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Elisabet Jiménez,b Filomeno Sánchez Rodrı́guez,a,c Maria Fando,d Ville Uski,d

Charles Ballard,d Grzegorz Chojnowski,e Andrey Lebedev,d Eugene Krissinel,d

Isabel Usón,b,f Daniel J. Rigdena and Ronan M. Keegana,d*

aInstitute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom,
bCrystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain, cYork Structural

Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, dUKRI–STFC,

Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom, eEuropean

Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany, and fICREA, Institució
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In late 2020, the results of CASP14, the 14th event in a series of competitions

to assess the latest developments in computational protein structure-prediction

methodology, revealed the giant leap forward that had been made by Google’s

Deepmind in tackling the prediction problem. The level of accuracy in their

predictions was the first instance of a competitor achieving a global distance test

score of better than 90 across all categories of difficulty. This achievement

represents both a challenge and an opportunity for the field of experimental

structural biology. For structure determination by macromolecular X-ray crys-

tallography, access to highly accurate structure predictions is of great benefit,

particularly when it comes to solving the phase problem. Here, details of new

utilities and enhanced applications in the CCP4 suite, designed to allow users to

exploit predicted models in determining macromolecular structures from X-ray

diffraction data, are presented. The focus is mainly on applications that can be

used to solve the phase problem through molecular replacement.

1. Introduction

Having ready access to reliable means of predicting protein

structures has far-reaching implications for macromolecular

X-ray crystallography (MX) and other experimental methods

in the field of structural biology. The long-term impact on

these experimental methods of being able to predict macro-

molecular structures accurately remains to be seen, but the

more immediate implications are to the benefit of those using

these experiments to infer structural knowledge from experi-

mental data. In MX, predicted models can be used to assist in

many of the steps that are involved in determining a structure

from X-ray diffraction data. The most obvious of these is in

helping to tackle the phase problem. The X-ray diffraction

experiment gives us the means to generate the electron

density for the crystallized macromolecule(s). This is accom-

plished through an inverse Fourier transform equation

involving amplitude and phase terms. The amplitudes are

calculated from the measured intensities in the diffraction

experiment, but the phases are not measured and need to be

derived by other means. This is the phase problem. Molecular

replacement (MR) has long been the dominant method of

addressing this problem (Evans & McCoy, 2008; Long et al.,

2008; Scapin, 2013). As of January 2023, 125 258 of the 172 746

depositions in the Protein Data Bank (PDB; Berman et al.,

2003) determined by X-ray crystallography were determined
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using MR. MR is typically carried out with a homologous

structure found in the PDB that is suitably similar to the target

that it can give a good approximation to the phases when

placed correctly in the unit cell of the target crystal. The

availability of such a homologue has traditionally been a

significant limitation, although sophisticated statistical-based

methods such as those used in the Phaser application (McCoy

et al., 2007) have enabled MR to be carried out successfully

using even remote homologues (down to about 30% sequence

identity). A modelling approach succeeded as early as 2007

(Qian et al., 2007) in improving hopelessly remote homo-

logues. The range of targets can be further extended with

bioinformatic methods using ensembling and editing (Leahy

et al., 1992; Adams et al., 2010; Bibby et al., 2013; Rigden et al.,

2018). In cases where no homologous structures are available,

ab initio models were composed and built using a fragment-

based approach implemented in ARCIMBOLDO (Rodrı́guez

et al., 2009; Sammito et al., 2013; Millán et al., 2015, 2018),

AMPLE (Bibby et al., 2012; Keegan et al., 2015; Simpkin et al.,

2019) and Fragon (Jenkins, 2018). These approaches were

made readily available in CCP4.

The advent of highly accurate predicted models has

removed the requirement for a homologue to be available in

the PDB in almost all cases. Crystal structures containing

many copies in the asymmetric unit remain difficult to solve

due to low signal to noise, even when using a highly accurate

monomeric search model, although methods for predicting

multimeric models are improving (Evans et al., 2022). There

will also be crystal structures that may be difficult to solve with

a predicted model due to the prediction favouring a particular

conformation of a protein that can form different conforma-

tions (Chakravarty & Porter, 2022; Castellvı́ et al., 2022) or

crystal structures containing complexes where one or more

of the proteins is disordered unless in a complex (Dyson &

Wright, 2005; Tunyasuvunakool et al., 2021). There remains a

place for other methods that address the phase problem such

as experimental phasing, but predicted models have made MR

a reliable method in many cases that were previously the

preserve of these other approaches (Terwilliger et al., 2023).

Despite their high accuracy, predicted models still require

some pre-processing before they can be successfully used in

MR. The conformational make-up of larger, multimeric and

multi-domain structures often differs between a prediction

and what is found in the crystal structure. This can make MR

difficult, but in most cases an informed dissection of the

predicted model into rigid domain regions can enable

successful MR through stepwise placement of each of the

domains. Predicted models can also vary in their accuracy

across the length of the predicted sequence. Methods such

as AlphaFold2 (AF2; Jumper et al., 2021) and RoseTTAFold

(Baek et al., 2021) provide confidence indicators on a per-

residue or per-atom basis which can be used to guide the

elimination of those residues that are deemed to be unlikely to

be present in the same conformation in a crystal structure.

AF2 provides a pLDDT score, which is a predicted value of

the local distance difference test score (Mariani et al., 2013).

Residues are assigned a value of between 1 and 100, with

higher values indicating greater confidence. RoseTTAFold

provides an estimated r.m.s.d. from the true structure, with

lower values being indicative of higher confidence. Both

applications make use of the B-factor column in their gener-

ated PDB output file to store this information. For search

models derived from a deposited PDB structure, the B factors

are useful for weighting the search model in Phaser. To exploit

this when using predicted models, the pLDDT and r.m.s.d.

values may be converted to sensible B factors (Oeffner et al.,

2022), or alternatively they can be set uniformly to probe

structural features (Medina et al., 2022).

Evidence of the effectiveness in MR of accurately gener-

ated predictions from AF2 has been reported (McCoy et al.,

2022; Millán et al., 2021; Barbarin-Bocahu & Graille, 2022;

Terwilliger et al., 2023). To further demonstrate the potential

of predictions from AF2 and other developments inspired

by it, we have examined the use of predicted models from

OpenFold (Ahdritz et al., 2022), a trainable implementation

of AF2, in the determination of 70 structures where SAD

phasing was utilized in their original determination. All of

the cases were taken from structures released between late

January and mid-July 2022. For simplicity, only cases with a

single chain in the asymmetric unit were selected. The set

covers a wide variety of space groups, resolutions and target-

sequence lengths. Predictions were made using an installation

of OpenFold pre-dating January 2022, so none of the list of

PDB entries used in the test will have been used in its training,

although a small number of test cases had close homologues in

the existing PDB at that time. OpenFold works well on a CPU

architecture and we have run it on a 48-core shared-memory

CPU (AMD EPYC 7401) cluster with 256 Gbytes of RAM.

It is also the model-prediction application underpinning the

CCP4 Cloud structure-prediction task (Section 3.1.5). The

times taken to perform the prediction ranged from 5 min for

an 85-residue sequence (PDB entry 7mq3) to 2 h 25 min for

1024 residues (PDB entry 7w82). Fig. 1 plots the results of the

MR study using the predicted models for each of the 70 cases.

The sequence length of the target structure is plotted against

the log likelihood gain (LLG) from Phaser. Each point is also

coloured according to the local map correlation coefficient

(Map CC, calculated using the Phenix software suite;

Liebschner et al., 2019) between the map generated by the

placed model and that of the determined structure. It is clear

from both the LLG and the Map CC that the predicted model

provides a good solution in the majority of cases. The full set

of results for the tests are available in Supplementary Table

S1.

Despite the clear advantage of using predicted models in

structure solution, as of January 2023 only 96 entries in the

PDB listed their starting model for determining the structure

as an AlphaFold or AF2 prediction, while 58 listed it as being

from RoseTTAFold or Rosetta (Shortle et al., 1998). There are

likely to be more than this that have not yet been documented,

but it is clear that to date the great potential of predicted

models in structure determination remains under-utilized. To

make it easier for users to access and use these predictions,

several new and updated applications have been added to the
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CCP4 suite (Agirre et al., 2023). Here, we describe both these

applications and the resources available to source or generate

predicted models. The applications described can all be

accessed using CCP4 version 8.0.10 or later.

2. Resources

2.1. Databases of deep-learning-based protein structure

predictions

Following on from the release of the AF2 software (Jumper

et al., 2021), Deepmind entered into a collaboration with

the EMBL European Bioinformatics Institute (EMBL–EBI)

to create an ambitious database of AF2-predicted models

(Varadi et al., 2022). The goal was to create a database

covering a large portion of all catalogued proteins (Bateman

et al., 2020) and to make the predictions freely available to

the scientific community. At the time of writing, the EBI

AlphaFold2 Database, available at https://alphafold.ebi.ac.uk,

contains 214 million predictions covering much of UniProt,

including the complete human proteome and those of many

other organisms.

Very recently, a similar exercise has addressed the MGnify

database of metagenomic sequences (Mitchell et al., 2020).

The natural language-based method ESMFold (Lin et al.,

2023) was used to make the predictions, with the results being

made available in the ESM Metagenomic Atlas at https://

esmatlas.com. The current database includes over 600 million

structure predictions which, although their quality is not

expected to be quite on a par with the AlphaFold2 Database,

represent a hugely valuable resource for MR and many other

purposes.

2.2. Generating predicted models online

Soon after the release of the AF2 software in 2021, access to

AF2 and RoseTTAFold was facilitated by the implementation

of online modelling pipelines on Colab notebooks (Mirdita

et al., 2022). These are an initiative of Google that enable

collaborative online coding and running of code using Google

cloud resources, including powerful GPUs. The pipelines,

termed ColabFold, vary in their protocols and in their

configurability. At the time of writing, a list of the available

notebooks is maintained at https://github.com/sokrypton/

ColabFold. Some use the jackhmmer (Johnson et al., 2010)

software for database search and multiple sequence alignment

(MSA) generation, as employed by the original DeepMind

implementation of AF2, but most take advantage of the ultra-

rapid API to the MMseqs2 software (Steinegger & Söding,

2017; https://search.mmseqs.com/docs/). MSAs from the two

methods can differ, but the overall predictive performance is

comparable (Mirdita et al., 2022). Nevertheless, in difficult

cases calculation of models via both routes and comparison of

the results can be valuable. Models can also be calculated

using single target sequences, but the resulting loss of evolu-

tionary covariance signal (Marks et al., 2011) derived from

the MSA typically degrades the model quality. Nevertheless,

for artificial proteins or natural singletons that lack known

homologues, useful results can still sometimes be obtained,

aided by increasing the number of AF2 iterations (recycling

steps).

