Download citation
Download citation
link to html
The title compound, tris­(nitrato-κ2O,O′)(1,4,7,10,13-penta­oxa­cyclo­penta­decane-κ5O)­praseo­dymium(III), [Pr(NO3)3(C10H20O5)], was obtained from a reaction designed to explore CO2-fixation by lanthanide salts. The structure is the same as found previously for the La, Ce, Eu and Nd analogs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800019036/na6017sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800019036/na6017Isup2.hkl
Contains datablock I

CCDC reference: 155839

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.027
  • wR factor = 0.075
  • Data-to-parameter ratio = 14.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.157 Tmax scaled 0.493 Tmin scaled 0.262

Comment top

We have earlier reported on the conversion of carbon dioxide into oxalate in the presence of PrIII salts (Barrett et al., 1998). As part of a continuing study of this process, the action of carbon dioxide on an ethanolic solution of PrIII nitrate and 15-crown-5 was studied. The crystals obtained at the end of the reaction proved to be [Pr(15-crown-5)(NO3)3], (I). The structure of the complex is the same as found for the La (Lu et al., 1983; Rogers & Rollins, 1990), Ce (Lin & Xing, 1983), Eu (Bunzli et al., 1982) and Nd (Lu et al., 1983) analogs with the metal ion 11-coordinate and all three nitrate ligands on the same side of the metal.

Experimental top

Crystals of the title compound were obtained from an ethanol solution, originally charged with 1 mmol each of PrIII nitrate and 15-crown-5, that had been treated with carbon dioxide under reflux as part of a study of the chemical activation and reduction of carbon dioxide promoted by trivalent lanthanide ions. Analysis calculated for C10H20N3O14: C 21.94, H 3.88, N 7.68%; found: C 21.4, H 3.6, N 7.7%.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule.
Tris(nitrato)(1,4,7,10,13-pentaoxacyclopentadecane)praseodymium(III) top
Crystal data top
[Pr(NO3)3(C10H20O5)]F(000) = 1088
Mr = 547.20Dx = 1.972 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3236 (5) ÅCell parameters from 25 reflections
b = 14.5789 (14) Åθ = 24.3–25.8°
c = 13.6184 (6) ŵ = 2.72 mm1
β = 95.361 (4)°T = 293 K
V = 1843.0 (2) Å3Plate, light green
Z = 40.5 × 0.5 × 0.26 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2940 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
θ/2θ scansh = 011
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 017
Tmin = 0.227, Tmax = 0.426l = 1616
3838 measured reflections2 standard reflections every 120 min
3612 independent reflections intensity decay: 5.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.7265P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3611 reflectionsΔρmax = 1.23 e Å3
254 parametersΔρmin = 0.74 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (4)
Crystal data top
[Pr(NO3)3(C10H20O5)]V = 1843.0 (2) Å3
Mr = 547.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3236 (5) ŵ = 2.72 mm1
b = 14.5789 (14) ÅT = 293 K
c = 13.6184 (6) Å0.5 × 0.5 × 0.26 mm
β = 95.361 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2940 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.042
Tmin = 0.227, Tmax = 0.4262 standard reflections every 120 min
3838 measured reflections intensity decay: 5.1%
3612 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 1.23 e Å3
3611 reflectionsΔρmin = 0.74 e Å3
254 parameters
Special details top

