Download citation
Download citation
link to html
The title compound, C20H23N3O8S, is in an extended conformation. The COOH group does not form hydrogen-bonded carboxyl dimers, but forms an intermolecular hydrogen bond with the NCOO carbonyl O atom [O...O 2.666 (2) Å]. The N atom bonded to S is pyramidal, and forms a bifurcated intramolecular hydrogen bond with carboxy and nitro O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800018961/na6015sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800018961/na6015Isup2.hkl
Contains datablock I

CCDC reference: 155884

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.077
  • Data-to-parameter ratio = 14.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 4345 Count of symmetry unique reflns 2906 Completeness (_total/calc) 149.52% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1439 Fraction of Friedel pairs measured 0.495 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

The solid-phase peptide synthesis by the use of Nα-protecting groups such as Fmoc (9-fluorenylmethoxycarbonyl) is widely used as described by Wenschuh et al. (1994). In an effort to increase the yield of the amino acid coupling reaction, the title compound, (I), was synthesized. The 2-nitrobenzenesulfonyl protecting group is smaller than the Fmoc group and is expected to increase the amino acid coupling yield due to decreased steric interactions with the nucleophile. The crystal structure determination of the title compound was carried out to confirm its successful synthesis.

The title compound is in an extended conformation. The COOH group does not form hydrogen-bonded carboxy dimers, but forms an intermolecular hydrogen bond with the carbonyl O5 atom. The lysine N1 atom is pyramidal, and forms a bifurcated intramolecular hydrogen bond with the carboxy O3 and nitro O8 atoms.

The cell dimensions of the title compound at 296 K are a = 11.8092 (13), b = 34.832 (4), c = 5.4033 (6) Å and V = 2222.6 (7) Å3.

Experimental top

The title compound was prepared by reacting Nε-benzyloxycarbonyl-L-lysine with chlorotrimethylsylane (1.85 equivalents), diisopropylethylamine (2.3 equivalents) and ortho-nitrobenzenesulfonyl chloride (0.9 equivalents) in anhydrous dichloromethane under argon over 12 h (273 K to reflux), followed by aqueous work-up and extraction. The amino acid derivative was recrystalized by dissolving the crude material in a hot ethanol solution, followed by slow cooling to room temperature.

Refinement top

H atoms on C atoms were placed in calculated positions with C—H bond distances in the range 0.95–1.00 Å and Uiso = 1.2Ueq of the attached atom, and thereafter treated as riding. H atoms on O and N atoms were placed by difference maps and refined individually. The absolute configuration was determined by refinement of the Flack (1983) parameter, and corresponds with that of L-lysine.