Further options to configure modelling runs enable greater

conformational diversity among the results, potentially

generating better search models than the default protocol. The

advanced ColabFold page, for example, allows the user to

enable a stochastic element in the calculation and produce

models from several different random-number seeds. Another

method that is known to allow better conformational sampling

of membrane transporters, for example, is reducing the MSA

depth (del Alamo et al., 2022): maximally deep MSAs may

result in a strong covariance signal for only a single confor-

mational state. More expert users may also use the ability to

upload a user-generated alignment to submit an MSA in which

certain positions have been edited. The rationale here is that

there may be strong signals from pairs of covarying residues

pushing AF2 towards a particular conformation. These pairs

can be identified from an initial modelling run and the signal

ablated by in silico mutagenesis of the residue pairs to alanine:

further modelling on the edited alignment allows AF2 to

explore conformations more freely (Stein & Mchaourab,

2022). Finally, the use of templates, i.e. experimentally deter-

mined structures related to that of the target, may be strate-

gically varied. Where a protein or protein family is known to

adopt two or more conformations, modelling in the desired

conformation can be encouraged by supplying AF2 with
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Figure 1
Results from molecular replacement with Phaser for 70 SAD-determined
cases from the PDB using predicted models generated using OpenFold. A
line representing LLG = 60 is shown. For most space groups, a value of 60
or more is a strong indicator of successful placement in MR (McCoy et al.,
2017). Points are also coloured by local Map CC, with lighter colours
indicating high correlation between the map generated by the placed
model and that of the deposited structure. Additionally, the points are
sized by a Q-score from the alignment of the predicted model and the
deposited structure. Larger points represent higher Q-scores, indicating
better alignment. Q-scores were calculated using Gesamt (Krissinel &
Uski, 2017).

https://alphafold.ebi.ac.uk
https://esmatlas.com
https://esmatlas.com
https://github.com/sokrypton/ColabFold
https://github.com/sokrypton/ColabFold
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templates that are in the desired form, potentially supple-

mented by reducing the MSA depth in order that AF2 places

greater weight on the supplied template(s) (Heo & Feig,

2022).

Although not trained for the task of oligomeric structure

prediction, AF2 soon demonstrated that it can perform well

at protein–protein and protein–peptide complex prediction

(Bryant et al., 2022; Ko & Lee, 2021). The ColabFold note-

books allow the modelling of homo- and hetero-oligomers

using both the original AF2 and a version, AlphaFold2-

Multimer, specifically trained for oligomeric modelling (Evans

et al., 2022). Some notebooks additionally allow control over

pairing of sequences, i.e. the matching of sequences coming

from the same species. Such pairing, enabling a better calcu-

lation of intermolecular covariance, has been shown to be

important in previous methods of complex modelling (Bitbol

et al., 2016), but AF2 performs well even when supplied with

separate MSAs for each chain (Gao et al., 2022).

A key limitation of the ColabFold notebooks is system size:

attempting to predict the structures of large proteins or

complexes will often lead to failure due to a lack of memory or

processing capacity. Changing the parameters, for example to

restrict the depth of the MSA, can help in these circumstances,

and paid Colab options offer better resources, but fully

exploiting the abilities of AF2 typically requires local instal-

lation on systems with powerful GPU resources. Finally, it is

worth mentioning the batch Colab notebook which can

sequentially model protein sequences in a supplied FASTA

format file, storing the results on the user’s own Google drive.

A ColabFold notebook for running RoseTTAFold is also

available. Although typically somewhat less accurate (Mirdita

et al., 2022), modelling with RoseTTAFold is often useful as a

form of validation of predicted folds and its results may

explore the conformational space of a target differently.

RoseTTAFold is also available alongside earlier generations

of the Rosetta lineage at the Robetta server (https://

robetta.bakerlab.org/; Kim et al., 2004).

In addition to the generation of predicted models, AF2 and

similar prediction applications produce a predicted aligned

error matrix (PAE) indicating the confidence in the relative

positions of each pair of residues in the predicted model. This

matrix can be useful in isolating domain or rigid regions within

a model that can be extracted for use as search models in MR.

3. Updates to CCP4

New and updated utilities and applications have been added

to the CCP4 suite to allow users to use predicted search

models in MR. These include tasks to convert confidence

scores to B factors and to help determine domain regions that

can be isolated for use in MR. In addition, applications to

perform automated MR such as ARCIMBOLDO (Millán et

al., 2015) and MrBUMP (Keegan et al., 2018; Keegan & Winn,

2007, 2008) have been updated to take advantage of predicted

models. Other tasks have been enhanced to allow users to

search the EMBL–EBI AF2 Database (EBI-AFDB) or the

ESM Metagenomic Atlas (ESMAtlas) for a predicted model

of their target or close homologous predicted structures.

The CCP4 suite comes with two main interfaces: CCP4i2

(Potterton et al., 2018) and CCP4 Cloud (Krissinel et al., 2022).

CCP4i2 is a QT-based interface and is mainly suited to

running applications locally on a user’s laptop or workstation.

CCP4 Cloud was developed to provide an interface to an

installation of the suite running remotely on CCP4 server

infrastructure in the UK or on an institution-based server

infrastructure. It functions through a standard web browser

and can also run applications on a local machine when run in

desktop mode. Both interfaces have been updated with tools

to handle predicted models and we will refer to both

throughout this section of the text. The incorporation of the

processes and tools described here differs between the two

interfaces: CCP4i2 provides more fine-grain control, whereas

the philosophy of CCP4 Cloud is to be more automated. Note

that the CCP4i application (Potterton et al., 2002) has been

superseded by CCP4i2 and CCP4 Cloud and has not been

updated with any of the new tools described below.

3.1. Generating or searching for predicted models

The first step in solving the phase problem using molecular

replacement is to source a suitable search model that is as

similar as possible in structure to the unknown target struc-

ture. When placed correctly in the unit cell of the target, the

search model can provide an initial estimate of the phases for

the target, and through refinement, density modification and

model building, these phase estimates can be improved upon.

In trivial cases, for example when performing a ligand study

where the apo structure is known, the apo structure can be

used as the search model. Where no apo structure is available,

a search of the set of known structures in the PDB is

performed using sequence identity as a guide to structural

similarity. In most scenarios, a homologue representing a

sufficiently large portion of the scattering content of the

crystal, with a sequence identity of 30% or better to the target,

is good enough for MR to work. A more precise estimate of

model suitability is provided by the Phaser eLLG (expected

log likelihood gain) score (Oeffner et al., 2018), where a model

with an eLLG value of 64 or above indicates that if the MR

calculation achieves an LLG value of 64 or higher, it is very

likely to identify a correct solution. As discussed above, a

predicted model, with the sequence of the target, will perform

as well or better in MR than any homologue. Therefore, the

first step for anyone using MR to solve the phase problem

should be to either source the predicted model for the target

in a database such as the EBI-AFDB or ESMAtlas or to

generate a predicted model if not available in those databases.

In the CCP4 suite, there are several tools that have tradi-

tionally been used to source search models in the PDB that

have been updated to search the EBI-AFDB and ESMAtlas.

In addition to these, an interface has been added to CCP4

Cloud allowing users to run AF2 or one of the similar

pipelines ColabFold and OpenFold to generate a prediction

that can subsequently be used in MR.
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3.1.1. Importing predicted models. A simple way to make

use of a predicted model in CCP4 is to import the coordinate

file into CCP4i2 or CCP4 Cloud using their respective

coordinate-file import tasks. This can be a predicted model

generated externally to CCP4 using a local installation of a

prediction application (for example AF2), one of the Google

Colab servers described above or the RoseTTAFold server.

Alternatively, users can provide a UniProt identifier to fetch

the prediction from the EBI-AFDB.

3.1.2. ESMAtlas predictions. Another quick way to get a

prediction is to access ESMFold through the ESMAtlas API

or directly from the ESMAtlas web page. MrParse (described

below) includes the option to generate a prediction using the

ESMAtlas API and will soon include the possibility to search

the ESMAtlas for close matches to a target sequence. Note

that there is a size limit of 350 residues (at the time of writing)

on the predicted model that can be generated using the API.

3.1.3. MrParse. MrParse is a program designed to aid MR

search-model identification. It does so by identifying suitable

candidates in both the PDB and the EBI-AFDB, providing

visual representations of the hits, and by consolidating a

number of bioinformatic predictions in one place (Simpkin,

Thomas et al., 2022).

The EBI-AFDB can be searched using the EBI phmmer

API (https://www.ebi.ac.uk/Tools/hmmer/search/phmmer) and

any hits are downloaded, trimmed to match the target protein

and undergo a pLDDT to predicted B factor conversion to

make them suitable for use in MR. Statistics such as the

average pLDDT and the novel H-score (described in Simpkin,

Thomas et al., 2022) are provided to allow users to determine

the predicted quality of the EBI-AFDB hit. A value of 70

or more for the average pLDDT is indicative of a high-

confidence prediction. The H-score is based on pLDDT, but

also accounts for the number of residues in the hit, so that hits

covering the full length of the target sequence are given a

greater weighting. Additionally, Pfam Domain Graphics (Finn

et al., 2006) are used to provide a visual representation of the

EBI-AFDB hits with the visualizations coloured on an orange

to blue scale, where orange indicates very low confidence in

the predicted residues and blue indicates very high confidence

(Fig. 2). When run from the command line, users can optionally

provide the sequence-listing FASTA file for the EBI-AFDB

(https://ftp.ebi.ac.uk/pub/databases/alphafold/sequences.fasta),

enabling the search to be run locally. This option can take

longer to run and requires a large amount of disk space

(�92 Gb) to store the alignment file. This option is the current

default on the CCP4 Cloud server. Fig. 2 shows the output

from MrParse using the sequence of PDB entry 7r1m as the

target sequence.

MrParse has a dedicated task interface in both CCP4i2 and

CCP4 Cloud. The resulting prepared search models are made

available through the output from the task for follow-on tasks,

such as MR using Phaser or MOLREP (Vagin & Teplyakov,

2010).

3.1.4. MrBUMP and CCP4mg-MrBUMP. MrBUMP is an

automated CCP4 pipeline for carrying out all of the stages in

MR (Keegan et al., 2018). It takes as input a target sequence

and the target reflection data amplitudes and searches for

potential MR search models, prepares them and passes them

to Phaser or MOLREP for the MR step. It will also refine the
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Figure 2
The MrParse HTML results page from CCP4 Cloud for the sequence of PDB entry 7r1m, showing search hits from both the PDB (top rows, coloured
according to sequence identity) and the EBI-AFDB (middle rows, coloured by pLDDT) as well as a prediction generated using ESMFold (bottom row,
coloured by pLDDT).

https://www.ebi.ac.uk/Tools/hmmer/search/phmmer
https://ftp.ebi.ac.uk/pub/databases/alphafold/sequences.fasta


subsequent placed search model using REFMAC5 and can

perform model building using Buccaneer (Cowtan, 2012),

ARP/wARP (Chojnowski et al., 2020; Langer et al., 2008) or

SHELXE (Usón & Sheldrick, 2018; Thorn & Sheldrick, 2013).

The search step can be performed using phmmer (Eddy, 2011)

or HHpred (Söding et al., 2005) to identify potentially suitable

homologues in the PDB. With the introduction of the EBI-

AFDB, the option to additionally search this database using

phmmer has been added. To enable this search, the sequences

of entries in the EBI-AFDB are included in a database file

within the CCP4 suite. At the time of writing this is limited

to the one million entries made available up to Release 3

(January 2022) of the EBI-AFDB. Future developments will

extend the search to cover the full version of this database.

Hits found in the EBI-AFDB search are downloaded and

converted into MR search models. A pLDDT to B factor

conversion is performed. Additionally, a pLDDT threshold

for the inclusion of residues from the predicted model in the

search model is applied, with a default value of 70 or better.

Residues in the predicted models scoring a pLDDT below this

value are removed.

The CCP4 Molecular Graphics program (CCP4mg;

McNicholas et al., 2011) has the option to run the initial steps

in the MrBUMP pipeline to search for and prepare models for

use in MR. The original implementation allows users to search

for models in the PDB with varying levels of removed

redundancy, from fully redundant, including all entries,

through to a nonredundant version where each entry has no

more than 50% identity to any other entry. As described

above, the MrBUMP application can now search the EBI-

AFDB for potential search models and this functionality has

been added to the CCP4mg-MrBUMP application. By default,

both the PDB and the EBI-AFDB are searched and the top

ten hits according to sequence identity to the target sequence

are aligned and displayed in the graphical viewer. The user can

control the number of residues displayed through an adjust-

ment of the pLDDT threshold when initiating the search.

CCP4mg-MrBUMP is integrated into both CCP4i2 and CCP4

Cloud, facilitating its use as part of the structure-solution

process when using MR. Fig. 3 shows a screenshot of the

interface, with the results of a search using the sequence of

PDB entry 7pt5 displayed. Hits from the EBI-AFDB are

displayed using their UniProt accession-based code identifiers.

3.1.5. Generating predicted models through CCP4. When

used via a server with a large compute capacity, the use of

CCP4 Cloud to aid structure determination has several

advantages. A user can explore a number of structure-solution

strategies in parallel; for example, attempting MR using a

range of different search models. It can also give the user

access to applications that require significant computational

resources or large databases, which are normally difficult to

install and run on a local desktop or laptop. As such, CCP4

Cloud is well placed to facilitate the generation of predicted

models using AF2 or similar applications. Running these
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Figure 3
The CCP4mg interface showing the results of a MrBUMP search against the EBI-AFDB for PDB entry 7pt5. An alignment of the hits from the database
is shown in the smaller window and is colour-coded according to sequence identity to the target (a spectrum from red for high identity through to blue for
low identity). The graphical window displays the alignment of the models. Note that the models have been truncated according to a pLDDT threshold of
70.



programs requires large numbers of CPU and/or GPU

processors as well as the installation of large databases. The

CCP4-based servers have been updated to run AF2 and

similar applications such as OpenFold. This option is exposed

to users through the CCP4 Cloud interface when run in

remote mode (Fig. 4).

3.2. Processing predicted models in CCP4

Once a predicted model has been sourced or generated, the

next step is to prepare the model for use in MR. As described

above, predicted models will have a confidence score in the

B-factor column which will need conversion to a B-factor

estimate, as well as low-confidence residues which will need to

be pruned. Predicted models may also differ in the relative

positioning of their domains when compared with a crystal-

lized target. This becomes more likely with increasing size of

the target structure. It can be beneficial to decompose the

predicted model into domains or rigid components that can

then be used as independent search models in MR. CCP4 now

provides several tools to both manually and automatically

perform processing of a predicted model.