Experimental. A light green crystal of the complex was removed from the mother liquor, rapidly cut to size and wedged into a thin-walled glass capillary which was then flame-sealed. General procedures for crystal alignment, unit cell determination and refinement and collection of intensity data have been published [Mague, J. T. & Lloyd, C. L. (1988). Organometallics 7, 983–993].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles-correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 1 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr0.71279 (2)0.983235 (14)0.270874 (12)0.02341 (10)
O10.6130 (3)1.0524 (2)0.0928 (2)0.0371 (6)
O20.4943 (3)1.0952 (2)0.2557 (2)0.0341 (6)
O30.6330 (3)1.0649 (2)0.4326 (2)0.0323 (6)
O40.9050 (3)1.0828 (2)0.3816 (2)0.0356 (6)
O50.8638 (3)1.1128 (2)0.1852 (2)0.0367 (6)
C10.4899 (5)1.1123 (3)0.0847 (3)0.0442 (10)
H1A0.4346 (5)1.1038 (3)0.0215 (3)0.053*
H1B0.5208 (5)1.1758 (3)0.0900 (3)0.053*
C20.4002 (4)1.0890 (3)0.1664 (3)0.0402 (9)
H2A0.3208 (4)1.1318 (3)0.1678 (3)0.048*
H2B0.3614 (4)1.0275 (3)0.1579 (3)0.048*
C30.4185 (4)1.1131 (3)0.3414 (3)0.0433 (10)
H3A0.3652 (4)1.0592 (3)0.3585 (3)0.052*
H3B0.3511 (4)1.1634 (3)0.3284 (3)0.052*
C40.5286 (5)1.1375 (3)0.4234 (3)0.0422 (10)
H4A0.5748 (5)1.1950 (3)0.4092 (3)0.051*
H4B0.4837 (5)1.1444 (3)0.4844 (3)0.051*
C50.7490 (4)1.0842 (3)0.5068 (3)0.0380 (9)
H5A0.7882 (4)1.0272 (3)0.5346 (3)0.046*
H5B0.7133 (4)1.1198 (3)0.5596 (3)0.046*
C60.8641 (5)1.1365 (3)0.4622 (3)0.0433 (10)
H6A0.8281 (5)1.1958 (3)0.4391 (3)0.052*
H6B0.9460 (5)1.1459 (3)0.5105 (3)0.052*
C71.0183 (4)1.1243 (3)0.3321 (3)0.0401 (10)
H7A1.0834 (4)1.0773 (3)0.3124 (3)0.048*
H7B1.0730 (4)1.1662 (3)0.3766 (3)0.048*
C80.9555 (4)1.1752 (3)0.2435 (3)0.0408 (10)
H8A0.9003 (4)1.2273 (3)0.2631 (3)0.049*
H8B1.0315 (4)1.1974 (3)0.2056 (3)0.049*
C90.8174 (5)1.1527 (3)0.0914 (3)0.0436 (10)
H9A0.9001 (5)1.1678 (3)0.0562 (3)0.052*
H9B0.7637 (5)1.2086 (3)0.1003 (3)0.052*
C100.7241 (5)1.0841 (3)0.0341 (3)0.0424 (10)
H10A0.6805 (5)1.1121 (3)0.0261 (3)0.051*
H10B0.7821 (5)1.0326 (3)0.0162 (3)0.051*
N10.9535 (4)0.9039 (3)0.1729 (3)0.0478 (10)
O60.8265 (4)0.9077 (2)0.1318 (2)0.0483 (8)
O70.9731 (3)0.9289 (2)0.2625 (2)0.0459 (7)
O81.0543 (5)0.8766 (3)0.1293 (3)0.0866 (15)
N20.7816 (3)0.8157 (2)0.3962 (2)0.0342 (7)
O90.7866 (3)0.8967 (2)0.4296 (2)0.0373 (6)
O100.7475 (3)0.8064 (2)0.3048 (2)0.0372 (6)
O110.8086 (4)0.7502 (2)0.4498 (3)0.0626 (10)
N30.4549 (3)0.8586 (2)0.2500 (2)0.0344 (7)
O120.5204 (3)0.8806 (2)0.1760 (2)0.0381 (6)
O130.4923 (3)0.9016 (2)0.3295 (2)0.0391 (7)
O140.3629 (3)0.7999 (2)0.2451 (3)0.0598 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr0.02571 (13)0.02156 (14)0.02326 (13)0.00014 (7)0.00389 (7)0.00068 (7)
O10.043 (2)0.036 (2)0.0320 (13)0.0008 (13)0.0017 (11)0.0040 (12)
O20.0301 (13)0.039 (2)0.0329 (13)0.0070 (11)0.0033 (10)0.0025 (12)
O30.0343 (13)0.032 (2)0.0308 (13)0.0001 (11)0.0071 (10)0.0064 (11)
O40.0334 (14)0.042 (2)0.0326 (14)0.0135 (12)0.0089 (11)0.0092 (12)
O50.042 (2)0.036 (2)0.0322 (14)0.0114 (12)0.0023 (11)0.0054 (12)
C10.057 (3)0.038 (3)0.036 (2)0.007 (2)0.009 (2)0.005 (2)
C20.032 (2)0.039 (2)0.047 (2)0.008 (2)0.009 (2)0.004 (2)
C30.034 (2)0.050 (3)0.048 (2)0.014 (2)0.015 (2)0.004 (2)
C40.050 (3)0.041 (3)0.039 (2)0.013 (2)0.017 (2)0.002 (2)
C50.041 (2)0.045 (3)0.028 (2)0.004 (2)0.004 (2)0.012 (2)
C60.043 (2)0.049 (3)0.040 (2)0.010 (2)0.009 (2)0.020 (2)
C70.026 (2)0.055 (3)0.040 (2)0.012 (2)0.006 (2)0.003 (2)
C80.039 (2)0.040 (3)0.044 (2)0.014 (2)0.007 (2)0.000 (2)
C90.057 (3)0.038 (3)0.035 (2)0.009 (2)0.006 (2)0.011 (2)
C100.057 (3)0.044 (3)0.027 (2)0.003 (2)0.005 (2)0.011 (2)
N10.059 (2)0.034 (2)0.055 (2)0.015 (2)0.029 (2)0.008 (2)
O60.062 (2)0.046 (2)0.039 (2)0.010 (2)0.0114 (14)0.0021 (14)
O70.041 (2)0.044 (2)0.055 (2)0.0079 (13)0.0129 (14)0.0013 (15)
O80.086 (3)0.103 (4)0.079 (3)0.048 (3)0.052 (2)0.009 (2)
N20.032 (2)0.028 (2)0.040 (2)0.0017 (13)0.0071 (14)0.0073 (14)
O90.050 (2)0.025 (2)0.0352 (14)0.0005 (12)0.0046 (12)0.0005 (11)
O100.045 (2)0.031 (2)0.0340 (14)0.0022 (12)0.0024 (12)0.0015 (12)
O110.088 (3)0.034 (2)0.060 (2)0.008 (2)0.026 (2)0.017 (2)
N30.029 (2)0.031 (2)0.043 (2)0.0007 (13)0.0016 (14)0.0048 (14)
O120.045 (2)0.040 (2)0.0285 (14)0.0089 (13)0.0013 (12)0.0006 (12)
O130.039 (2)0.043 (2)0.0364 (15)0.0067 (13)0.0087 (12)0.0007 (13)
O140.047 (2)0.049 (2)0.083 (2)0.025 (2)0.006 (2)0.006 (2)
Geometric parameters (Å, º) top
Pr—O62.509 (3)O4—C61.428 (5)
Pr—O92.542 (3)O4—C71.439 (4)
Pr—O72.566 (3)O5—C91.434 (5)
Pr—O132.567 (3)O5—C81.435 (5)
Pr—O122.587 (3)C1—C21.492 (6)
Pr—O22.603 (3)C3—C41.487 (6)
Pr—O102.634 (3)C5—C61.491 (6)
Pr—O42.663 (3)C7—C81.489 (6)
Pr—O32.670 (2)C9—C101.496 (6)
Pr—O52.687 (3)N1—O81.224 (5)
Pr—O12.709 (3)N1—O61.263 (5)
Pr—N12.952 (4)N1—O71.270 (5)
O1—C11.438 (5)N2—O111.214 (4)
O1—C101.443 (5)N2—O101.263 (4)
O2—C21.434 (5)N2—O91.264 (4)
O2—C31.444 (5)N3—O141.210 (4)
O3—C41.436 (5)N3—O121.267 (4)
O3—C51.437 (4)N3—O131.271 (4)
O6—Pr—O9108.92 (10)O13—Pr—N1128.60 (11)
O6—Pr—O750.42 (10)O12—Pr—N193.94 (11)
O9—Pr—O772.69 (10)O2—Pr—N1146.33 (9)
O6—Pr—O13116.01 (10)O10—Pr—N167.01 (10)
O9—Pr—O1370.52 (9)O4—Pr—N188.26 (11)
O7—Pr—O13131.24 (10)O3—Pr—N1146.07 (10)
O6—Pr—O1272.03 (10)O5—Pr—N168.16 (10)
O9—Pr—O12104.93 (9)O1—Pr—N187.33 (10)
O7—Pr—O12114.44 (10)C1—O1—C10111.8 (3)
O13—Pr—O1249.38 (8)C1—O1—Pr120.0 (2)
O6—Pr—O2126.72 (9)C10—O1—Pr114.3 (2)
O9—Pr—O2121.75 (9)C2—O2—C3113.0 (3)
O7—Pr—O2157.90 (10)C2—O2—Pr116.1 (2)
O13—Pr—O270.83 (9)C3—O2—Pr119.2 (2)
O12—Pr—O279.75 (9)C4—O3—C5112.1 (3)
O6—Pr—O1069.47 (10)C4—O3—Pr119.7 (2)
O9—Pr—O1049.15 (8)C5—O3—Pr114.7 (2)
O7—Pr—O1066.69 (10)C6—O4—C7113.0 (3)
O13—Pr—O1065.20 (9)C6—O4—Pr121.3 (2)
O12—Pr—O1065.77 (9)C7—O4—Pr116.7 (2)
O2—Pr—O10135.23 (9)C9—O5—C8110.5 (3)
O6—Pr—O4110.93 (10)C9—O5—Pr123.1 (2)
O9—Pr—O471.00 (9)C8—O5—Pr121.0 (2)
O7—Pr—O466.69 (10)O1—C1—C2107.7 (3)
O13—Pr—O4126.37 (8)O2—C2—C1106.1 (3)
O12—Pr—O4175.46 (8)O2—C3—C4107.1 (3)
O2—Pr—O4100.56 (9)O3—C4—C3107.8 (3)
O10—Pr—O4111.67 (9)O3—C5—C6109.7 (3)
O6—Pr—O3171.15 (9)O4—C6—C5106.7 (3)
O9—Pr—O366.03 (9)O4—C7—C8109.8 (3)
O7—Pr—O3120.80 (9)O5—C8—C7107.6 (3)
O13—Pr—O369.94 (9)O5—C9—C10107.8 (3)
O12—Pr—O3115.86 (8)O1—C10—C9109.8 (3)
O2—Pr—O360.64 (8)O8—N1—O6122.0 (4)
O10—Pr—O3109.31 (8)O8—N1—O7120.8 (4)
O4—Pr—O360.94 (8)O6—N1—O7117.2 (3)
O6—Pr—O572.87 (10)O8—N1—Pr175.7 (3)
O9—Pr—O5127.37 (9)O6—N1—Pr57.4 (2)
O7—Pr—O570.22 (10)O7—N1—Pr60.0 (2)
O13—Pr—O5158.21 (9)N1—O6—Pr97.5 (2)
O12—Pr—O5123.85 (8)N1—O7—Pr94.6 (2)
O2—Pr—O587.86 (9)O11—N2—O10121.8 (4)
O10—Pr—O5134.72 (9)O11—N2—O9121.3 (3)
O4—Pr—O560.67 (8)O10—N2—O9116.9 (3)
O3—Pr—O5104.03 (8)O11—N2—Pr177.5 (3)
O6—Pr—O167.78 (9)O10—N2—Pr60.6 (2)
O9—Pr—O1171.48 (9)O9—N2—Pr56.4 (2)
O7—Pr—O1108.80 (9)N2—O9—Pr99.1 (2)
O13—Pr—O1103.46 (9)N2—O10—Pr94.8 (2)
O12—Pr—O166.68 (9)O14—N3—O12121.8 (4)
O2—Pr—O159.67 (8)O14—N3—O13122.2 (3)
O10—Pr—O1123.20 (9)O12—N3—O13116.0 (3)
O4—Pr—O1117.43 (9)O14—N3—Pr171.9 (3)
O3—Pr—O1118.27 (8)O12—N3—Pr58.8 (2)
O5—Pr—O159.99 (8)O13—N3—Pr57.9 (2)
O6—Pr—N125.11 (11)N3—O12—Pr96.5 (2)
O9—Pr—N191.89 (10)N3—O13—Pr97.3 (2)
O7—Pr—N125.39 (11)

Experimental details

Crystal data
Chemical formula[Pr(NO3)3(C10H20O5)]
Mr547.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.3236 (5), 14.5789 (14), 13.6184 (6)
β (°) 95.361 (4)
V3)1843.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.72
Crystal size (mm)0.5 × 0.5 × 0.26
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.227, 0.426
No. of measured, independent and
observed [I > 2σ(I)] reflections
3838, 3612, 2940
Rint0.042
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.04
No. of reflections3611
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.74

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1987), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds