrm{s}}+2 k_{\mathrm{mask}} v_{\mathrm{s}}+u_{\mathrm{s}}\right)-K I_{\mathrm{s}}\right]^{2} \tag{43}
\end{equation*}
$$

References

Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. \& Urzhumtsev, A. (2013). Acta Cryst. D69, 625-634.

Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. \& Adams, P. D. (2002). J. Appl. Cryst. 35, 126-136.