Computing details top

Data collection: COLLECT (Nonius 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: direct methods using SIR (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme for (I) with displacement ellipsoids at the 50% probability level.
Nα(2-nitrobenzenesulfonyl)-Nε-benzyloxycarbonyl-L-lysine top
Crystal data top
C20H23N3O8SDx = 1.422 Mg m3
Mr = 465.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 13981 reflections
a = 11.7629 (2) Åθ = 2.5–27.5°
b = 34.5731 (6) ŵ = 0.20 mm1
c = 5.3477 (2) ÅT = 120 K
V = 2174.8 (2) Å3Fragment, colorless
Z = 40.23 × 0.12 × 0.10 mm
F(000) = 976
Data collection top
KappaCCD (with Oxford Cryostream)
diffractometer
4345 independent reflections
Radiation source: fine-focus sealed tube3563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scans with κ offsetsθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
h = 1515
Tmin = 0.937, Tmax = 0.980k = 4444
13981 measured reflectionsl = 55
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.7661P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.21 e Å3
4345 reflectionsΔρmin = 0.24 e Å3
302 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0039 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983); 1439 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (7)
Crystal data top
C20H23N3O8SV = 2174.8 (2) Å3
Mr = 465.47Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 11.7629 (2) ŵ = 0.20 mm1
b = 34.5731 (6) ÅT = 120 K
c = 5.3477 (2) Å0.23 × 0.12 × 0.10 mm
Data collection top
KappaCCD (with Oxford Cryostream)
diffractometer
4345 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
3563 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.980Rint = 0.050
13981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.24 e Å3
4345 reflectionsAbsolute structure: Flack (1983); 1439 Friedel pairs
302 parametersAbsolute structure parameter: 0.07 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43876 (4)0.677475 (15)0.47852 (10)0.02199 (14)
O10.44420 (14)0.68264 (4)0.7440 (3)0.0298 (4)
O20.53146 (12)0.69058 (4)0.3276 (3)0.0273 (4)
O30.26251 (14)0.58376 (5)0.2702 (3)0.0360 (4)
O40.34781 (14)0.57133 (5)0.0963 (3)0.0345 (4)
H400.290 (2)0.5532 (9)0.110 (6)0.060 (9)*
O50.82527 (14)0.47725 (4)0.8337 (3)0.0304 (4)
O60.95282 (12)0.45492 (4)0.5520 (3)0.0294 (4)
O70.09305 (15)0.68765 (6)0.8123 (4)0.0580 (6)
O80.22750 (15)0.64804 (5)0.7149 (3)0.0424 (5)
N10.42408 (17)0.63207 (5)0.4233 (3)0.0230 (4)
H1N0.371 (2)0.6243 (7)0.501 (5)0.040 (8)*
N20.81842 (16)0.49541 (5)0.4267 (4)0.0269 (5)
H2N0.839 (2)0.4895 (7)0.276 (5)0.032 (7)*
N30.17488 (17)0.67823 (6)0.6835 (4)0.0363 (5)
C10.43581 (19)0.61725 (6)0.1663 (4)0.0220 (5)
H10.42740.63940.04750.026*
C20.3387 (2)0.58930 (6)0.1230 (5)0.0261 (5)
C30.55223 (18)0.59877 (6)0.1248 (4)0.0241 (5)
H3A0.55810.59020.05140.029*
H3B0.61190.61850.15380.029*
C40.57374 (19)0.56441 (6)0.2952 (4)0.0275 (5)
H4A0.56520.57290.47100.033*
H4B0.51520.54450.26230.033*
