Download citation
Download citation
link to html
The structure of 4,7-phenanthroline, C12H8N2, has been determined at 180 K. The molecular unit possesses pseudo-C2v point symmetry but does not possess crystallographic mirror symmetry. The mol­ecules form stacks approximately along the b direction, with mol­ecules in adjacent stacks forming an interplane angle of ca 54°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801000812/bt6004sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801000812/bt6004Isup2.hkl
Contains datablock I

CCDC reference: 159747

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.063
  • wR factor = 0.161
  • Data-to-parameter ratio = 8.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack -3.000 From the CIF: _refine_ls_abs_structure_Flack_su 8.000 Alert C Flack parameter is too small General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.05 From the CIF: _reflns_number_total 1099 Count of symmetry unique reflns 799 Completeness (_total/calc) 137.55% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 300 Fraction of Friedel pairs measured 0.375 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

As part of a continuing study of cocrystal formation between organic acids and N-containing organic bases, we have determined the structure of 4,7-phenanthroline, (I), at 180 K. The molecular unit possesses pseudo-C2v point symmetry, but does not exhibit crystallographic mirror symmetry. Similar observations have been made for the isomeric 1,10-phenanthroline (OPENAN; Nishigaki et al., 1978). In the crystal structure, 4,7-phenanthroline forms planar stacks approximately along the b direction with molecules in adjacent stacks forming an interplane angle of ca 54° (Fig. 2); this contrasts with the observation of two approximately perpendicular layers in 1,10-phenanthroline. There is no conclusive evidence for directional C—H···N contacts in 4,7-phenanthroline, with the shortest H···N contacts, H1···N7i = 2.72, H8···N4ii = 3.00 and H10···N7iii = 3.00 Å, exhibiting C—H···N angles of 153.6, 128.6 and 119.5°, respectively [symmetry codes: (i) 3/2 - x, -1 + y, 1/2 + z; (ii) 1/2 + x, 1 - y, z; (iii) 3/2 - x, y, 1/2 + z].

Experimental top

4,7-Phenanthroline was obtained from Aldrich and recrystallized from ethanol.