3.2.1. Process Predicted Models. The CCP4i2 graphical

interface has been updated with a new task interface, Process

Predicted Models, to support the processing of predicted

models for use within the CCP4i2 framework (Fig. 5). This

new interface allows models generated by AF2 and RoseTTA-

Fold to be passed effortlessly into MR and other applications

that make use of coordinate data. This task, along with similar

tasks described in this work that are designed to exploit

predicted models in structure solution, have been grouped

together into a task menu named ‘AlphaFold and RoseTTA-

Fold utilities’.

Process Predicted Models is an interface to the cctbx

(Grosse-Kunstleve et al., 2002) library function of the same

name described in Oeffner et al. (2022). It uses the treatment

described there to convert the pLDDT values output by AF2

(or the corresponding r.m.s.d. values in RoseTTAFold) into

appropriate B factors, as well as splitting the models into

separate, well constrained, regions or domains suited for use

as search models in MR. This splitting can be performed in

one of two ways, finding compact domains using only struc-

tural information or by parsing the PAE matrix (for AF2

models only). The automatic removal of residues with poor

probabilities is also supported. Fig. 6 illustrates the results of

processing a predicted model generated using OpenFold for

PDB entry 7e8r using the Process Predicted Models task

interface. Note that Process Predicted Models is not included

in CCP4 Cloud as similar functionality is provided by other

tasks. B-factor conversion is performed automatically during

research papers

812 Adam J. Simpkin et al. � Predicted models and CCP4 Acta Cryst. (2023). D79, 806–819

Figure 4
The CCP4 Cloud structure-prediction interface showing a prediction generated by OpenFold using the sequence of PDB entry 7mrq. The report
generated provides the PAE matrix plot for the predicted model, in addition to a plot illustrating the pLDDT scores for each residue along the length of
the sequence.
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Figure 5
The Process Predicted Models interface in CCP4i2.

Figure 6
Process Predicted Models. The conversion of the pLDDT values for a predicted model from OpenFold for PDB entry 7e8r, shown in (a), to B factors as
well as the removal of residues with a pLDDT of <70 (b). Colouring in (a) is by pLDDT score on a blue/orange palette, where blue indicates high-
confidence regions. (b) is shown in putty representation and is coloured by B factor on a blue/red palette, where blue indicates a low B factor. (c) shows
the unmodified predicted model (green) for the full chain length (351 residues) aligned against PDB entry 7e8r (blue). (d) illustrates the alignment of the
two split domains (red and gold) generated using the PAE matrix as a guide for splitting in the Process Predicted Models task against PDB entry 7e8r
(blue). Alignments were generated using Gesamt.



the import of a predicted model. Splitting and pruning of

a model can be performed using the Slice’N’Dice task

(described below).

3.2.2. Processing predicted models in CCP4 Cloud. In

CCP4 Cloud, the process of B-factor column conversion is

handled automatically. The import task automatically identi-

fies the source of the predicted model (for example AF2 or

RoseTTAFold) and makes the necessary adjustments. The

import task does not remove low-confidence residues or split

models into domains automatically. In CCP4 Cloud this can

be achieved using the Slice’N’Dice task as described below.

In ARCIMBOLDO_SHREDDER, model pre-processing is

performed internally and automatically.

3.2.3. Processing predicted models with Slice’N’Dice.

Similar to the Process Predicted Models task, Slice’N’Dice is

an automated tool for the processing of predicted models as

well as automatically putting them through MR (Simpkin,

Elliott et al., 2022). It will perform B-factor column adjustment

(if not already performed) as well as the truncation of low-

confidence regions. It differs from the Process Predicted

Models task in how it splits the predicted model. The splitting

into domains or rigid components to facilitate the correct

placement of the model in MR is performed using the data-

clustering algorithms provided by the scikit-learn libraries in

Python (Pedregosa et al., 2011).

The goal of the clustering is to dissect the predicted model

into a set of suitable search models which may be akin to

domains and are structurally rigid units that are unlikely to

have an alternative conformation in the crystal structure. C�

atoms in the model are clustered together based on their

relative positions in space. The inclusion of a specific C� atom

in a cluster is subject to a penalty score based on its distance

from other C� atoms in the cluster. Boundaries between

clusters occur where this penalty exceeds a threshold defined

by the clustering algorithm used. Each resulting cluster

contains a subset of the residues in the predicted model that

becomes a search model for MR. At the time of writing, the

number of clusters created is controlled by user input. Further

work is being performed to automate the optimum choice of

cluster number. This general approach allows the dissection

of search models from any source (for example deposited

structures in the PDB) in addition to predicted models. The

resulting split of a given predicted model is often found to be

similar to the split provided by the Process Predicted Models

task. However, in some cases it can find a favourable split

producing suitable search models that are not easily extracted

from the PAE matrix.

Both CCP4i2 and CCP4 Cloud have been updated to

include interfaces to Slice’N’Dice, with CCP4 Cloud including

an additional ‘slice’ task interface which can be used to just

perform the processing and model-splitting steps. Fig. 7 shows

an example (PDB entry 7qlr) demonstrating the utility of

using only the slice function of Slice’N’Dice to split the model

before performing MR manually. PDB entry 7qlr was origin-

ally determined using SAD phasing and the predicted model

from the EBI-AFDB differs significantly from the crystal

structure in its conformation (Fig. 7a). The resolution of the

data is 2.46 Å and the crystal contains four copies in the

asymmetric unit. Automatic attempts to determine the struc-

ture using the full and split versions of the predicted model

were unsuccessful. Using Phaser and MOLREP, and utilizing

a branching exploration of possible solutions in CCP4 Cloud,
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Figure 7
Output from the ‘slice’ step of Slice’N’Dice for a predicted model from AlphaFold2 (UniProt A0A487D782) for the sequence of PDB entry 7qlr. To
illustrate the better agreement between the crystal structure and the split model, the unmodified predicted model and a three-way split of the predicted
model using the slice function have been structurally aligned with chain A of PDB entry 7qlr using Gesamt. (a) shows the alignment between the
unmodified prediction (blue) and PDB entry 7qlr (grey). (b) shows the alignment after the model has been split three ways (light green, magenta and
yellow) using the clustering algorithm employed in Slice’N’Dice. MR search models created from these three models could then be used to determine the
solution.



a solution could be determined using a step-by-step approach

to placing the search models generated from a three-way split

of the predicted model (Fig. 7b). To summarize, the branch

leading to the correct solution involved the initial correct

placement by Phaser of two copies of the yellow search model

in Fig. 7(b). A further two copies of the same search model

were subsequently placed using the entire initial placement

(two chains) as a single search model. This was followed by the

correct placement of four copies of the magenta search model,

also using Phaser. Subsequent refinement using REFMAC

(150 cycles of jelly-body refinement) improved the map

sufficiently such that four copies of the remaining search

model (green) were then found using the phased translation

search option in MOLREP.

3.3. Molecular replacement using predicted models

3.3.1. Slice’N’Dice. As described in Section 3.2.3,

Slice’N’Dice is an automated pipeline for processing predicted

models as well as putting the prepared models through MR.

By default, it will split an input predicted model in three ways:

a single cluster as well as two and three clusters of atoms. Each

of these cluster groupings then forms a set of search models

for MR. For each of these groups, a Phaser job is invoked,

taking all clusters in each group as input search model(s).

The Phaser log likelihood gain (LLG) and translation Z-score

(TFZ) are reported and further assessment of the placed

model(s) is carried out through cycles of jelly-body refinement

with REFMAC5 (Murshudov et al., 2011).

3.3.2. ARCIMBOLDO_SHREDDER. The ARCIMBOLDO_

SHREDDER sequential and ARCIMBOLDO_SHREDDER

spheres programs (Sammito et al., 2014; Millán et al., 2018)

were originally developed for phasing using fragments that

were extracted from remote homologs, identified and refined

against the experimental data. ARCIMBOLDO_SHREDDER

spheres was thus well suited to solve structures with any kind

of structural template and the method has been adapted to

optimize the use of predicted models, while systematically

removing model bias (Medina et al., 2022).

The predicted_model mode can be activated through all

CCP4 interfaces and can be used either to verify an MR

solution or to phase a structure with predicted models.

Note that ARCIMBOLDO is not currently available in the

Windows version of CCP4, but can be accessed through CCP4

Cloud or CCP4 Online (Krissinel et al., 2018) from a Windows

machine or using a CCP4 Linux installation in Windows

Subsystem for Linux (WSL). The predicted_model mode will

automatically pre-process the AF2 or RoseTTAFold model by

eliminating unstructured and disconnected areas (Medina et

al., 2020) and setting B factors. The models are decomposed

into structural units combining hierarchical community clus-

tering to identify domains and local folds; a library of equal-

sized models of a size determined by the eLLG is then

generated respecting the annotation and used for fragment

location with Phaser. If a solution is straightforward, expan-

sions with SHELXE (Usón & Sheldrick, 2018) will omit the

original fragment from the trace and all consistent traces are

then combined in reciprocal space with ALIXE (Millán et al.,

2020), systematically eliminating the search model and thus its

bias. If the model is very partial or shows large differences

from the target structure, the expansion will be performed by

the combination of phases from a small fraction of the struc-

ture, and therefore successful solution will suffice as verifica-

tion. In the case where the predicted structure is a coiled coil,

the user should select the coiled_coil mode along with the

predicted_model mode through the interfaces; this will replace

the model-free verification with a dedicated verification

addressing the specific pitfalls arising from the modulation and

anisotropy (Caballero et al., 2018). Finally, if the structure is a

multimer and expansion of a first placement does not suffice to

provide a solution, the multicopy approach will be activated

to sequentially search for several copies with an optimized

prioritization step to speed up calculations (Medina et al.,

2022). This procedure is illustrated in Fig. 8.

3.3.3. Molecular replacement with an AlphaFold model

workflow in CCP4 Cloud. CCP4 Cloud includes a set of

automated workflows that are designed to automate

commonly performed processes in structure solution. They

include several workflows designed to perform MR and

experimental phasing as well as others used to carry out

refinement and ligand fitting. They can be initiated from the

outset of a project or, in the case of the refinement and ligand-

fitting workflow, following successful phasing and initial model

building. A workflow has been added to make use of the

ability to generate a predicted model and use it in MR. When

run through the CCP4 Cloud server hosted by CCP4 at RAL

Harwell, UK, the predicted model is generated automatically

on one of the servers. To avail of the option on a local

installation of CCP4 Cloud, one must have a local installation

of the model-prediction software. At the time of writing, AF2,

ColabFold and OpenFold are all supported. Further details of

the architecture and implementation of CCP4 Cloud can be

found in Krissinel et al. (2022).

3.3.4. MoRDa. MoRDa (Vagin & Lebedev, 2015) is an

automated MR pipeline based on the MOLREP application

and is accessible through task interfaces in both CCP4i2 and

CCP4 Cloud. The software package includes a database and a

set of programs for structure solution. MoRDa was designed

to use its database of domains for the preparation of MR

search models. However, an option to generate domain

models from an input deposited or predicted model is also

supported. These domain models are formed from an initial

aggregation of residues generated using a fast clustering

algorithm. Further residues are added to these domains, with

their selection accounting for the total solvent-accessible area

and the completeness of secondary-structure elements within

domains. The completed domains are used as search models in

the MR pipeline.

3.4. Beyond molecular replacement

We have mainly focused on the use of predicted models in

MR, but other parts of the structure-determination procedure

in CCP4 have been updated to make use of them. LORESTR
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(Kovalevskiy et al., 2016) is an automated pipeline that was

designed to help to optimize the refinement of macromolecules

at low resolution. It makes use of ProSMART (Nicholls et al.,

2014) to generate restraint information from homologous

structures to aid the refinement. LORESTR has been updated

with the option to automatically download AF2 models from

the EBI-AFDB and prepare them in a way that is suitable for

restraint generation with ProSMART. This functionality is

available through both CCP4i2 and CCP4 Cloud. Other

applications that have been updated to make use of predicted

models include the molecular-graphics programs Coot

(Emsley et al., 2010) and CCP4mg, which both provide the

facility to download and display models from the EBI-AFDB.

The distance predictions accompanying the generation of a

model by AF2 can also be used for structure validation

(Sánchez Rodrı́guez et al., 2022). This protocol is already

available in ConKit (Simkovic et al., 2017) and will be inte-

grated into the Iris validation GUI (Sánchez Rodrı́guez et al.,

2022; Rochira & Agirre, 2021) in the near future.

4. Discussion

The onset of the age of accurately predicted macromolecular

structures has fundamentally changed the field of structural

biology and promises far-reaching implications in many other

areas of biological and medical science. In the first couple of

years since Deepmind’s success in CASP14, many further

developments have been made that build upon that success.

These include the provision of large prediction databases such

as the EBI-AFDB and the ESMAtlas, as well as a proliferation

of online prediction servers. Experimental structural biology

methods can derive great benefit from these resources. In

macromolecular crystallography, this is primarily seen in

facilitating a solution to the phase problem with relative ease.

Despite this, some challenges remain. The most notable

examples of this are the need to split predicted models to

enable correct placement of domains that may have adopted

different relative positions in the crystal when compared with

that of the prediction, the verification of deceptive solutions

such as coiled-coil structures, and addressing model bias.

To provide access to all of these developments for its users,

CCP4 has added updated and new functionality to the soft-

ware suite, with a particular emphasis on tools and resources

designed to exploit and manipulate predicted models for use

in molecular replacement. Parallel to this, the recent devel-

opment of CCP4 Cloud is timely in its suitability and conve-

nience for providing users with access to structure-prediction

tools and large prediction databases without the need for

complex and sizable local installations.

Future developments in the field of structure prediction

will further enhance its utility in the structure-determination

process. Servers that enable the accurate prediction of multi-

mers and complexes are already available. These predictions

should help to overcome the signal-to-noise problem when

performing MR in cases where there are many copies or large

complexes in the asymmetric unit cell of a crystal. Elsewhere,

alternative machine-learning methods are being applied in the

prediction methods, such as the language-model approach

used by ESMFold. These are enabling the structure-prediction

process to happen in near-real time. Other developments

facilitating the prediction of nucleic acids are promised in the

near future, and will help to tackle the often difficult process of
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Figure 8
ARCIMBOLDO_SHREDDER will automatically pre-process the predicted models, decompose them into structural units, minding the domains, and
use them for phasing. If the solution is very partial a phase combination of the partial solutions and the expansion will suffice as verification, if the
solution is straightforward it will be verified by eliminating the model bias, and in the case of coiled coils the verification will be performed by scoring the
best solution against a baseline complying with the modulation in the data. Otherwise, the multicopy approach will search for subsequent copies.



sourcing accurate search models for use in the molecular

replacement of crystallized DNA or RNA. CCP4, through its

active development community, will continue to enhance and

improve its offering when it comes to exploiting the oppor-

tunities presented by accurate prediction of macromolecules.
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zeni, J. É., Devenish, N. E., Dodson, E. J., Drevon, T. R., Emsley, P.,
Evans, G., Evans, P. R., Fando, M., Foadi, J., Fuentes-Montero, L.,
Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K., Hekkelman,
M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins, H. T., Jiménez,
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