C50.69042 (19)0.54635 (6)0.2627 (4)0.0256 (5)
H5A0.69700.53520.09270.031*
H5B0.74960.56650.28150.031*
C60.70880 (18)0.51500 (7)0.4550 (5)0.0290 (6)
H6A0.70450.52650.62420.035*
H6B0.64700.49570.44040.035*
C70.86202 (18)0.47584 (6)0.6171 (5)0.0254 (5)
C80.31738 (19)0.70416 (6)0.3731 (4)0.0249 (5)
C90.20813 (18)0.70432 (7)0.4782 (5)0.0295 (5)
C100.1252 (2)0.72941 (8)0.3929 (6)0.0447 (7)
H100.05160.72910.46590.054*
C110.1496 (3)0.75489 (8)0.2017 (6)0.0537 (8)
H110.09290.77230.14350.064*
C120.2561 (3)0.75510 (8)0.0954 (5)0.0492 (7)
H120.27250.77230.03820.059*
C130.3390 (2)0.73034 (6)0.1824 (4)0.0341 (6)
H130.41270.73120.11000.041*
C140.9993 (2)0.43026 (7)0.7471 (5)0.0330 (6)
H14A0.93700.41850.84530.040*
H14B1.04740.44570.86180.040*
C151.06902 (18)0.39928 (6)0.6233 (4)0.0256 (5)
C161.17252 (19)0.38867 (6)0.7264 (4)0.0281 (5)
H161.20040.40210.86890.034*
C171.2359 (2)0.35880 (7)0.6246 (5)0.0317 (6)
H171.30610.35150.69880.038*
C181.1968 (2)0.33967 (7)0.4152 (5)0.0350 (6)
H181.24060.31940.34350.042*
C191.0939 (2)0.34998 (7)0.3097 (4)0.0340 (6)
H191.06680.33660.16650.041*
C201.03010 (18)0.37977 (7)0.4121 (4)0.0293 (6)
H200.95970.38690.33800.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0248 (3)0.0211 (3)0.0201 (3)0.0001 (2)0.0005 (2)0.0015 (2)
O10.0403 (9)0.0300 (9)0.0193 (8)0.0023 (8)0.0030 (8)0.0006 (7)
O20.0258 (8)0.0265 (8)0.0296 (9)0.0019 (7)0.0020 (7)0.0024 (7)
O30.0341 (9)0.0370 (10)0.0368 (10)0.0086 (8)0.0043 (9)0.0038 (8)
O40.0327 (9)0.0404 (10)0.0303 (10)0.0036 (8)0.0036 (8)0.0103 (8)
O50.0320 (9)0.0307 (9)0.0285 (10)0.0056 (7)0.0067 (8)0.0034 (7)
O60.0250 (8)0.0324 (8)0.0308 (9)0.0086 (7)0.0055 (8)0.0068 (7)
O70.0385 (11)0.0708 (14)0.0648 (14)0.0056 (10)0.0281 (10)0.0226 (11)
O80.0453 (11)0.0405 (11)0.0414 (11)0.0045 (9)0.0156 (9)0.0007 (9)
N10.0261 (10)0.0238 (10)0.0191 (10)0.0010 (9)0.0029 (9)0.0030 (8)
N20.0253 (10)0.0286 (11)0.0267 (13)0.0064 (9)0.0037 (9)0.0042 (10)
N30.0274 (11)0.0430 (13)0.0386 (13)0.0059 (11)0.0075 (10)0.0188 (11)
C10.0287 (12)0.0202 (11)0.0171 (12)0.0034 (10)0.0002 (10)0.0018 (9)
C20.0269 (12)0.0248 (12)0.0267 (13)0.0054 (10)0.0044 (11)0.0000 (11)
C30.0245 (11)0.0280 (12)0.0199 (11)0.0005 (10)0.0031 (11)0.0001 (10)
C40.0276 (12)0.0282 (12)0.0267 (12)0.0039 (10)0.0006 (11)0.0025 (10)
C50.0266 (12)0.0278 (12)0.0225 (12)0.0055 (10)0.0020 (10)0.0011 (11)
C60.0225 (11)0.0288 (12)0.0358 (15)0.0055 (10)0.0028 (10)0.0062 (12)
C70.0211 (11)0.0202 (12)0.0349 (15)0.0030 (9)0.0048 (11)0.0008 (11)
C80.0319 (13)0.0226 (11)0.0204 (12)0.0041 (10)0.0015 (11)0.0056 (10)
C90.0296 (12)0.0295 (12)0.0296 (13)0.0029 (10)0.0013 (11)0.0105 (11)
C100.0293 (14)0.0488 (16)0.0560 (19)0.0134 (13)0.0055 (13)0.0257 (16)
C110.063 (2)0.0445 (17)0.054 (2)0.0306 (15)0.0231 (16)0.0134 (15)
C120.077 (2)0.0320 (14)0.0390 (16)0.0223 (15)0.0072 (15)0.0022 (12)
C130.0493 (16)0.0245 (12)0.0285 (14)0.0098 (12)0.0005 (12)0.0029 (11)
C140.0351 (13)0.0346 (14)0.0293 (14)0.0118 (11)0.0010 (11)0.0052 (12)