Refinement top

The absolute structure was not determined. Friedel opposites merged prior to merging of data in Pca21. H atoms were placed geometrically and allowed to ride during subsequent refinement with an isotropic displacement parameter fixed at 1.2 times Uiso for the C atom to which they are attached.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1993); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular unit of the title compound showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Projection onto (100) showing molecular stacks tilted with respect to each other with molecules in adjacent stacks forming an interplane angle of ca 54°.
4,7-phenanthroline top
Crystal data top
C12H8N2Dx = 1.408 Mg m3
Mr = 180.20Melting point = 445–447 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
a = 19.141 (4) ÅCell parameters from 6723 reflections
b = 3.8417 (4) Åθ = 1.0–25.0°
c = 11.564 (2) ŵ = 0.09 mm1
V = 850.4 (3) Å3T = 180 K
Z = 4Plate, colourless
F(000) = 3760.30 × 0.09 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1099 independent reflections
Radiation source: fine-focus sealed tube812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Thin slice ω and ϕ scansθmax = 25.1°, θmin = 3.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 2217
Tmin = 0.975, Tmax = 0.996k = 43
2186 measured reflectionsl = 1310
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
1099 reflectionsΔρmax = 0.30 e Å3
127 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 3 (8)
Crystal data top
C12H8N2V = 850.4 (3) Å3
Mr = 180.20Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 19.141 (4) ŵ = 0.09 mm1
b = 3.8417 (4) ÅT = 180 K
c = 11.564 (2) Å0.30 × 0.09 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1099 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
812 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.996Rint = 0.080
2186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.161Δρmax = 0.30 e Å3
S = 1.09Δρmin = 0.27 e Å3
1099 reflectionsAbsolute structure: Flack (1983)
127 parametersAbsolute structure parameter: 3 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6207 (3)0.1033 (11)0.5044 (4)0.0310 (11)
H10.65860.04340.55350.037*
C20.5535 (3)0.0311 (12)0.5378 (5)0.0375 (13)
H20.54400.07600.61020.045*
C30.4995 (3)0.1194 (12)0.4625 (5)0.0387 (13)
H30.45310.06820.48600.046*
N40.5083 (2)0.2693 (10)0.3606 (4)0.0373 (11)
C50.5853 (3)0.5139 (12)0.2191 (4)0.0350 (13)
H50.54590.56580.17240.042*
C60.6492 (3)0.5988 (12)0.1814 (4)0.0329 (12)
H60.65430.71100.10860.039*
N70.7727 (2)0.6174 (10)0.2027 (4)0.0390 (12)
C80.8289 (3)0.5474 (13)0.2656 (5)0.0390 (14)
H80.87320.60780.23460.047*
C90.8271 (3)0.3908 (11)0.3745 (5)0.0382 (13)
H90.86920.35170.41620.046*
C100.7644 (2)0.2944 (11)0.4206 (4)0.0312 (11)
H100.76220.18680.49450.037*
C110.7030 (3)0.3573 (11)0.3568 (4)0.0298 (11)
C120.6336 (2)0.2649 (12)0.3981 (4)0.0268 (11)
C130.5751 (2)0.3463 (11)0.3286 (4)0.0307 (12)
C140.7098 (3)0.5227 (12)0.2492 (4)0.0316 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.030 (3)0.028 (3)0.003 (2)0.005 (2)0.002 (2)
C20.038 (3)0.035 (3)0.040 (3)0.005 (2)0.006 (3)0.004 (2)
C30.033 (3)0.035 (3)0.048 (3)0.006 (2)0.007 (3)0.006 (2)
N40.032 (3)0.038 (2)0.041 (2)0.0010 (18)0.000 (2)0.006 (2)
C50.040 (3)0.035 (3)0.030 (3)0.004 (2)0.011 (3)0.005 (2)
C60.046 (3)0.029 (3)0.024 (3)0.003 (2)0.003 (2)0.000 (2)
N70.044 (3)0.038 (2)0.035 (3)0.0064 (18)0.009 (2)0.0063 (19)
C80.030 (3)0.043 (3)0.044 (3)0.003 (2)0.006 (3)0.007 (2)
C90.035 (3)0.040 (3)0.039 (3)0.002 (2)0.009 (3)0.006 (3)
C100.030 (3)0.033 (2)0.031 (3)0.002 (2)0.002 (2)0.001 (2)
C110.033 (3)0.024 (2)0.032 (3)0.0033 (19)0.002 (2)0.005 (2)
C120.032 (3)0.021 (2)0.027 (2)0.0007 (18)0.004 (2)0.0080 (18)
C130.031 (3)0.028 (3)0.034 (3)0.0007 (19)0.002 (2)0.010 (2)
C140.035 (3)0.028 (3)0.032 (3)0.001 (2)0.003 (2)0.006 (2)
Geometric parameters (Å, º) top
C1—C21.371 (7)C6—H60.9500
C1—C121.398 (7)N7—C81.327 (6)
C1—H10.9500N7—C141.367 (6)
C2—C31.394 (7)C8—C91.396 (7)
C2—H20.9500C8—H80.9500
C3—N41.322 (7)C9—C101.364 (7)
C3—H30.9500C9—H90.9500
N4—C131.364 (6)C10—C111.410 (7)
C5—C61.338 (7)C10—H100.9500
C5—C131.434 (7)C11—C141.403 (6)
C5—H50.9500C11—C121.455 (6)
C6—C141.431 (7)C12—C131.414 (6)
C2—C1—C12120.3 (5)C9—C8—H8117.9
C2—C1—H1119.9C10—C9—C8119.4 (5)
C12—C1—H1119.9C10—C9—H9120.3
C1—C2—C3118.0 (6)C8—C9—H9120.3
C1—C2—H2121.0C9—C10—C11118.9 (5)
C3—C2—H2121.0C9—C10—H10120.6
N4—C3—C2124.6 (5)C11—C10—H10120.6
N4—C3—H3117.7C14—C11—C10117.7 (4)
C2—C3—H3117.7C14—C11—C12119.2 (4)
C3—N4—C13117.1 (5)C10—C11—C12123.2 (4)
C6—C5—C13121.5 (5)C1—C12—C13117.2 (4)
C6—C5—H5119.3C1—C12—C11124.0 (4)
C13—C5—H5119.3C13—C12—C11118.8 (4)
C5—C6—C14120.8 (5)N4—C13—C12122.8 (4)
C5—C6—H6119.6N4—C13—C5117.7 (4)
C14—C6—H6119.6C12—C13—C5119.6 (4)
C8—N7—C14116.4 (4)N7—C14—C11123.4 (4)
N7—C8—C9124.2 (5)N7—C14—C6116.4 (5)
N7—C8—H8117.9C11—C14—C6120.2 (4)
C12—C1—C2—C30.8 (6)C3—N4—C13—C5179.1 (4)
C1—C2—C3—N40.1 (7)C1—C12—C13—N41.0 (6)
C2—C3—N4—C131.0 (6)C11—C12—C13—N4180.0 (4)
C13—C5—C6—C140.4 (7)C1—C12—C13—C5179.7 (4)
C14—N7—C8—C90.9 (6)C11—C12—C13—C50.6 (6)
N7—C8—C9—C101.3 (7)C6—C5—C13—N4179.9 (4)
C8—C9—C10—C110.2 (6)C6—C5—C13—C120.7 (6)
C9—C10—C11—C141.1 (6)C8—N7—C14—C110.5 (6)
C9—C10—C11—C12179.9 (4)C8—N7—C14—C6179.9 (4)
C2—C1—C12—C130.2 (6)C10—C11—C14—N71.5 (6)
C2—C1—C12—C11178.7 (4)C12—C11—C14—N7179.6 (4)
C14—C11—C12—C1179.3 (4)C10—C11—C14—C6178.9 (4)
C10—C11—C12—C10.4 (6)C12—C11—C14—C60.0 (6)
C14—C11—C12—C130.3 (6)C5—C6—C14—N7179.5 (4)
C10—C11—C12—C13178.6 (4)C5—C6—C14—C110.0 (7)
C3—N4—C13—C121.6 (6)

Experimental details

Crystal data
Chemical formulaC12H8N2
Mr180.20
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)180
a, b, c (Å)19.141 (4), 3.8417 (4), 11.564 (2)
V3)850.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.09 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.975, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
2186, 1099, 812
Rint0.080
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.161, 1.09
No. of reflections1099
No. of parameters127
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27
Absolute structureFlack (1983)
Absolute structure parameter3 (8)

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Sheldrick, 1993), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds