
research papers

Acta Cryst. (2023). D79, 1109–1119 https://doi.org/10.1107/S2059798323009142 1109

ISSN 2059-7983

Received 26 June 2023

Accepted 17 October 2023

Edited by K. Diederichs, University of Konstanz,

Germany

Keywords: atomic displacement parameters;

graphlet degree vectors; interatomic contacts;

macromolecules.

Supporting information: this article has

supporting information at journals.iucr.org/d

Published under a CC BY 4.0 licence

Using graphlet degree vectors to predict atomic
displacement parameters in protein structures

Jure Pražnikara,b*
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In structural biology, atomic displacement parameters, commonly used in the

form of B values, describe uncertainties in atomic positions. Their distribution

over the structure can provide hints on local structural reliability and mobility. A

spatial macromolecular model can be represented by a graph whose nodes are

atoms and whose edges correspond to all interatomic contacts within a certain

distance. Small connected subgraphs, called graphlets, provide information

about the wiring of a particular atom. The multiple linear regression approach

based on this information aims to predict a distribution of values of isotropic

atomic displacement parameters (B values) within a protein structure, given the

atomic coordinates and molecular packing. By modeling the dynamic compo-

nent of atomic uncertainties, this method allows the B values obtained from

experimental crystallographic or cryo-electron microscopy studies to be repro-

duced relatively well.

1. Introduction

In experimental methods such as macromolecular crystallo-

graphy and cryo-electron microscopy (cryo-EM), uncertainty

in atomic positions is described by the atomic displacement

parameter (ADP), commonly in the form of a B value

(Trueblood et al., 1996; Parthasarathy & Murthy, 1997; Radi-

vojac et al., 2004; Carugo, 2018a; Sun et al., 2019). In fact, this

parameter includes both the actual atomic mobility, which is

the subject of our interest, and variation of the atomic position

over the sample, i.e. static uncertainties. The ADPs are refined

before deposition in the Protein Data Bank (PDB; Berman et

al., 2000). At medium resolution, the ratio of the number of

observations to the number of parameters is low and the

experimental data are insufficient, so restraints and constraints

are needed to refine the coordinates and ADPs. A simple

restraint used in modern crystallographic software is that

bonded atoms tend to have similar ADPs (Hirshfeld, 1976;

Konnert & Hendrickson, 1980; Tronrud, 1996; Merritt, 2011,

2012). However, refinement also depends on the crystallo-

grapher, who determines the strength of the restraints and the

constraints; for example, the minimum and maximum B values

allowed. The accuracy of ADPs and their maximal values in

protein models were the subjects of studies by Carugo (2018b,

2022). These studies showed that very large ADPs were

deposited more frequently in the PDB after 2008 and that

there has been no improvement in ADP errors over the last

two decades.

Recently, Masmaliyeva & Murshudov (2019) and Masma-

liyeva et al. (2020) suggested a very interesting method for

analyzing and validating isotropic ADPs. It was shown that the

distribution of isotropic ADPs in a protein structure follows a
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shifted inverse gamma distribution (SIGD), which was defined

as

PðB; B0; �; �Þ ¼
��

� ð�Þ
ðB � B0Þ

� �� 1
exp �

�

B � B0

� �

; ð1Þ

where �, � and B0 are shape, scale and shift parameters,

respectively. Note that B0 is defined as 90% of the minimum B

value in the protein model. The statistics for the shape and

scale parameters of the SIGD were obtained from a large

PDB data set. By estimating the shape and scale parameters of

the SIGD, information can be obtained on whether the ADP

distribution of the query protein is an outlier that requires

further validation. At the same time, this method cannot be

used to predict ADPs.

Instead, several methods to predict the isotropic ADPs of

macromolecules have been suggested using the amino-acid

sequence (Yuan et al., 2005; Schlessinger & Rost, 2005;

Schlessinger et al., 2006; Pan & Shen, 2009), packing density

(Halle, 2002), graph-theory parameters (Jacobs et al., 2001;

Gohlke et al., 2004; Yin et al., 2011), elastic networks of C�

atoms (Kundu et al., 2002), local structure-assembly variations

(Yang et al., 2016) and advanced machine-learning algorithms

(Bramer & Wei, 2018).

To our knowledge, none of these methods is widely used in

practice. A review of the cited scientific papers shows that (i)

some scripts or software are not available, (ii) the prediction is

based on the sequence and not on the atomic model and (iii)

the predicted B values are constant for all atoms in a given

residue. To address all of these issues, and to further develop

the prediction of B values, the method introduced by Weiss

(2007) was chosen, where a linear model was introduced in

which the B values depend on the parameters of the close

atomic contacts. Therefore, by adding parameters describing

the local wiring patterns, the linear model was extended into a

multiple linear model that is relatively simple and intuitive to

construct.

From the perspective of graph theory each contact can be

considered as an edge between two nodes (atoms), and the

number of contacts per atom is called the node degree in

graph theory. This local graph parameter can be used to

classify or to sort the nodes. This single measure seems to be

insufficient to determine whether two nodes are (dis)similar.

The degree of a node indicates how many connections a

particular node has, but it does not contain information about

how these neighboring nodes are connected themselves.

Therefore, additional local graph parameters are needed to

better define both close and deep contacts of a given node,

which are expected to estimate the ADP for the respective

atom.

An extension of the node degree or the number of

connections per node was introduced by Pržulj (2007). In this

work, small (2–4 nodes) subgraphs, called graphlets, were

introduced. Similar to counting the number of edges per node,

one can also count the number of graphlets per node. Thus, by

counting the graphlets (or small motifs) per node in the graph,

we can extract the local topology of the node. This topological

description of the nodes contains information about the

number of connections as well as information about how

neighboring nodes are connected.

In the work presented here, the graphlet degree vector

(GDV) was used to build a multiple linear regression model to

predict the distribution of protein isotropic ADPs (B values).

It was shown that the multiple linear regression model using

the GDV to predict the distribution of B values performs

better than the linear model based on only the atomic contact

number (Weiss, 2007). The multiple linear model is indepen-

dent of resolution and is only based on the geometry of the

model. It can be useful to predict the distribution of B values

for macromolecular models obtained by macromolecular

crystallography, cryo-EM or structure prediction (Jumper et

al., 2021; Baek et al., 2021).

2. Methods

2.1. Graphlet degree vector

Graphlets are small induced subgraphs of a larger graph

(Fig. 1). Graphlet G0 is the smallest graphlet and contains two

topologically equal nodes labeled ‘0’ (Fig. 1). Graphlet G1 has

two topologically distinct nodes labeled ‘1’ and ‘2’. When two

or more nodes are topologically the same, we say that they

belong to the same orbit. Thus, the nodes at the ends of

graphlet G1 belong to orbit O1, while the node in the middle

belongs to orbit O2. In total, graphlets of size 2, 3 and 4 contain

15 topologically distinct nodes called orbits, labeled 0, 1, 2,

3, . . . , 14 (Fig. 1).

Visual inspection of the graph shown in Fig. 2(a) shows that

node C has three edges. We obtain the same result if we count

the number of edges with which node C touches orbit O0 (the

term ‘touch’ is taken from the work of Pržulj, 2007). For

example, node C touches orbit O0 three times, via edges D–C,

B–C and F–C (Fig. 2a). It follows that the degree of orbit O0
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Figure 1
Graphlets of size 2 (G0), 3 (G1 and G2) and 4 (G3–G8). Orbits, i.e.
topologically different nodes, are labeled 0, 1, 2, 3, . . . , 14.



for node C is three. In the same way, we can now count how

many times node C touches orbits O1, O2, . . . , O14. In other

words, this is an extension of a node’s degree.

For illustration, the degrees for all 15 orbits for a graph with

nine nodes and ten edges are shown as a colored table

(Fig. 2b). Thus, node C touches orbit O1 five times, via E–D–C,

A–B–C, G–F–C, H–F–C and I–F–C. Node F touches orbit O0

four times (C–F, G–F, H–F and I–F), while it touches orbit O1

only twice (D–C–F and B–C–F). Only nodes F, G, H and I

touch orbit O3: ‘triangle’. The highest degree (10) corresponds

to node C and orbit O5. All corresponding graphlets G3, where

node C touches orbit O5, are listed next to the graph in

Fig. 2(a).

Therefore, for each query protein we obtain a matrix of size

N�M, where N is the number of atoms and M is 15 (the total

number of orbits). Thus, each element of the matrix contains

the degree of a particular orbit for each node (atom).

2.2. Multiple linear regression

A multiple linear regression model has been used to predict

the B values of protein atoms from the atomic GDV consid-

ering atoms as nodes of a graph, as described above. To enable

comparison between the B values of different protein struc-

tures, the B values of each protein structure were indepen-

dently normalized so that the mean B value was set to 0 and

the standard deviation of the B value was set to 1. Multiple

linear regression searches for a linear relationship between

explanatory variables and the dependent variable. In this

study, the explanatory variables were the components of the

GDV and the dependent variable was the B value. Since the

degree of orbits per atom can vary and it is more likely to find

a higher degree for orbit O0 than for orbit O14, the columns of

the matrix N�M, where N is the total number of atoms in the

given protein and M is the length of the GDV, were normal-

ized so that the mean of all columns equals 0 and the standard

deviation equals 1. The multiple regression model (GDV

model) with 15 explanatory variables and N protein atoms is

written as

Bn ¼ b0 þ �0On;0 þ �1On;1 þ . . .þ �kOn;k; ð2Þ

where Bn is the dependent variable, n = 1, 2, . . . , N, b0 is the

intercept, On,k, k = 0, 1, 2, . . . , 14 are explanatory variables

and �k are the coefficients of the vector of regression. The

orbit O0 contains information about the number of contacts

per atom. For comparison with the GDV model, a linear

model (contact model) with an independent variable O0 was

also used,

Bn ¼ b0 þ �0On;0: ð3Þ

To calculate the efficiency of the contact and GDV models, the

correlation between the predicted B values and those depos-

ited in the PDB-REDO database (Joosten et al., 2009, 2014)

was calculated.

2.3. Software

The R package (version 4.2.1; R Core Team, 2022) was used

for data analysis with the following packages: orca (version

1.1-1; Hočevar & Demšar, 2014, 2016), netdist (version

0.4.9100; Ali et al., 2014), bio3d (version 2.4-2; Grant et al.,

2006), igraph (version 1.2.6; Csardi & Nepusz, 2006), caret

(version 6.0-90; Kuhn, 2008), MASS (version 7.3-58.1;

Venables & Ripley, 2002) and invgamma (version 1.1).

A simplified algorithm for constructing the graph and

counting the orbits is presented below.
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Figure 2
An illustration of the degree for all 15 orbits for a graph with nine nodes and ten edges. (a) A graph with nine nodes and ten edges; the graphlets G3

where node C touches orbit O5 are listed next to the graph; (b) the corresponding GDVs.



Step 1. The bio3d package is used to read the PDB file and

extract the atomic coordinates.

Step 2. The distance matrix between all pairs of atoms is

calculated.

Step 3. The adjacency matrix is created (a link exists if the

distance is less than a certain threshold).

Step 4. The adjacency matrix as input data and the igraph

package are used to create a graph.

Step 5. The graph from step 4 and the orca (inside netdist)

package are used to count the number of orbits (degree) for

each node.

The final result is a matrix of dimensions N�M, where N is

the number of atoms and M is 15, with orbits O0, O1, . . . , O14.

The R scripts for reading in the protein coordinates, creating

the graph, counting the orbits and predicting B values can be

found at https://github.com/jure-praznikar/Graphlets-B-value.

To order the variables in the multiple linear regression

according to their importance, the varImp function (R package

caret) was used. In general, the most important variable is the

one that explains most of the variance of the response vari-

able. The R function varImp uses the absolute value of the

t-statistic to measure the importance of the variables.

All figures containing a ribbon representation of the 3D

protein model were created using Visual Molecular Dynamics

(Humphrey et al., 1996).

3. Results and discussion

3.1. Data set

The PISCES protein-sequence culling server (Wang &

Dunbrack, 2003) was used to obtain a Protein Data Bank

identification (PDBid) list of protein structures with the

following characteristics: maximum mutual sequence identity

of 40%, X-ray resolution range of 1.6–2.6 Å, crystallographic

R value less than or equal to 0.25 and protein size between 50

and 500 residues. After retrieving the PDBid list, the following

filters were applied: exclusion of assemblies with more than

10 000 atoms, exclusion of proteins with missing B values,

exclusion of assemblies with B values greater than 200 Å2,

exclusion of assemblies with an extremely low B-value stan-

dard deviation (below 0.1) and exclusion of assemblies with

low Ramachandran and rotamer Z-scores (less than � 2).

Assembly here refers to all chains identified in biological

assembly 1. The Ramachandran and rotamer Z-score data

were obtained from the PDB-REDO database available at

https://pdb-redo.eu/download. The PDBid list was then used

to retrieve 2107 entries from the PDB-REDO database

(Joosten et al., 2009, 2014).

The distribution of B values for each entry was analyzed

using SIGD as proposed by Masmiliyeva and Murshudov

(Masmaliyeva & Murshudov, 2019; Masmaliyeva et al., 2020).

For each entry, the SIGD parameters, namely the shape (�)

and scale (�), were calculated and plotted against resolution

(Supplementary Fig. S1). PDB-REDO database entries with

low or high � and � values that fell outside the 95% prediction

interval were excluded from further analysis. Thus, the final

data set included 1957 PDB-REDO models. Since the B values

in crystallographic models depend on the packing of atoms,

symmetry-related residues were added to the PDB-REDO

model. For this purpose, WHAT IF was used (Vriend, 1990;

Rodriguez et al., 1998). It adds all symmetry-related residues

that possess at least one atom which makes a contact with an

atom in the original protein structure. Two symmetry-related

atoms are considered to be in contact when the distance

between their van der Waals surfaces is smaller than 5.0 Å.
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Figure 3
Correlation between PDB-REDO and predicted B values as a function of the cutoff distance for 50 randomly selected structures from our database. (a)
GDV model, (b) contact model; the red line represents the average value.
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Supplementary Fig. S2 shows an example of a PDB-REDO

structure with symmetry-related residues used in this work.

3.2. Optimization of the cutoff distance

To calculate the GDV, the 3D protein model must first be

converted into a graph where nodes represent protein atoms.

Two nodes are connected by an edge if the respective atoms

are at a distance shorter than a prescribed value, referred to

below as the cutoff distance. The graph edges do not distin-

guish between covalently and noncovalently bonded atoms.

During crystallographic refinement, various restraints are

used principally to ensure that chemically bonded atoms have

similar B values. Similar restraints were applied to GDVs. To

do so, a new smoothed value was assigned to a given atom as

the sum of the current value and the average value of all

neighboring nodes within a 2.0 Å radius. We need to distin-

guish between the cutoff distance used to create the graph and

the 2.0 Å distance used in the smoothing procedure. This

smoothing distance, being slightly above the length of covalent

bonds, was kept constant while the optimal cutoff distance

used to generate the graph was searched for.

To define this distance, we first randomly selected 50 entries

that were used to train and validate the (multi)linear model.

The model was built on 90% of the structures, which were then

used to predict the test set (10% of protein structures). In the

frame of tenfold cross-validation, this procedure was repeated

ten times. For each entry, the correlation coefficient between

the predicted and the PDB-REDO B values was calculated

and used to find the optimal cutoff distance. Fig. 3 shows the

correlation between the predicted and PDB-REDO B values.

Its behavior was similar for all tested models, allowing us to

make some conclusions.

In the case of the GDV model, the lowest correlation was

found at the shortest cutoff distance that we tried, 3.0 Å

(Fig. 3a), while the highest correlation values were found in

the interval 5.0–8.0 Å, with no significant difference in this

interval. Therefore, a cutoff distance of 5.0 Å, which mini-

mizes the calculations, was considered to be the best choice

and was used in further analysis.

For comparison, we repeated the same procedure with the

contact model. Here, the optimal cutoff distance (Fig. 3b) was

different from that for the GDV model, agreeing with the

value of 7.0 Å determined previously by Weiss (2007). The

overall correlation obtained by the GDV model is higher than

that obtained by the contact model.

The reason why the correlation in the case of the GDV

model reaches a plateau at a shorter cutoff distance is that the

GDV incorporates information about ‘deep contacts’, i.e. a

neighbor of the neighbor. For example, graphlet G3 could

represent a C�–C� wiring between two adjacent residues, the

distance of which is typically �3.8 Å for a trans peptide. A

quick estimate of the average distance of deep contacts lying

outside the spherical radii is half of 3.8 Å, i.e.1.9 Å. If we add

the GDV model cutoff distance of 5.0 Å and the estimated

deep contact distance of 1.9 Å, we obtain a distance of 6.9 Å,
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Figure 4
(a) Box plots of correlations between PDB-REDO and predicted B values for the contact and GDV models. The pairwise delta correlation GDV–contact
box plot represents the difference between the GDV and contact models. (b) Correlation versus resolution for the contact model, (c) correlation versus
resolution for the GDV model, (d) correlation versus number of atoms (protein size) for the contact model and (e) correlation versus number of atoms
(protein size) for the GDV model.
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which is consistent with the cutoff distance of the contact

model.

3.3. Prediction of the B-value distribution

Fig. 4(a) shows a box plot of all correlation values between

PDB-REDO and predicted B values for 1957 entries using the

contact model defined by equation (3) and the GDV model

defined by equation (2), each with its own cutoff distance: 7.0

and 5.0 Å, respectively. Both models, contact and GDV, were

validated using the same procedure (tenfold cross-validation)

as described in x3.2.

The GDV model performed better than the contact model,

with the average correlation increased by 0.08 (0.73 versus

0.65) and the largest correlation increased by 0.17. The

average value does not indicate in how many cases the GDV

model was better compared with the contact model. There-

fore, the delta correlation (GDV–contact) was calculated,

defined as the GDV–model correlation minus the contact–

model correlation. The box plot shows (Fig. 4a) that the GDV

model performs better than the contact model for the vast

majority, 1943 (or 99.3%), of the PDB-REDO entries used in

the tests.

Thus, the introduction of additional variables and infor-

mation in comparison with the contact model improves the

results. It should be emphasized that both models predict the

distribution of B values, i.e. normalized values, and not the

absolute B values (in Å2). Their rescaling to predict non-

normalized B values is also possible, but only to some extent.

To do so, the mean B value and the standard deviation of the B

value of the model are needed. These values are resolution-

dependent (Carugo, 2018b; Masmaliyeva & Murshudov, 2019;

see also Supplementary Fig. S3), and the width of the distri-

bution for a given resolution is quite large. For example, at a

resolution of 2.0 Å the mean B value ranges from 15 to 50 Å2

and the standard deviation ranges from 5 to 20 Å2, and using

an incorrect combination of these values may result in wrongly

predicted absolute B values.

The data set used in this study contains protein structures

that have been solved at different resolutions and have quite

different sizes. The correlation versus resolution plot and the

correlation versus the number of atoms show that the accuracy

of both the contact and GDV models does not depend on

these parameters (Fig. 4). This is expected since the model is

fully based on the molecular geometry. Thus, we can assume

that the B values are not completely independent parameters

but are related to the atomic coordinates: the molecular

geometry. The first studies to indicate that B values are not

completely independent parameters were presented by Halle

(2002) and Weiss (2007). The former study showed that B

values are inversely proportional to contact density, while the

latter study showed that there is a linear relationship between

atom contact numbers and B values. The GDV, or rather the

graph, is also based on atomic coordinates. Thus, this study

supports the assumption that the B values are not completely

independent of the coordinates.

3.4. Final (multi)linear model

The final contact model built on all data, i.e. all atoms of all

PDB-REDO entries (�5.8 � 106 atoms), is given as

Bp ¼ � 0:64O0 ð4Þ

and the GDV model is given as
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Figure 5
(a) Correlation matrix. Pairwise correlation of B value and orbits O0, O1, . . . O14. (b) Variable importance of the GDV model. The importance of the
variables is normalized so that the most important variable has a value of 100.
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Bp ¼ 0:33O0 � 2:48O1 þ 0:30O2 � 1:30O3 � 0:71O4 þ 1:17O5

þ 0:35O6 � 0:28O7 þ 0:10O8 þ 0:50O9 þ 0:68O10

� 0:08O11 þ 0:43O12 þ 0:04O13 þ 0:28O14; ð5Þ

where Bp refers to the normalized predicted B value and O0,

O1, . . . O14 are the degrees of node orbits. Note that the

intercept value in equation (4) is 0 and the linear regression

coefficient is equal to � 0.64, which means that the larger the

number of contacts the lower the B value (Halle, 2002; Weiss,

2007).

A linear model (equation 4) is easier to interpret than a

multiple linear model (equation 5), especially since its vari-

ables are highly correlated. Indeed, the correlation matrix

(Fig. 5a) shows that there is a high collinearity between orbits

and that all orbits are negatively correlated with the B value.

The B value is most negatively correlated with orbits O1

(� 0.63) and O4 (� 0.66). Therefore, instead of analyzing the

magnitude and the sign of the regression coefficients in

equation (5), an analysis of the most important variables was

performed. The first three most important variables are O4,

O1 and O5 (Fig. 5b). These three orbits correspond to two

graphlets, G1 and G3 (Fig. 1). It is interesting to note that orbit

O0 (the number of contacts) appears to be one of the less

important variables; however, it is highly correlated with

several other orbits. This suggests that the types of connec-

tions of neighboring atoms are more important than the

number of contacts in itself. The first three most important

variables (O4, O1 and O5) correspond to the ‘unbranched’

graphlets G1 and G3, while the next four important variables

are O9, O12, O10 and O6, which correspond to the ‘branched’

graphlets, namely G4, G6 and G7 (Fig. 1), and thus contain

information about the internal connection between nodes.

3.5. The bimodal distribution of B values and its relationship

to normalization

Approximately 15% of PDB structures exhibit multi-

modality of B values (Masmaliyeva et al., 2020), and attention

should be paid to how these B values are normalized. Two

examples from our data set that have a bimodal distribution

of B values are shown in Supplementary Fig. S4. The perfor-

mance of the GDV model and its relationship to the

normalization of B values is presented below.

3.5.1. A heterotrimeric protein. A detailed examination of

the results of the contact and GDV models revealed that the

lowest correlation (�0.20) for both models occurred in the

case of PDB entry 7upo, which is also seen as an outlier in the

box plot (Fig. 4a). The structure of this obligate ABC-type

heterotrimeric protein is a de novo design determined at 2.1 Å

resolution (Bermeo et al., 2022). Each monomer consists of

two helices of about 35 residues in length connected by short

loops, with two loops on the same side (chains A and B) and

one loop on the opposite side (chain C) of the heterotrimer

(Fig. 6a). Visual inspection shows that chains A, B and C have

a similar spatial structure (Fig. 6b). The template-modeling

score (TM-score; Zhang & Skolnick, 2005) of the aligned

chains ranges from 0.64 to 0.79, while the pairwise sequence

identity between chains A, B and C is less than 35%

(Supplementary Table S1).

Analysis of the B values shows that the chains with the same

orientation (chains A and B) have similar B values, while

chain C, which has the opposite orientation, has values that

are significantly higher (Fig. 7a). The B values of chain A vary

rather smoothly over neighboring atoms compared with those

of chain B and especially those of chain C. The correlation

coefficients between the predicted and PDB-REDO B values

are 0.48, 0.46 and 0.52 for chains A, B and C, respectively

(Supplementary Fig. S5). Thus, the accuracy of the predicted B

values per each chain was modest (�0.50), and was low

(�0.20) for all three chains considered together.

Another notable difference between the predicted and

deposited B values is that the covalently bonded atoms of the

PDB-REDO structure have very similar B values (Fig. 7a),

whereas the predicted B values vary considerably (Fig. 7b), i.e.

they are less smoothed. In general, for all three chains we can

see that the PDB-REDO and predicted B values are higher at
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Figure 6
(a) An ABC-type heterotrimeric protein; chains A, B and C are in black, blue and red, respectively. (b) Aligned chains. (c) Chain A in the red–white–blue
color scale according to the B values from the PDB-REDO model and scaled with the minimum value equal to � 1 standard deviation and the maximum
value equal to +1 standard deviation. Chains B and C are shown as ribbons in gray. The dashed ellipse marks solvent-exposed side chains located in the
middle of the helix. (d) The same as (c) with the model colored according to the predicted B values.
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the chain termini and in the loop region. Individual high

predicted B values correspond to side-chain atoms exposed to

solvent (Fig. 6d), as expected, while solvent-exposed side

chains located in the middle of the helix of the PDB-REDO

structure do not have high B values (Fig. 6c). A brief exam-

ination of the crystal contacts revealed that the solvent-

exposed side chains in the middle of the helix, indicated by a

dashed ellipse in Figs. 6(c) and 6(d), are not involved in a large

number of crystal contacts.

The main reason for the significant difference between

global (asymmetric unit) and local (chain) accuracy is the

magnitude of the B values. When the chains or domains have

significantly different mean B values, it is more reasonable

to perform normalization for each unit (chain or domain)

separately and then calculate the correlation between the

predicted and deposited B values to evaluate the efficiency of

the GDV model. It is interesting to note that chains A, B and C

of the examined heterotrimeric protein correspond to three

translation–libration–screw (TLS) groups. Thus, as an alter-

native to manual selection, it is also possible to perform

normalization according to the predefined (large) TLS groups

(Schomaker & Trueblood, 1968).

3.5.2. Two monomers in the asymmetric unit. The structure

of the obligate enzyme–adenylate complex (PDB entry 4d05),

determined at 1.65 Å resolution (Williamson et al., 2014), was

obtained in space group C2 with two monomers per asym-

metric unit (Fig. 8a). This protein has an adenylation domain

(AD domain) and an oligonucleotide-binding domain (OB

domain). Superposition of the two monomers using the larger

AD domain for alignment shows that they have different

conformations (Fig. 8b). When the domains are aligned

separately, the root-mean-square deviation (on C� atoms) for

each domain is below 1 Å. Thus, the short contacts (�5 Å)

remain very similar when comparing the two monomers. This

suggests that the predicted B values should also be similar.

Indeed, the correlation of the predicted B values between the

monomers is 0.83 (Fig. 8d). On the other hand, the correlation

of the deposited B values between the monomers is only 0.37

(Fig. 8c). Also, the magnitude of the B values in chain B is

much higher compared with that in chain A. The correlation

between the PDB-REDO and predicted B values was 0.65 for

chain A, while the correlation for chain B was significantly

lower at �0.40 (Supplementary Fig. S6). It should be noted

that the authors (Williamson et al., 2014) used chain A, defined

as biological assembly 1, as a reference for further discussion

because it has more complete density and a lower mean B

value compared with chain B (biological assembly 2).

This and the previous example of a heterotrimeric protein

demonstrate that if the B values in the protein model have a

multimodal distribution and we want to evaluate the perfor-

mance of the GDV model, the B values should be normalized

with respect to the modes. The modes or clusters of B values

in a given protein model are of course case-dependent and

correspond, for example, to chains, domains or large TLS

groups.

3.6. Application to electron microscopy structures

Finally, the contact and GDV models (equations 4 and 5)

were tested on several structures determined by cryo-EM at

a resolution higher than 2.5 Å and containing fewer than

10 000 non-H atoms per independent component. Previously,

Wlodawer et al. (2017) pointed out that the B values in almost

all deposited cryo-EM models were meaningless. All cryo-EM

structures used in our study were deposited in the period from

2019 to 2022, and it appears that quality control has improved.

The correlation coefficient between the predicted and the

deposited B values for the contact and GDV models is shown

in Fig. 9. In the case of the GDV model, the average corre-

lation between the PDB and predicted B values was �0.64 for

26 cryo-EM structures, which is better on average by �0.15

than for the contact model. The largest difference was for

PDB entry 7rzq, with correlations of 0.64 and 0.38, respec-

tively. One can speculate that for this apparently difficult

structure the GDV method is still capable of predicting some
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Figure 7
B values of an ABC-type heterotrimeric protein (PDB entry 7upo). (a) PDB-REDO and (b) predicted B values. B values were normalized so that the
mean B value was set to 0 and the standard deviation of the B value was set to 1.

http://doi.org/10.1107/S2059798323009142


information about atomic mobility, even if far from being

perfect, while the contact model essentially fails.

4. Conclusions

This study presents an improved approach for predicting

the distribution of B values over a protein structure. This

approach uses the graphlet degree vector (GDV). The

components of the GDV describe the complexity of the wiring

for a given atom in a macromolecule considering not only its

number of direct contacts but also information about the

contacts of its neighbors. A multiple linear regression model

was developed using GDV components as explanatory vari-

ables. The tests showed that this model outperforms the linear
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Figure 9
The correlation coefficient between the predicted and deposited B values for 26 cryo-EM structures. Correlations for the GDV model and the contact
model are shown in red and blue, respectively.

Figure 8
(a) Two monomers of the enzyme–adenylate complex in the asymmetric unit (PDB entry 4d05); chain A is in blue and chain B is in orange. (b)
Superimposed monomers of the enzyme–adenylate complex. (c) PDB-REDO B values. (d) Predicted B values. B values were normalized so that the
mean B value was set to 0 and the standard deviation of the B value was set to 1.



model (Weiss, 2007) based only on direct atomic contacts.

Since the GDV model is built on purely geometric consid-

erations, the B values are not completely independent para-

meters, and its performance does not depend on the resolution

of the experimental data.

A disagreement between the predicted and the experi-

mentally obtained B values may be attributed both to

imperfections in the method and the presence of static errors

in the experimental values, since the deposited models also

reflect variation of the structures over samples. In particular,

this second component is responsible for the dependence of

the B value on the resolution of the data. An obvious

imperfection of the suggested model is the difficulty in

obtaining the B values on an absolute scale and not on the

normalized scale.

Despite the incompleteness and imperfection of such

modeling, it is the dynamic aspect of protein structure that

most interests structural biologists, and this improved method

to predict it can help to both obtain an idea about atomic

mobility and provide one with starting values for accurate

B-value refinement. It should be mentioned that a certain

degree of caution is required when using deposited or

predicted crystallographic B values to analyze the dynamics of

the protein structure, as the B values of the exterior residues

may be biased by close crystal contacts. Nevertheless, the

GDV model is an important complementary tool to structure-

prediction software such as AlphaFold and RoseTTAFold

(Jumper et al., 2021; Baek et al., 2021).

Future research could focus on using the model to validate

protein models deposited in the PDB and also on including

nonprotein atoms; for example, nucleic acids and ligands. The

low correlation between predicted and deposited B values

could be due to either a multimodal distribution of B values or

a partially incorrect model. The former means that normal-

ization per domain/chain or TLS group should be recon-

sidered. The latter means that the positions of some atoms or

loops should be corrected. Therefore, future work will

consider applying the GDV model to the entire PDB and

identifying potentially incorrectly modeled regions in protein

models. However, local errors in protein structure are not the

only source of differences between deposited and predicted B

values. The cause of the discrepancy between deposited and

predicted B values can also be radiation damage, for example

(Gerstel et al., 2015; Shelley et al., 2018).

In addition to validating and applying the model to large

databases, the model can be improved by using advanced

prediction methods or by combining the GDV model with

other proven approaches. For example, the hierarchical

disorder model introduced by Pearce & Gros (2021), which

uses a set of TLS parameters to represent structural disorder

at different structural levels, can be combined with the GDV

model to create a multivariate multiple linear model in which

the response variables are partial B values at the chain,

secondary-structure, residue and atom levels. An alternative

way to further analyze the B values is to also cluster B values

in search of typical vectors for main chains, side chains, inner

or outer atoms.
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A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie,
A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T.,
Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals,
O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021).
Nature, 596, 583–589.

Konnert, J. H. & Hendrickson, W. A. (1980). Acta Cryst. A36, 344–
350.

research papers
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Pržulj, N. (2007). Bioinformatics, 23, e177–e183.
Radivojac, P., Obradovic, Z., Smith, D. K., Zhu, G., Vucetic, S., Brown,

C. J., Lawson, J. D. & Dunker, A. K. (2004). Protein Sci. 13, 71–80.
R Core Team (2022). The R Project for Statistical Computing. https://

www.r-project.org/.
Rodriguez, R., Chinea, G., Lopez, N., Pons, T. & Vriend, G. (1998).

Bioinformatics, 14, 523–528.
Schlessinger, A. & Rost, B. (2005). Proteins, 61, 115–126.
Schlessinger, A., Yachdav, G. & Rost, B. (2006). Bioinformatics, 22,

891–893.

Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63–76.
Shelley, K. L., Dixon, T. P. E., Brooks-Bartlett, J. C. & Garman, E. F.

(2018). J. Appl. Cryst. 51, 552–559.
Sun, Z., Liu, Q., Qu, G., Feng, Y. & Reetz, M. T. (2019). Chem. Rev.

119, 1626–1665.
Tronrud, D. E. (1996). J. Appl. Cryst. 29, 100–104.
Trueblood, K. N., Bürgi, H.-B., Burzlaff, H., Dunitz, J. D., Gramac-

cioli, C. M., Schulz, H. H., Shmueli, U. & Abrahams, S. C. (1996).
Acta Cryst. A52, 770–781.

Venables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with
S, 4th ed. New York: Springer.

Vriend, G. (1990). J. Mol. Graph. 8, 52–56.
Wang, G. & Dunbrack, R. L. Jr (2003). Bioinformatics, 19, 1589–1591.
Weiss, M. S. (2007). Acta Cryst. D63, 1235–1242.
Williamson, A., Rothweiler, U. & Leiros, H.-K. S. (2014). Acta Cryst.

D70, 3043–3056.
Wlodawer, A., Li, M. & Dauter, Z. (2017). Structure, 25, 1589–1597.
Yang, J., Wang, Y. & Zhang, Y. (2016). J. Mol. Biol. 428, 693–701.
Yin, H., Li, Y.-Z. & Li, M.-L. (2011). Protein Pept. Lett. 18, 450–

456.
Yuan, Z., Bailey, T. L. & Teasdale, R. D. (2005). Proteins, 58, 905–

912.
Zhang, Y. & Skolnick, J. (2005). Nucleic Acids Res. 33, 2302–2309.

research papers

Acta Cryst. (2023). D79, 1109–1119 Jure Pražnikar � Graphlet degree vectors 1119
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