C150.0239 (12)0.0258 (11)0.0270 (12)0.0011 (10)0.0039 (11)0.0055 (10)
C160.0278 (13)0.0291 (12)0.0274 (13)0.0016 (11)0.0027 (11)0.0017 (11)
C170.0282 (12)0.0345 (13)0.0323 (13)0.0088 (11)0.0032 (11)0.0030 (12)
C180.0340 (13)0.0319 (13)0.0392 (15)0.0044 (11)0.0031 (12)0.0075 (12)
C190.0368 (14)0.0359 (14)0.0293 (14)0.0055 (11)0.0010 (11)0.0054 (11)
C200.0229 (12)0.0342 (13)0.0308 (13)0.0009 (10)0.0022 (11)0.0060 (11)
Geometric parameters (Å, º) top
S1—O21.4301 (15)C5—H5A0.99
S1—O11.4323 (15)C5—H5B0.99
S1—N11.6065 (18)C6—H6A0.99
S1—C81.791 (2)C6—H6B0.99
O3—C21.207 (3)C8—C131.387 (3)
O4—C21.331 (3)C8—C91.403 (3)
O4—H400.93 (3)C9—C101.383 (3)
O5—C71.238 (3)C10—C111.380 (4)
O6—C71.336 (3)C10—H100.95
O6—C141.454 (3)C11—C121.376 (4)
O7—N31.228 (3)C11—H110.95
O8—N31.225 (3)C12—C131.379 (4)
N1—C11.473 (3)C12—H120.95
N1—H1N0.80 (3)C13—H130.95
N2—C71.326 (3)C14—C151.503 (3)
N2—C61.464 (3)C14—H14A0.99
N2—H2N0.87 (2)C14—H14B0.99
N3—C91.474 (3)C15—C161.386 (3)
C1—C21.514 (3)C15—C201.393 (3)
C1—C31.527 (3)C16—C171.385 (3)
C1—H11.00C16—H160.95
C3—C41.519 (3)C17—C181.380 (3)
C3—H3A0.99C17—H170.95
C3—H3B0.99C18—C191.382 (3)
C4—C51.518 (3)C18—H180.95
C4—H4A0.99C19—C201.387 (3)
C4—H4B0.99C19—H190.95
C5—C61.509 (3)C20—H200.95
O2—S1—O1119.06 (10)C5—C6—H6B109.0
O2—S1—N1106.72 (10)H6A—C6—H6B107.8
O1—S1—N1107.98 (9)O5—C7—N2124.3 (2)
O2—S1—C8105.49 (10)O5—C7—O6123.0 (2)
O1—S1—C8106.47 (10)N2—C7—O6112.7 (2)
N1—S1—C8111.09 (10)C13—C8—C9117.4 (2)
C2—O4—H40109.0 (18)C13—C8—S1114.92 (18)
C7—O6—C14115.53 (17)C9—C8—S1127.33 (18)
C1—N1—S1120.09 (15)C10—C9—C8121.1 (2)
C1—N1—H1N116.2 (19)C10—C9—N3116.3 (2)
S1—N1—H1N108.4 (18)C8—C9—N3122.6 (2)
C7—N2—C6119.8 (2)C11—C10—C9119.9 (3)
C7—N2—H2N119.2 (16)C11—C10—H10120.1
C6—N2—H2N116.7 (17)C9—C10—H10120.1
O8—N3—O7123.0 (2)C12—C11—C10119.9 (3)
O8—N3—C9119.32 (19)C12—C11—H11120.0
O7—N3—C9117.6 (2)C10—C11—H11120.0
N1—C1—C2107.09 (18)C11—C12—C13120.1 (3)
N1—C1—C3111.42 (17)C11—C12—H12119.9
C2—C1—C3112.79 (17)C13—C12—H12119.9
N1—C1—H1108.5C12—C13—C8121.6 (3)
C2—C1—H1108.5C12—C13—H13119.2
C3—C1—H1108.5C8—C13—H13119.2
O3—C2—O4124.1 (2)O6—C14—C15107.89 (19)
O3—C2—C1124.1 (2)O6—C14—H14A110.1
O4—C2—C1111.8 (2)C15—C14—H14A110.1
C4—C3—C1112.91 (17)O6—C14—H14B110.1
C4—C3—H3A109.0C15—C14—H14B110.1
C1—C3—H3A109.0H14A—C14—H14B108.4
C4—C3—H3B109.0C16—C15—C20118.9 (2)
C1—C3—H3B109.0C16—C15—C14119.5 (2)
H3A—C3—H3B107.8C20—C15—C14121.5 (2)
C5—C4—C3113.82 (18)C17—C16—C15120.9 (2)
C5—C4—H4A108.8C17—C16—H16119.5
C3—C4—H4A108.8C15—C16—H16119.5
C5—C4—H4B108.8C18—C17—C16119.8 (2)
C3—C4—H4B108.8C18—C17—H17120.1
H4A—C4—H4B107.7C16—C17—H17120.1
C6—C5—C4110.31 (18)C17—C18—C19120.0 (2)
C6—C5—H5A109.6C17—C18—H18120.0
C4—C5—H5A109.6C19—C18—H18120.0
C6—C5—H5B109.6C18—C19—C20120.3 (2)
C4—C5—H5B109.6C18—C19—H19119.9
H5A—C5—H5B108.1C20—C19—H19119.9
N2—C6—C5112.82 (19)C19—C20—C15120.1 (2)
N2—C6—H6A109.0C19—C20—H20119.9
C5—C6—H6A109.0C15—C20—H20119.9
N2—C6—H6B109.0
O2—S1—N1—C140.33 (19)S1—C8—C9—C10173.24 (19)
O1—S1—N1—C1169.43 (16)C13—C8—C9—N3179.4 (2)
C8—S1—N1—C174.18 (19)S1—C8—C9—N36.7 (3)
S1—N1—C1—C2135.06 (16)O8—N3—C9—C10157.0 (2)
S1—N1—C1—C3101.17 (18)O7—N3—C9—C1021.4 (3)
N1—C1—C2—O35.7 (3)O8—N3—C9—C823.1 (3)
C3—C1—C2—O3128.6 (2)O7—N3—C9—C8158.5 (2)
N1—C1—C2—O4173.85 (17)C8—C9—C10—C110.2 (4)
C3—C1—C2—O450.9 (2)N3—C9—C10—C11179.8 (2)
N1—C1—C3—C461.1 (2)C9—C10—C11—C120.4 (4)
C2—C1—C3—C459.4 (2)C10—C11—C12—C131.1 (4)
C1—C3—C4—C5178.21 (18)C11—C12—C13—C81.5 (4)
C3—C4—C5—C6174.65 (19)C9—C8—C13—C121.3 (3)
C7—N2—C6—C5160.1 (2)S1—C8—C13—C12174.8 (2)
C4—C5—C6—N2177.72 (19)C7—O6—C14—C15159.54 (18)
C6—N2—C7—O511.2 (3)O6—C14—C15—C16138.4 (2)
C6—N2—C7—O6170.50 (18)O6—C14—C15—C2044.1 (3)
C14—O6—C7—O56.5 (3)C20—C15—C16—C171.0 (3)
C14—O6—C7—N2175.15 (19)C14—C15—C16—C17176.5 (2)
O2—S1—C8—C130.69 (19)C15—C16—C17—C181.1 (4)
O1—S1—C8—C13126.71 (17)C16—C17—C18—C190.9 (4)
N1—S1—C8—C13115.97 (18)C17—C18—C19—C200.6 (4)
O2—S1—C8—C9173.5 (2)C18—C19—C20—C150.5 (4)
O1—S1—C8—C946.1 (2)C16—C15—C20—C190.7 (3)
N1—S1—C8—C971.2 (2)C14—C15—C20—C19176.7 (2)
C13—C8—C9—C100.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H40···O5i0.93 (3)1.75 (3)2.666 (2)172 (3)
N1—H1N···O30.80 (3)2.26 (3)2.659 (3)111 (2)
N1—H1N···O80.80 (3)2.19 (3)2.843 (3)138 (2)
N2—H2N···O5ii0.87 (2)2.41 (3)3.233 (3)160 (2)
C1—H1···O1ii1.002.223.197 (3)167
C11—H11···O1iii0.952.423.254 (4)146
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y, z1; (iii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H23N3O8S
Mr465.47
Crystal system, space groupOrthorhombic, P21212
Temperature (K)120
a, b, c (Å)11.7629 (2), 34.5731 (6), 5.3477 (2)
V3)2174.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.23 × 0.12 × 0.10
Data collection
DiffractometerKappaCCD (with Oxford Cryostream)
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.937, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
13981, 4345, 3563
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.077, 1.05
No. of reflections4345
No. of parameters302
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.24
Absolute structureFlack (1983); 1439 Friedel pairs
Absolute structure parameter0.07 (7)

Computer programs: COLLECT (Nonius 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), direct methods using SIR (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
S1—O21.4301 (15)O5—C71.238 (3)
S1—O11.4323 (15)O6—C71.336 (3)
S1—N11.6065 (18)N1—C11.473 (3)
S1—C81.791 (2)N2—C71.326 (3)
O3—C21.207 (3)N2—C61.464 (3)
O4—C21.331 (3)
S1—N1—C1—C3101.17 (18)O8—N3—C9—C823.1 (3)
N1—C1—C2—O35.7 (3)O6—C14—C15—C2044.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H40···O5i0.93 (3)1.75 (3)2.666 (2)172 (3)
N1—H1N···O30.80 (3)2.26 (3)2.659 (3)111 (2)
N1—H1N···O80.80 (3)2.19 (3)2.843 (3)138 (2)
N2—H2N···O5ii0.87 (2)2.41 (3)3.233 (3)160 (2)
C1—H1···O1ii1.002.223.197 (3)167
C11—H11···O1iii0.952.423.254 (4)146
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y, z1; (iii) x1/2, y+3/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds