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Cryo-electron tomography (cryo-ET) enables molecular-resolution 3D imaging

of complex biological specimens such as viral particles, cellular sections and, in

some cases, whole cells. This enables the structural characterization of molecules

in their near-native environments, without the need for purification or separa-

tion, thereby preserving biological information such as conformational states

and spatial relationships between different molecular species. Subtomogram

averaging is an image-processing workflow that allows users to leverage cryo-ET

data to identify and localize target molecules, determine high-resolution struc-

tures of repeating molecular species and classify different conformational states.

Here, STOPGAP, an open-source package for subtomogram averaging that is

designed to provide users with fine control over each of these steps, is described.

In providing detailed descriptions of the image-processing algorithms that

STOPGAP uses, this manuscript is also intended to serve as a technical resource

to users as well as for further community-driven software development.

1. Introduction

Cryo-electron microscopy (cryo-EM) combined with single-

particle analysis (SPA) has in recent years become a key

method for determining the structures of biological macro-

molecules (Kühlbrandt, 2014). Ideal SPA specimens consist of

a monolayer of purified molecules suspended in vitreous ice,

with each molecule producing a randomly oriented projection

in the resultant electron micrographs. SPA determines struc-

tures by iterating between aligning each projection to a 3D

reference structure and reconstructing an improved reference

structure using the new alignment parameters. One limitation

of SPA is that the specimen typically needs to consist of a

monolayer of particles, otherwise the molecular projections

begin to overlap one another in the micrographs, thereby

hindering alignment and structure determination.

There are a number of situations where overlapping struc-

tures cannot be avoided, including pleomorphic assemblies,

membrane-associated complexes and molecules in near-native

cellular environments (Beck & Baumeister, 2016). In these

situations, key structural and biological information is inex-

tricably tied to the complexity of the molecular environments,

making the separation, isolation or purification of molecular

components undesirable. Cryo-electron tomography (cryo-

ET) offers one approach to solving the problem of imaging

overlapping molecules. In cryo-ET, rather than collecting a

single image for each field of view, each field of view is imaged

multiple times while tilting the specimen stage. This set of 2D

projections, called a tilt series, is then used to directly recon-

struct a 3D representation of the field of view: a tomogram.
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While tomograms overcome the overlap problem, they still

suffer from a number of fundamental limitations. Cryo-ET

specimens typically consist of either biological assemblies

frozen into holey support grids, similar to single-particle cryo-

EM specimens, vitrified cells or cellular sections, such as focus

ion beam (FIB)-milled lamella. In each case, specimens have a

roughly slab-like profile; when tilted, these slab-like specimens

effectively become thicker with respect to the electron beam.

This increasing thickness, coupled with physical restrictions of

the microscope hardware, limits the angular range over which

tomographic data can be collected. A common tilt range is

from � 60� to 60�, resulting in a specimen that is effectively

twice as thick at the extreme tilt angles. Incomplete angular

sampling, due to limitations in both the overall tilt range as

well as the angular increments between tilt images, leads to

unsampled or missing regions of Fourier space; this is referred

to as the ‘missing wedge’ (Schmid & Booth, 2008). While the

missing wedge refers to unsampled regions of Fourier space, it

also produces corresponding distortions in real space. Addi-

tionally, any other factors that affect electron micrographs also

affect tomograms, such as the contrast transfer function (CTF;

Wade, 1992; Fernández et al., 2006; Xiong et al., 2009; Turo-

ňová et al., 2017) and electron exposure damage (Grant &

Grigorieff, 2015), which fundamentally limit the amount of

high-resolution information that can be obtained. As such,

high-resolution structure determination from tomograms still

requires the averaging of repeating structures across a data set

in order to fill the missing wedge, flatten CTF modulations and

increase the signal-to-noise ratio.

Determining structures from cryo-ET data requires a wide

range of processing steps (Wan & Briggs, 2016; Schur, 2019;

Castaño-Dı́ez & Zanetti, 2019; Leigh et al., 2019; Zhang, 2019;

Pyle & Zanetti, 2021). This includes steps to process raw 2D

data into 3D reconstructions, such as tilt-series alignment,

defocus determination, CTF correction and tomographic

reconstruction. The series of processing steps that starts after

tomographic reconstruction and ends with the generation of

higher resolution averaged EM density maps is analogous to

SPA and is typically referred to as subtomogram averaging

(STA). STA includes a number of tasks such as 3D particle

picking, often by template matching, the generation of higher

resolution EM density maps by iterative subtomogram align-

ment and averaging, and subtomogram classification to sepa-

rate heterogeneous structures.

Here, we describe STOPGAP, an open-source package

for STA. STOPGAP uses a real-space correlation-based

approach similar to a number of other STA packages (Förster

et al., 2005; Hrabe et al., 2012; Nicastro et al., 2006; Castaño-

Dı́ez et al., 2012; Himes & Zhang, 2018; Ni et al., 2022), but

contains several new algorithms that we describe here. These

real-space correlation-based approaches are distinct from the

Bayesian approach of RELION (Scheres, 2012; Bharat et al.,

2015; Zivanov et al., 2022), which compares references and

subtomograms in Fourier space using the RELION regular-

ized likelihood function. This function is used to calculate the

probabilities of each orientation for each subtomogram; these

probability values are then used to generate probability-

weighted averages. At the core of many of the STOPGAP

algorithms is the treatment of the missing wedge, which

improves the performance of template matching and sub-

tomogram alignment, as well as the quality of averaged EM

density maps. We also describe algorithms for subtomogram

classification by multi-reference alignment (MRA) that use

stochastic approaches which allow an assessment of the

reproducibility of classification results.

2. Methods

2.1. Software overview

STOPGAP is an open-source package written in MATLAB

consisting of a main STOPGAP executable, which is run as a

compiled MATLAB executable, and the ‘toolbox’, a set of

MATLAB functions and scripts. The STOPGAP executable is

supplied pre-compiled, but can also be compiled by end users.

Example bash scripts for running STOPGAP in parallel using

the message-passing interface (MPI) or SLURM Workload

Manager are provided, although these will likely need to be

edited to match specific cluster configurations.

In addition to the main executable, a ‘parser’ executable is

also supplied, which checks for conflicting parameters and

generates properly formatted parameter files for the various

STOPGAP tasks. STOPGAP tasks include subtomogram

extraction, template matching and subtomogram alignment.

MRA-based classification is not a separate task but instead is a

user-implemented workflow using the subtomogram-alignment

task.

2.2. Missing-wedge model

The missing wedge is modeled as a series of Fourier slices,

each of which can have additional amplitude modulations

corresponding to the local CTF of each subtomogram and the

exposure filter applied during tomogram reconstruction. For

template matching, the CTF filter is calculated as a single

global filter that is consistent throughout the tomogram. Local

per-particle CTF filters are used for subtomogram alignment,

averaging and classification. Local CTF filters are calculated

by first assuming that the defocus estimated from a tilt series

represents the defocus at the center of mass of the specimen

(Turoňová et al., 2017). The center of mass of the tomogram is

estimated using the particle positions in the ‘motive list’, which

stores the alignment parameters of each subtomogram. For

each Fourier slice, the local defocus of the subtomogram is

calculated using the estimated defocus, the center of mass and

the distance from the tilt axis in each tilt projection.

2.3. Constrained cross correlation

Constrained cross correlations (CCCs) are calculated using

a 3D version of the fast local correlation function (FLCF;

Roseman, 2003; Castaño-Dı́ez et al., 2012). The FLCF is a real-

space correlation function that normalizes the reference map

(i.e. reference or template) and the search map (i.e. tomogram

or subtomogram) with respect to the mask applied to the

reference. Prior to calculation of the FLCF, reference maps

are filtered with the amplitude-modulated missing-wedge
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filter, while search maps are filtered with binary slice wedge

masks to remove any reconstruction-related or cropping-

related Fourier space artifacts.

2.4. Template matching

During template matching, each tomogram is split into

subvolumes, termed ‘tiles’, for parallel processing. For each

tile, the template is rotated through a set of orientations

defined in the ‘angle list’ and a CCC is calculated from the

rotated template and tile. The highest scoring voxels for each

orientation are accumulated into a ‘score map’, while asso-

ciated orientations are stored in the ‘orientation map’. Motive

lists are then generated by first thresholding score maps to a

user-defined level, followed by a peak-finding algorithm that

searches for the highest scoring voxels with a user-supplied

inter-peak distance related to the particle dimensions. Particle

positions are taken from the peak positions in the score map,

while particle orientations are taken from the same positions

in the orientation map.

STOPGAP template matching also includes an additional

noise-correlation approach, similar to that used in calculating

Fourier shell correlations (Chen et al., 2013). In this approach,

a noise volume is first generated by randomizing the phases

of the template. This noise template is used for matching

alongside the actual template, resulting in a noise score map

that is used to reweight the main score map. Reweighting has

the effect of shifting the distribution of the CCC values

downwards. Negative correlations in the reweighted score

map are then set to zero, which effectively flattens the noise,

allowing better visual analysis for score thresholding.

When using template matching, there are several different

parameters that can be optimized by the user. The source of

the template heavily influences the performance of the CCC

function. Templates that are generated in STOPGAP typically

work best, as the filtering approaches are internally consistent,

but cryo-EM and cryo-ET maps from other packages also

work well. Simulated maps using the UCSF Chimera molmap

tool (Pettersen et al., 2004) typically perform poorly as they

are poor representations of EM densities; the simulate tool in

cisTEM (Grant et al., 2018) performs much better. Iterative

approaches where an initial round of template matching using

strict thresholding is followed by STA and another round of

matching are typically appropriate. We find that template

masks contoured to the template typically perform better due

to improved normalization. Angular search step and low-pass

filtering are interrelated as higher resolution information can

only be adequately searched for using finer angles. For a more

detailed description of the optimization of template-matching

parameters, we refer users to the publication by Cruz-León

and coworkers, who have undertaken an extensive analysis

using STOPGAP template matching (Cruz-León et al., 2023).

2.5. Subtomogram extraction

Subtomogram extraction is performed by cropping sub-

volumes from each tomogram according to the positions

stored in the motive list. The positions in the motive list refer

to the center of each subtomogram. The default file format for

subtomograms is the .mrc format, while the .em format is

also supported; subtomograms saved as .mrc files can be

stored as 8-, 16- or 32-bit data.

2.6. Subtomogram alignment and averaging

Subtomogram alignment revolves around the parameters

stored in the motive list, primarily the CCC score, shift and

rotation values from prior iterations. Input for an alignment

round includes bandpass filter settings, angular increments,

which define the granularity of the search space, and angular

iterations, which define the size of the search space. The

angular increments and iterations are used to calculate a list

of search orientations with respect to the prior determined

orientation. At each orientation the CCC is calculated; the

peak value is taken as the CCC score, while the vector from

the center of the CCC map to the peak is taken as the shift

vector. A cross-correlation mask can be applied to limit the

shifts allowed. As alignment progresses, the angular incre-

ments are decreased to finer angles to align higher resolution

features. After alignment is completed, a new motive list with

updated CCC scores, shifts and rotations is produced. This

new motive list is then used to average new references.

Subtomogram alignment and averaging is always performed

as ‘halfsets’ where the motive list is split into two and aligned

and averaged independently. For so-called ‘gold-standard’

alignment (Scheres & Chen, 2012), where halfsets are aligned

and averaged completely independently, the halfset of each

subtomogram must be defined in the motive list. If halfsets are

not defined, STOPGAP will randomly split the data set in half

during each iteration. At the end of the averaging process,

three output volumes are written out: the two halfmaps and a

figure-of-merit weighted (Rosenthal & Henderson, 2003) sum

of the halfmaps. The figure-of-merit weighted map is provided

for easy evaluation of the STA iteration as the two halfmaps

can appear quite noisy prior to low-pass filtering at the esti-

mated resolution; in the STOPGAP workflow, low-pass

filtering and sharpening is carried out independently of

subtomogram alignment and averaging.

Initial particle picking using approaches such as template

matching provides relatively precise starting orientations. As

such, the subtomogram-alignment process primarily deals with

local refinement of the orientations. The main parameters here

are the binning of the tomographic data, the angular incre-

ment and range, and the low-pass filter settings. While the

number of iterations is also a parameter, typically alignment

converges within two iterations with a given parameter set.

High-resolution cryo-ET data are typically collected with a

pixel size between 1 and 2 Å and are processed using binning

factors of 8�, 4�, 2� and 1�; unbinning to the next step is

appropriate when the estimated resolution is beyond the

Nyquist resolution. The initial angular search range should be

slightly wider than the angular step used in template matching.

From there, the angular error is of the order of the angular

increment used. We typically find that a 2–3� angular incre-

ment with an angular iteration of 3 (i.e. a total search range of

�6–9�) is sufficient until the final phase of alignment. As a
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typical example, for template matching using 15� steps, a 3�

angular increment and six angular iterations per iteration will

sufficiently align the subtomograms for a localized search.

From there, 2–3� angular increments and three angular

iterations can be used until the solution converges at unbinned

data; finer increments and smaller iterations can then be used

for final alignments. The low-pass filter should be adjusted

whenever the alignment parameters change. We typically

adjust these conservatively, setting the low-pass filter radius

where the FSC measures at least 0.9 until the final stages of

alignment. The low-pass filter radius is then incremented until

FSC equals 0.5; at this point we consider the alignment to be

complete.

2.7. Classification by MRA

In standard single-reference alignment, STOPGAP is

essentially performing a 3D search of orientation space, with

the 3D translation implicitly determined as the peak position

in the CCC map. MRA is formulated as a 4D search, with the

fourth dimension denoting the references or classes. As such,

the set of search orientations not only contains the three Euler

angles, but also each reference. Standard subtomogram

alignment takes the form of an expectation-maximization or

hill-climbing algorithm, where the complete set of search

orientations is scored and the maximum-scoring orientation

is accepted. STOPGAP alignment includes a stochastic hill-

climbing (SHC) approach inspired by similar SPA approaches

(Reboul et al., 2016), where the previous best orientation is

scored first while the rest of the orientations are scored in

random order. An orientation that scores better than the

previous orientation is immediately accepted and STOPGAP

moves on to the next subtomogram. SHC ensures that better

scoring orientations are found at each iteration, but avoids

becoming trapped in local optima by not searching for the

‘best’ orientation. An additional simulated-annealing (SA)

method is also implemented on top of the SHC approach,

which allows the acceptance of worse-scoring orientations.

In SA, after scoring the previous best orientation, a worse-

scoring orientation can be accepted with a given input prob-

ability; the annealing occurs by decreasing this probability to

zero over subsequent iterations.

De novo reference generation refers to the process of

generating multiple references from the data set without a

priori knowledge of the class of each subtomogram. This is

typically performed on a subset of the data by first deciding

on the number of classes to be produced and then randomly

splitting the data set into even bins for each class, followed

by MRA. To minimize the potential for initialization bias,

STOPGAP can initialize de novo references by asking the

user for the number of desired classes and the number of

subtomograms per class. It then randomly selects subtomo-

grams to populate each class in a non-exclusive manner. This is

different from evenly splitting the data set as a subtomogram

may appear in multiple classes or none during initialization,

reducing the potential and impact of the attractor problem

(Sorzano et al., 2010).

Following de novo reference generation, MRA is then

performed on the initial references to refine them into diver-

gent structures. MRA is first performed using SA, which has

the effect of increasing the particle movement between classes,

followed by SHC until convergence. The stochastic methods

in STOPGAP have the additional benefit that MRA can be

performed with the same parameter set to produce different

results, which we use as a way of judging the reproducibility of

our classification. Repeated MRA runs that produce classes

with consistent sizes suggest stable separation of conforma-

tions as well as providing an estimate of the error of class

occupancies. Likewise, subtomograms that repeatedly find the

same class are likely to be true members of that class, while

subtomograms that converge on to different classes with each

MRA run suggests that they are bad particles that can be

removed from the data set.

For computationally efficient classification by MRA, we

generally recommend aligning the subtomograms as a single

class up to 2� binning, which typically provides resolutions

better than 20 Å. It is best to align by masking the structurally

invariant part of the average; in the case of ribosomes we first

align on the large subunit. From there, we can perform

alignment with no angular search and use a mask that focuses

on the variable regions of the structure; for example, the

ribosomal tRNA channel. We typically recommend starting

with more classes than are thought to be present. This

improves the likelihood of finding classes with smaller occu-

pancies, but may result in some classes representing the same

structure; these can be merged later on. De novo reference

generation and MRA can be performed and final classes can

be merged as necessary after visual analysis. At least three

repeats of de novo reference generation and MRA should be

performed, and final classes can be assigned for subtomograms

that are consistently classified in the majority repeats; sub-

tomograms that are not consistently classified can be removed

from the data set. After the final classes have been assigned,

subtomogram alignment can be performed for each class

independently using the ali_multiclass mode of STOPGAP to

obtain final high-resolution maps. See below for the procedure

used for the ribosome data set described in this manuscript.

2.8. 80S ribosome preprocessing and tomogram

reconstruction

Tomographic data preprocessing and reconstruction was

performed using TOMOgram MANager (TOMOMAN;

Khavnekar, Erdmann et al., 2023). EER images were motion-

corrected using the RELION implementation of MotionCor

(Zivanov et al., 2018) and exposure filtered (Grant &

Grigorieff, 2015) in TOMOMAN. Defocus was estimated

using the tiltCTF module in TOMOMAN, which calculates

tilt-adjusted periodogram averages that are then processed

by CTFFIND4 (Rohou & Grigorieff, 2015). Tilt series were

aligned using fiducial-less alignment in ARETOMO (Zheng et

al., 2022). 3D CTF-corrected tomograms were generated with

NovaCTF and binned by Fourier cropping (Turoňová et al.,

2017).
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2.9. 80S ribosome template matching

Template matching was performed on 8� binned, 3D

CTF-corrected tomograms. The Saccharomyces cerevisiae 80S

ribosome template was generated from atomic coordinates

(PDB entry 6gqv) using the simulate tool in the cisTEM

package (Grant et al., 2018) at the unbinned pixel size. This

was then binned to 8� and low-pass filtered to 30 Å with a

final box size of 32 pixels. Template matching was performed

with 15� angular spacing, resulting in 4512 orientations.

Template matching was performed with a low-pass filter cutoff

of 13 Fourier pixels using CTF and exposure filtering and noise

correlation. Score maps were manually thresholded, resulting

in 269 987 particles from 200 tomograms.

2.10. 80S ribosome subtomogram alignment and

classification

The 8� binned motive list generated from template

matching was rescaled to 4� and subtomograms were

extracted with a 64-pixel box size. Subtomogram alignment

was performed using a mask contoured to the full ribosome

density. Two iterations were performed with a 5� angular

increment and three angular iterations, followed by two

iterations with a 3� angular increment and three angular

iterations; the low-pass filters for these iterations had cutoffs

of 18, 22, 26 and 28 Fourier pixels, respectively. After these

iterations, the CCC scores showed a bimodal distribution and

the data set was thresholded with a cutoff of 0.165, resulting

in 100 750 remaining particles. These subtomograms were

further aligned for one iteration with a 2� angular increment,

three angular iterations and a low-pass filter cutoff of 28

Fourier pixels.

The final 4� binned motive list was rescaled to 2� binning

and extracted with a 128-pixel box size. Two iterations of

alignment were performed with a 2� angular increment and

three angular iterations, followed by one iteration using a 1�

angular increment and three angular iterations; the low-pass

filter cutoffs were 32, 45 and 48 Fourier pixels, respectively.

The first two iterations used a mask focused on the whole

ribosomal density, while the last two iterations used a mask

focusing on the large subunit density.

For classification, initial de novo references were generated

from the final 2� binned motive list with ten classes, each

containing 2% of the total data set per class, picked using

the randomization approach described above. The alignment

mask used for classification was contoured to isolate the

ribosomal tRNA channel. MRA was performed with ten

iterations of simulated annealing with a temperature range

from 10 to 0�C, followed by 30 iterations of alignment with

SHC; no angular search was used. All iterations were

performed with a low-pass filter cutoff of 45 Fourier pixels.

Three replicates of MRA were performed using the same

parameters.

Classes were visually inspected and those representing the

same ribosomal states were merged, resulting in five distinct

states. Particles were then assigned by class consensus, where

particles that found the same class two out of three times were

kept, while those that did not were removed. This resulted in a

final data set of 84 443 subtomograms.

After classification, orientations for each class were inde-

pendently refined with two iterations with a 5� angular

increment, three angular iterations and a low-pass filter cutoff

of 45 Fourier pixels, followed by two iterations with a 3�

angular increment, three angular iterations and a low-pass

filter cutoff of 45 Fourier pixels.

2.11. HIV s-CANC preprocessing and tomogram

reconstruction

Processing of the five-tomogram subset (tilt series 1, 3, 43,

45 and 54) of EMPIAR-10164 was performed using the

TOMOMAN package. Frame alignment was performed using

MotionCor2 (Zheng et al., 2017), followed by exposure

filtering in TOMOMAN and tilt-series alignment in IMOD

using fiducial-based alignment (Kremer et al., 1996). After tilt-

series alignment, defocus estimation was performed using

the tiltCTF module in TOMOMAN. 3D CTF-corrected

tomograms were reconstructed using novaCTF and Fourier

cropped to 2�, 4� and 8� binnings.

2.12. HIV s-CANC initial reference generation

For initial de novo reference generation, the centers of nine

s-CANC assemblies were manually picked in UCSF Chimera

(Pettersen et al., 2004). Initial subtomogram positions were

generated along the spherical surfaces with a three-pixel

spacing, resulting in 25 876 subtomograms. Initial cone angles

were calculated based on the position on the spherical surface,

while in-plane angles were randomized.

Subtomograms were extracted with a 32-pixel box size. To

generate an initial structure, four iterations of subtomogram

alignment were performed with C1 symmetry, a spherical

mask, an out-of-plane search with a 3� angular increment and

three angular iterations, an in-plane search with a 10� angular

increment and six angular iterations, and a low-pass filter

radius of six Fourier pixels. To shift the C6 symmetry axis onto

the volume Z axis, the shift vector was first estimated by visual

analysis and then applied to the motive list. After this, all

alignment was performed using C6 symmetry. After shifting, a

new reference was averaged and further aligned for three

iterations using an out-of-plane search with a 3� angular

increment and three angular iterations, an in-plane search with

a 3� angular increment and four angular iterations, and a low-

pass filter radius of six Fourier pixels. The motive list was then

cleaned to remove overlapping particles using a center-to-

center distance of five voxels and particles with CCC values

under 0.5; this resulted in 4040 remaining particles. In-plane

angles were randomized around the C6 symmetry (i.e. in

random increments of 60�) and aligned for one more iteration

using an out-of-plane search with a 3� angular increment and

three angular iterations, an in-plane search with a 3� angular

increment and four angular iterations, and a low-pass filter

radius of six Fourier pixels.

This reference was then used to realign against the initial

motive list again, this time using one iteration with C6
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symmetry, an out-of-plane search with a 3� angular increment

and three angular iterations, an in-plane search with a 3�

angular increment and 20 angular iterations, and a low-pass

filter radius of six Fourier pixels. The motive list was again

cleaned using a center-to-center cutoff of five voxels and a

CCC cutoff of 0.5; this resulted in 4451 remaining particles.

These particles were further refined with two iterations of

alignment using a 2� angular increment, three angular itera-

tions and a low-pass filter radius of six Fourier pixels.

2.13. HIV s-CANC template matching

Using the 8� binned initial reference, template matching

was performed on 8� binned 3D CTF-corrected tomograms

using a 10� angular step and a low-pass filter cutoff of six

Fourier pixels. Threshold values for score maps were deter-

mined by visually assessing each map; this resulted in 21 637

subtomograms.

After template matching, the subtomograms were aligned

against the 8� binned starting reference with two iterations

using a 3� angular increment, four angular iterations and a

low-pass filter radius of six Fourier pixels.

2.14. HIV s-CANC high-resolution STA

The 8� binned motive list was rescaled to 4� binning and

subtomograms were extracted with a box size of 64 pixels.

Subtomograms were aligned for four iterations using a

cylindrical mask, C6 symmetry, a 2� angular increment and

three angular iterations; the low-pass filter cutoffs were six, 12,

18 and 24 Fourier pixels, respectively.

The 4� binned motive list was rescaled to 2� binning and

subtomograms were extracted with a box size of 128 pixels.

Subtomograms were aligned for five iterations using a

cylindrical mask, C6 symmetry, a 2� angular increment and

three angular iterations; the low-pass filter cutoffs were 24, 30,

36, 42 and 48 Fourier pixels, respectively.

The 2� binned motive list was rescaled to 1� binning and

subtomograms were extracted with a box size of 256 pixels.

Subtomograms were first aligned for three iterations using C6

symmetry, a cylindrical mask, a 2� angular increment and three

angular iterations; the low-pass filter cutoff was 48 Fourier

pixels, but the last iteration included a high-pass filter of five

Fourier pixels. Another iteration was performed using these

settings but with a contoured mask that focused on the central

hexamer and its immediate neighbors. Another five iterations

were performed using the contoured mask, a 1� angular

increment and two angular iterations; the low-pass filter

cutoffs were 48, 56, 62, 68 and 68 Fourier pixels, respectively,

with a high-pass filter of five Fourier pixels. One additional

iteration was performed using a 0.5� angular increment and

two angular iterations followed by another iteration with a

0.5� angular increment and one angular iteration; a low-pass

cutoff of 68 Fourier pixels and a high-pass cutoff of seven

Fourier pixels were used for both iterations.

The centers of mass for each tomogram were calculated by

taking the mean of the Z positions of the subtomograms in

each tomogram; these were used to refine the tomogram

centers during 3D CTF-corrected tomogram reconstruction in

novaCTF. Subtomograms were extracted with a box size of

256 pixels and aligned using a contoured mask for one itera-

tion using a 1� angular increment, two angular iterations, a

low-pass cutoff of 68 Fourier pixels and a high-pass cutoff of

seven Fourier pixels. Next, four iterations were performed

with a 0.5� angular increment and two angular iterations; low-

pass cutoffs of 68, 68, 74 and 80 Fourier pixels, respectively,

and a high-pass cutoff of seven Fourier pixels were used. Next,

two iterations of alignment were performed with a 0.5�

angular increment, two angular iterations, a low-pass cutoff of

80 Fourier pixels, a high-pass cutoff of seven Fourier pixels and

CCC thresholdings of 0.06 and 0.07, respectively. A final round

of alignment was performed with a 0.25� angular increment,

two angular iterations, a low-pass cutoff of 84 Fourier pixels, a

high-pass cutoff of seven Fourier pixels and a CCC thresh-

olding of 0.07.

3. Results

3.1. Missing-wedge model

Distortions caused by the missing wedge effectively result in

structural features that are not present in the specimen or the

isotropically resolved reference maps used in STA. As such,

real-space comparisons between anisotropic tomographic

data and isotropic references can lead to poor results such as

imprecise subtomogram alignment. To overcome this, real-

space correlation STA packages apply a missing-wedge filter

to references prior to computing the cross correlation with

tomographic data; this is referred to as the constrained cross

correlation (CCC; Förster et al., 2005; Frangakis et al., 2002;

Schmid & Booth, 2008; Bartesaghi et al., 2008). The missing-

wedge filter is a Fourier-space filter that is meant to mimic

the effects of tilt-series collection and tomographic recon-

struction, i.e. the anisotropic sampling, in order to reproduce

the real-space tomographic distortions in the isotropically

resolved reference. In real-space STA packages that use CCCs,

the missing-wedge filter is typically generated as a binary filter

that includes all information between the maximum and

minimum tilt angles (Förster et al., 2005; Hrabe et al., 2012;

Nicastro et al., 2006; Castaño-Dı́ez et al., 2012). While this

accounts for the missing region caused by the limited tilt

range, it does not accurately describe the distortions in a

tomographic reconstruction resulting from discrete angular

sampling, CTF and electron-exposure damage.

In STOPGAP, the missing-wedge filter is modeled to reflect

the sampling geometry and amplitude modulations present in

the tomographic data. This includes using Fourier slices rather

than a solid wedge, CTF modulations and exposure filtering.

STOPGAP requires CTF correction prior to or during

reconstruction using methods such as tilted CTF correction

(Xiong et al., 2009) or 3D CTF correction (Turoňová et al.,

2017; Kunz & Frangakis, 2017). STOPGAP also accounts for

aliasing in the amplitude spectrum, which, when combined

with CTF correction prior to or during tomogram recon-

struction, allows tight cropping of subtomograms to minimize
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computational costs while avoiding potential signal loss due to

signal delocalization outside the subtomogram edges.

The STOPGAP missing-wedge model is similar to that

implemented in RELION3 (Bharat et al., 2015), although it

differs in its calculation and usage. Broadly speaking, both are

designed to represent microscope aberrations, beam-induced

damage and the tomographic reconstruction, but STOPGAP

uses its missing-wedge representation as an imaging filter so

that the reference contains the same aberrations as the

tomographic data prior to computing the real-space cross

correlation. As such, STOPGAP requires that tilt-series

preprocessing and tomographic reconstruction include expo-

sure filtering and 3D CTF correction, as it uses the same

parameters to generate the missing-wedge filter. In

RELION3, the missing-wedge model is an extension of its

Bayesian framework, making the CTF and exposure (the dose-

dependent B factor in RELION) parameters optimized during

subtomogram alignment. Since RELION3 works in Fourier

space, the missing-wedge representation effectively acts as an

amplitude-modulation function in computing the l2-norm. The
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Figure 1
Simulated images with various missing-wedge filters and corresponding CCC maps. The ideal mandrill test image has no filters; the ‘subtomogram’ image
is the ideal image shifted towards the upper right corner, with a slice wedge, CTF and exposure filter applied, as well as Gaussian noise at a signal-to-noise
ratio of 0.05. The remaining real-space images have the noted missing-wedge filters applied, while the corresponding CCC maps are calculated between
the real-space images and the simulated subtomogram.



CTF model is also used for CTF correction, so unlike in

STOPGAP the input tomograms do not require prior 3D CTF

correction. RELION4 uses a different pseudo-subtomogram

method that approximates direct working on projection data,

so the missing wedge is not explicitly accounted for (Zivanov

et al., 2022).

To illustrate the impact of different missing-wedge compo-

nents on the CCC, simulated 2D examples are shown in Fig. 1.

These examples represent tomographic planes orthogonal to

the tilt axis, i.e. the standard XZ plane in tomograms. Applying

no missing-wedge mask produces a peak in the cross-correlation

map, but with significant background. Applying a continuous

wedge or a per-tilt-slice wedge produces a slightly sharper

peak, but still shows significant background correlation. While

the per-tilt-slice wedge has a very similar performance to the

continuous wedge mask, the slices also allow the application of

tilt-image-specific amplitude-modulating factors such as CTF

and exposure filtering.

Amplitude modulations in Fourier space cause signal

delocalization in real space, which often leads to high levels of

background in CCC space. While CTF correction ensures that

amplitude modulations are positive, the sinusoidal modulation

is always present. By properly accounting for these amplitude

modulations in the wedge mask, STOPGAP effectively

matches the delocalization between the reference and the

tomographic data, resulting in sharp CCC peaks with minimal

background noise. To calculate CCCs, STOPGAP first filters

templates or references by applying a slice-wedge mask with

CTF and exposure filter modulations and correlates it to the

tomogram or subtomogram using a 3D version of the fast local

correlation function (FLCF; Roseman, 2003; Castaño-Dı́ez

et al., 2012). The benefits of the STOPGAP missing-wedge

model for different STA tasks are shown below.

3.2. Template matching

Template matching is a reference-based approach that uses

a predetermined reference map, i.e. a ‘template’, to identify

target particles in tomographic data (Fig. 2; Frangakis et al.,

2002). Templates can either be EM density maps determined

using SPA or STA, or simulated density maps generated from

atomic models. During template matching, the template is

iteratively rotated through a set of orientations that typically

cover all of orientation space with a given angular step size

(Figs. 2 and 3). At each iteration, CCCs are calculated between

the template and the tomogram of interest; high-valued voxels

in the CCC map indicate a potential match for the template in

that orientation and position. In the first orientation, the CCC
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Figure 2
Workflow diagram for template matching. The top row outlines the preparation of the various inputs. The middle row outlines the iterative template-
matching process. The bottom row outlines the steps for identifying true peaks in the score maps and how they feed into the next steps of the
subtomogram-averaging workflow.



map is stored as a cumulative score map, along with a corre-

sponding orientation map, which stores the template orientation

at each tomographic position. While iterating through each

orientation, new CCC maps are compared with the score map;

voxels with the highest values are stored in the score maps and

the corresponding orientations are updated in the orientation

map. After all orientations have been sampled, the final score

map can then be thresholded and the peak positions and their

corresponding orientations are taken as potential particles.

Ideally, true positives in the score maps should appear as

sharp peaks (Fig. 3d). However, template-matching results

without amplitude-modulation filters tend to show a high level

of background correlation, with CCC value distributions that

resemble the input maps (Figs. 4a and 4b). This includes high

CCC values for dense objects such as ice contamination or

distinct features such as membrane bilayers. By accounting for

amplitude modulations, the STOPGAP missing-wedge filter

produces CCC peak profiles that are nearly ideal, minimizing

noise and false positives (Figs. 3c and 4c). While sharper peaks

have improved signal strength, background noise often takes

on a speckled appearance that can make sharp positive peaks

difficult to distinguish; this can be a problem when deter-
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Figure 3
Simulated template matching of thermosomes. (a) Slice through a simulated tomogram containing randomly placed and oriented thermosomes (PDB
entry 3j1b). (b) Score map from matching with a single orientation. The peak boxed in magenta shows an ideal match with a strong CCC peak; the peak
boxed in blue does not match well and has a correspondingly small peak. (c) Final score map after full orientational search. (d) Score map from (c)
thresholded to remove background so that only true peaks remain. The color map shows the normalized CCC score, where 1 denotes the maximum value
in the map and 0 denotes the lowest value in the map.

Figure 4
Comparison of template matching in STOPGAP with different filters. (a) Slice through a tomogram taken from S. cerevisiae lamella (EMPIAR-11658).
Ribosome template matching with a 15� angular step with (b) no CTF or exposure filter, (c) CTF and exposure filtering and (d) CTF and exposure
filtering and noise correlation. Blue boxes indicate CCC scores around a membrane bilayer, while magenta boxes indicate scores around a true positive.
The color map shows normalized CCC score, where 1 denotes the value at the CCC peak and 0 the lowest value in the map; the score maps in (b), (c) and
(d) have not been thresholded.



mining the appropriate CCC value to threshold by. To aid with

visual analysis, we developed a noise-correlation approach in

which a phase-randomized version of the template is also used

for matching. The resultant noise-correlation map represents

nonspecific correlation related to weak structural similarities

in the tomogram or template mask-related correlations. The

noise-correlation map is subtracted from the score map to

provide a noise-flattened score map with more pronounced

peaks (Figs. 4c and 4d). For more specifics on the parameters

that affect the quality of template matching, a rigorous study

of this has been performed using STOPGAP by Cruz-León et

al. (2023).

3.3. Subtomogram alignment and averaging

Although we have defined STA broadly as the processing

steps that go from tomographic reconstruction up to model

building, STA often refers to the determination of higher

resolution structures by aligning and averaging subtomo-

grams. Algorithmically, this can be thought of as two steps: the

alignment of a reference to a subtomogram to determine the

orientation of that particle (Fig. 5) and the generation of a new

reference by averaging subtomograms rotated to their deter-

mined orientations (Fig. 6). Iterating the STA process enables

the refinement of subtomogram orientations, as the sub-

tomograms are compared with improved references from the

prior iteration.

Subtomogram alignment in STOPGAP is performed in

largely the same way as in most other real-space packages. A

reference map is rotated through a set of orientations, which

typically represent a local search in orientational space. At

each orientation, the CCC is calculated between the rotated

reference and a subtomogram (Roseman, 2003). The

maximum value in the CCC map (score) indicates how well

the rotated reference matches the subtomogram, while the

location of the maximum value in the map provides the

Cartesian offset (shift) between the reference and subtomo-

gram. This effectively makes correlation-based STA a 3D

rotational search rather than a 6D rotational and translational

search, significantly reducing the number of computations.

After all orientations have been scored, the orientation with

the highest score and its associated shift are taken as the

correct subtomogram alignment.

We performed subtomogram averaging using the five-

tomogram subset of HIV s-CANC particles (EMPIAR-10164)

with 3D CTF-corrected tomograms, resulting in a 3.5 Å

resolution structure (Fig. 7). The most directly comparable

published structure is the 3.9 Å resolution structure deter-
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Figure 5
Workflow diagram for subtomogram alignment. The initial loading of the
motive and wedge lists, references and reference mask at the top occurs
once at the start of the iteration. The remaining steps occur for each entry
in the motive list.

Figure 6
Workflow diagram for subtomogram averaging. This describes the
general operation of generating new reference volumes from a given
input motive list. This can be performed to generate references prior to
alignment or using a new motive list that is output from a round of
alignment.



mined using the AV3 package (Turoňová et al., 2017). As with

template matching, the STOPGAP missing-wedge filter

produces sharper CCC peaks that improve the precision of

subtomogram alignment, resulting in higher resolution averages.

Although higher resolution structures have been determined

from this data set using emClarity, M and RELION4 (Himes &

Zhang, 2018; Ni et al., 2022; Tegunov et al., 2021; Zivanov et al.,

2022), these structures used tilt-series refinement approaches

that are not used here. While tilt-series refinement is not

currently implemented in STOPGAP, users have already

successfully refined STOPGAP alignments using Warp/M or

RELION4 (Khavnekar et al., 2022; Rangan et al., 2023; Schiøtz

et al., 2023).

In addition to improvements to the estimated resolution,

the STOPGAP missing-wedge filter improves the quality and

the interpretability of averaged maps (Figs. 7b–7g). This is

because after each subtomogram has been rotated, shifted and

summed in real space, Fourier-space normalization is required

to account for anisotropic sampling (Fig. 6). This basically

accounts for how the missing wedges from each subtomogram

combine to fill Fourier space, which is virtually always aniso-

tropic due to incomplete angular sampling in the data set.

Fourier normalization is performed by rotating and summing

the missing-wedge filter of each subtomogram, producing a

map that tallies the per-voxel sampling in Fourier space. By

taking amplitude modulations into account, the STOPGAP

missing-wedge filter produces maps with improved normal-

ization. This is illustrated particularly well in subtomogram

averages of HIV s-CANC, where normalization with a binary

wedge mask produces strong ‘halos’ of negative densitiy

around protein densities (Figs. 7d and 7e), a phenomenon that

has also been noted by others (Sanchez et al., 2020). In the

STOPGAP average, these areas take on a more ideal

appearance (Figs. 7f and 7g), with gray values around protein

densities similar to the surrounding solvent.

3.4. Subtomogram classification

Classification in STOPGAP is performed using multi-

reference alignment (MRA), where each subtomogram is

aligned against a set of references, i.e. classes. This effectively

makes alignment a 4D search problem, with three rotational

dimensions and the fourth dimension representing class.

References can be from predetermined structures or gener-

ated de novo from the data set. Given this, we view MRA as

two tasks: the initial generation of de novo references, typi-

cally from a subset of the data set, and the alignment of the full

data set against multiple references. In both cases, a key

concern is particles becoming trapped in local minima of

orientation space. This can be caused by a number of inter-

related issues including initialization bias, where a subtomo-

gram ‘finds itself’ in the reference that it contributes to, or
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Figure 7
Comparison of HIV s-CANC structures determined using different missing-wedge models. (a) Fourier shell correlation (FSC) plots of HIV s-CANC
structures determined from the five-tomogram subset of EMPIAR-10164 by AV3 (Turoňová et al., 2017) using a solid wedge mask and STOPGAP using
CTF and exposure filtering. Both used novaCTF (Turoňová et al., 2017) for 3D CTF-corrected tomogram reconstruction with no tilt-series refinement.
(b) and (c) are example isosurface representations of the AV3 and STOPGAP EM density maps, respectively. An atomic model (EMD-3782) is rigid-
body fitted into both maps. (d–g) XY and XZ orthographic slices through the EM density maps determined by AV3 and STOPGAP, respectively. The
red arrow indicates the high negative density region in the AV3 map that is not present in the STOPGAP map.



premature convergence, where subtomograms stop moving

between classes prior to the divergence of structural features

in each class.

To overcome these problems, STOPGAP has a number of

stochastic methods built into its subtomogram-alignment

algorithm that can be used during MRA; these are described

in detail in Section 2. Briefly, a simulated-annealing (SA)

algorithm is used which allows a suboptimal alignment to be

accepted with a given probability; this probability is decreased

during each iteration of the annealing run. SA encourages

more movement of subtomograms between classes during the

initial phases of MRA. After SA, a stochastic hill-climbing

(SHC) algorithm is used where the previous orientation and

class are scored first, and the order of the remaining orienta-

tion and class parameters are randomized. The first better

scoring orientation and class is immediately accepted, which

allows subtomograms to move more during initial iterations

and less as the classes take on distinct features. An additional

feature of these stochastic methods is that they produce

different results when repeating the alignment with the same

parameters. We can then use consistency of classification as a

rough measure of classification accuracy and precision.

To demonstrate the robust multi-reference classification

approach in STOPGAP, we processed S. cerevisiae ribosomes

from EMPIAR-11658 (Rangan et al., 2023). Using the whole

231-tomogram data set, we identified �240 000 particles and

were able to resolve major structural states of the eukaryotic

translation cycle (Fig. 8).

Initial ribosome positions and orientations were determined

using template matching on 8� binned tomograms, resulting

in approximately �240 000 particles. These were then itera-

tively aligned at 8� and 4� using a mask shaped to contours

of the full ribosome density. Particle scores were distributed

bimodally; the �100 000 particles in the higher scoring

distribution were selected for further processing. These

particles were further aligned at 2� binning, first using a full

ribosome mask, followed by alignment using a mask focused

on the large subunit. The resulting orientations were used as a

starting point for a multi-reference alignment. Starting refer-

ences were generated de novo by randomly assigning 20% of

the data set to ten classes. To classify the different tRNA

states, MRA was performed with a mask focusing on the

tRNA channel. The first ten iterations of MRA were

performed using SA, followed by MRA with SHC and without

SA until convergence, i.e. when less than 1% of subtomograms

changed classes between iterations. We performed three

independent replicates using random de novo references and

the same MRA parameters. Subtomograms that segregated

into the same classes two out of three times were deemed to be

consistent and kept, while other particles were deemed to be

unstable and discarded. Final classes were assigned by visually

curating the final volumes and merging identical states
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Figure 8
Classification of the S. cerevisiae 80S ribosomal translation cycle using MRA. The box plot represents occupancies for each class across three replicates.
The red line indicates the sample median, while the bottom and top of each box are the 25th and 75th percentiles of the sample, respectively. Whiskers
show the farthest observations beyond the 25th and 75th percentiles. Corresponding density maps for each state after the consensus class assignment are
shown with a slice through the tRNA channel. For the ‘P, E(partial), eEF1-tRNA’ state, heterogeneous occupancy of the E-site produces a larger
variance across replicates.



(Supplementary Fig. S1). This resulted in five unique states

(Fig. 6), namely ‘A, P, unrotated’, ‘A, P, eEF2-pre’, ‘A/P, P/E,

eEF2-engaged’, ‘E, P, eEF2-accommodated’ and ‘E(partial), P,

tRNA-eEF1’ (Milicevic et al., 2024). Class occupancies

between replicates were similar (Fig. 8), indicating the

reproducible separation of stable classes while also providing

a metric for quantitating the class assignments. In this instance,

we defined class consensus as assignment of a subtomogram to

the same class two out of three times. The number of replicates

and the stringency for consensus are ultimately defined by the

user depending on their specific needs (Erdmann et al., 2021).

Final averages were generated using a consensus subtomo-

gram assignment from each of the three replicate classification

runs.

4. Discussion

STOPGAP is a MATLAB-based open-source package for

STA. At its core is a missing-wedge model designed to account

for the various types of sampling and modulation effects that

occur during tomographic data collection and reconstruction.

This missing-wedge model improves the performance of the

3D CCC, which subsequently improves the performance of

template matching and subtomogram alignment. This missing-

wedge model also improves the Fourier-space normalization

function used in STA, providing improved EM density maps.

For template matching, we also developed a noise-correlation

approach to reduce background correlations in template-

matching score maps and enhance the appearance of true

peaks. To facilitate MRA, we introduced SA and SHC algo-

rithms into our subtomogram-alignment procedure to help to

overcome convergence on local minima as well as to provide

metrics for assessing the reproducibility and reliability of

subtomogram classifications. Such assessments provide more

quantitative values for class occupancies, which is of particular

importance for cellular cryo-ET, as quantitative assignment of

conformational states is important for characterizing bio-

logical states.

Compared with subtomogram alignment, template matching

searches a large number of rotations with minimal input/

output, making it particularly well suited to GPU acceleration.

GPU implementations of template-matching algorithms have

recently been added to PyTOM (Chaillet et al., 2023) and

TomoBEAR (Balyschew et al., 2023), with TomoBEAR using

a reimplementation of the Dynamo template-matching algo-

rithm (Castaño-Dı́ez et al., 2012). The performance increase

from GPU acceleration enables the use of finer search angles,

which enhances the CCC peaks in score maps (Chaillet et al.,

2023; Cruz-León et al., 2023). To account for CTF modula-

tions, PyTOM now applies a CTF filter to the template prior to

matching, which produces similar results to the STOPGAP

missing-wedge model, although the STOPGAP per-slice model

can account for varying defocus between tilt images and

includes exposure filtering. TomoBEAR includes additional

tools for post-processing the score maps to remove large

connected islands of density related to structures such as

membranes, although the STOPGAP noise-correlation

approach often effectively suppresses such false positives.

The Turoňová group is currently reimplanting the STOPGAP

template-matching algorithm with GPU acceleration in

their GAPSTOP package (https://gitlab.mpcdf.mpg.de/bturo/

gapstop_tm), which will greatly improve the computational

efficiency over our current implementation.

STOPGAP primarily focuses on the aspects of STA that use

real-space correlation approaches, with the aim of providing

users with fine-grained control of how their data are

processed. To this end, an extensive range of parameters are

open to the user for fine tuning, although most come with

presets that are suitable for a wide range of problems.

STOPGAP is not intended to be a complete and compre-

hensive package for all aspects of STA, but instead aims to

provide a modular set of tools for carrying out specific image-

processing tasks. Given the rich information content of cryo-

ET data, we believe that there is no single pipeline that can

answer every biological question; the task-oriented approach

of STOPGAP allows users to tailor pipelines suited to their

particular biological questions. Given that STOPGAP is

unlikely to be the optimal solution to all cryo-ET problems,

it is also aimed to be complementary with other cryo-ET

packages, enabling users to build comprehensive STA work-

flows that meet the demands of their specific projects. A

number of studies have already been performed using

STOPGAP as a component of the processing workflow

alongside packages such as Warp, M, RELION and novaSTA

(Hoffmann et al., 2022; Xing et al., 2023; Rangan et al., 2023;

Khavnekar et al., 2022; Khavnekar, Kelley et al., 2023; Schiøtz

et al., 2023; Turoňová et al., 2020; Erdmann et al., 2021; Lacey

et al., 2023). To facilitate cryo-ET data preprocessing and

interoperability between STA packages, we are also devel-

oping a package called TOMOMAN, which handles file-

format conversions and directory structures (Khavnekar,

Erdmann et al., 2023). For users who wish to write their own

scripts, the STOPGAP file formats are described in the

documentation and input/output functions are provided in a

MATLAB toolbox. Overall, we believe that STOPGAP

provides a powerful set of image-processing algorithms and

tools that are complementary to others in the community and

hope that the descriptions of our algorithms will be useful for

further community-driven development. STOPGAP is avail-

able at https://github.com/wan-lab-vanderbilt/STOPGAP.
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