Download citation
Download citation
link to html
The structure of the title compound, [Ni(C6H15NO3)2](C7H4NO3S)2, consists of a cationic [Ni(TEA)2]2+ and two anionic (SAC)- moieties (TEA is triethano­lamine and SAC is the saccharinate anion). Two TEA ligands coordinate to the NiII ion through four O atoms and two N atoms acting as tridentate ligands (N,O,O') in a distorted octahedral environment, with the bond distances [d(Ni-O) = 2.078 (2) and 2.082 (2) Å, and d(Ni-N) = 2.108 (2) Å]. SAC anions participate in intermolecular hydrogen bonding with the hydroxyl H atoms of the TEA ligands to form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801001878/bt6011sup1.cif
Contains datablock oa_13

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801001878/bt6011Isup2.hkl
Contains datablock I

CCDC reference: 159713

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.143
  • Data-to-parameter ratio = 16.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

Comment top

In the preparation of metal complexes of ethanolamines with the saccharinate anion (SAC) as a co-ligand, the title complex, (I), was obtained by the reaction of hexaaquabis(saccharinato)nickel(II) with triethanolamine (TEA). The reaction resulted in the replacement of all the ligands around the NiII ion by the bulky TEA ligands. The title complex contains a cationic [Ni(TEA)2]2+ and two anionic (SAC)- moieties. The cation resides on a crystallographic inversion centre and is formed by the NiII sitting at the centre and binding two TEA ligands which results in a six coordinate environment around the metal. Each TEA acts as a tridentate ligand through its N and two hydroxyl O atoms, one hydroxyl O atom of the ethanolic groups being non-coordinated (Fig. 1). The Ni—O distances are in the range 2.078 (2)–2.082 (2) Å and the Ni—N distances are 2.108 (2) Å, while the bond angles range from 82.12 (9) to 97.88 (9)° (Table 1). Both bond distances and angles are comparable with those observed for the Ni complex of TEA with chloride (Icbudak et al., 1995) and acetate (Krabbes et al., 2000). The SAC ligand is essentially planar and intramolecular bond lengths are virtually identical to those found in the free SAC molecule (Okaya, 1969), [Mn(phen)2(H2O)2](SAC)2.H2O (Jianmin et al., 1993) and ammonium saccharin (Ng, 1998). SAC ions are linked by hydrogen bonds to the hydroxyl groups of the TEA ligands in the complex cation. The coordinated hydroxyl groups of the TEA ligands form O—H···N and O—H···O hydrogen bonds with the SAC anions, while the non-coordinated hydroxyl groups form O—H···O hydrogen bonds with the anions. In addition, weak C—H···O hydrogen bonds are observed between the aromatic C9 and C11 atoms of the SAC moiety and the O atoms of neighbouring SAC anions, as well as the non-coordinated hydroxyl group of the TEA ligand (Table 2).

Experimental top

Previously prepared [Ni(SAC)2(H2O)4].2H2O (1.06 g, 2.0 mmol) was dissolved in 50 ml of ethanol at 343 K with stirring and cooled to room temperature. Then, TEA (0.60 g, 4.0 mmol) was added to the solution dropwise. The resulting blue solution was left at room temperature until evaporation resulted in the formation of pale blue crystals suitable for X-ray diffraction analysis.

Refinement top

The hydroxyl H atoms were located from a difference map and and their coordinates were refined with fixed individual displacement parameters [U(H) = 1.5Ueq(O)]. Other H atoms were introduced at idealized positions and were allowed to ride on the parent atom.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the title complex showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x,-y,-z].
Bis(triethanolamine-N,O,O')nickel(II) bis(saccharinate) top
Crystal data top
[Ni(C6H15NO3)2](C7H4NO3S)2F(000) = 756
Mr = 721.43Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 7.3714 (4) ÅCell parameters from 3145 reflections
b = 12.9097 (8) Åθ = 2.6–27.5°
c = 15.7403 (9) ŵ = 0.87 mm1
β = 97.732 (1)°T = 295 K
V = 1484.27 (15) Å3Diamond, pale blue
Z = 20.31 × 0.30 × 0.11 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3417 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 69
Tmin = 0.759, Tmax = 0.909k = 1616
9255 measured reflectionsl = 1520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0907P)2]
where P = (Fo2 + 2Fc2)/3
3417 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 1.48 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C6H15NO3)2](C7H4NO3S)2V = 1484.27 (15) Å3
Mr = 721.43Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3714 (4) ŵ = 0.87 mm1
b = 12.9097 (8) ÅT = 295 K
c = 15.7403 (9) Å0.31 × 0.30 × 0.11 mm
β = 97.732 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3417 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2396 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.909Rint = 0.048
9255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 1.48 e Å3
3417 reflectionsΔρmin = 0.42 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.02164 (17)
O10.2583 (3)0.06729 (17)0.02138 (14)0.0287 (5)
H1O0.260 (5)0.118 (3)0.050 (3)0.043*
O20.1202 (3)0.14080 (16)0.04012 (13)0.0282 (5)
H2O0.054 (6)0.194 (3)0.037 (3)0.042*
O30.0379 (5)0.0656 (2)0.32004 (17)0.0604 (9)
H3O0.054 (8)0.104 (5)0.358 (4)0.091*
N10.0601 (3)0.00554 (18)0.12713 (16)0.0252 (5)
C10.2644 (4)0.0018 (2)0.1185 (2)0.0308 (7)
H1A0.30280.01180.17400.040*
H1B0.31460.06810.09810.040*
C20.3357 (5)0.0816 (2)0.0567 (2)0.0327 (7)
H2A0.46820.07790.04530.043*
H2B0.30200.14910.08100.043*
C30.0231 (4)0.0880 (2)0.1734 (2)0.0294 (7)
H3A0.06900.14160.17360.038*
H3B0.06710.07010.23250.038*
C40.1789 (4)0.1280 (2)0.1306 (2)0.0301 (7)
H4A0.22040.19390.15570.039*
H4B0.28030.07960.13940.039*
C50.0099 (5)0.1031 (2)0.1692 (2)0.0316 (7)
H5A0.14260.10030.17590.041*
H5B0.02740.15960.13000.041*
C60.0457 (5)0.1311 (3)0.2552 (2)0.0375 (8)
H6A0.17770.12580.25230.049*
H6B0.01110.20230.26890.049*
S10.43268 (12)0.68961 (6)0.16452 (5)0.0346 (2)
N20.2933 (4)0.7401 (2)0.08711 (17)0.0324 (6)
O40.1017 (3)0.68877 (17)0.03074 (15)0.0357 (5)
O50.6153 (4)0.7266 (2)0.1625 (2)0.0551 (7)
O60.3630 (4)0.7003 (2)0.24461 (16)0.0509 (7)
C70.2182 (4)0.6684 (2)0.0321 (2)0.0278 (6)
C80.2873 (4)0.5606 (2)0.05373 (19)0.0261 (6)
C90.2471 (5)0.4701 (2)0.0091 (2)0.0318 (7)
H90.16500.46900.04120.038*
C100.3343 (5)0.3803 (2)0.0421 (2)0.0359 (8)
H100.30960.31790.01330.043*
C110.4565 (5)0.3818 (3)0.1167 (2)0.0412 (8)
H110.51280.32050.13720.049*
C120.4964 (5)0.4729 (3)0.1615 (2)0.0378 (8)
H120.57800.47460.21190.045*
C130.4100 (4)0.5607 (2)0.1279 (2)0.0289 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0230 (3)0.0195 (3)0.0221 (3)0.0003 (2)0.00176 (19)0.0002 (2)
O10.0297 (12)0.0248 (10)0.0312 (12)0.0023 (9)0.0021 (9)0.0026 (9)
O20.0311 (12)0.0244 (10)0.0282 (11)0.0016 (9)0.0009 (9)0.0013 (8)
O30.094 (2)0.0549 (18)0.0283 (14)0.0245 (17)0.0062 (15)0.0072 (12)
N10.0272 (13)0.0220 (11)0.0263 (12)0.0005 (10)0.0029 (10)0.0010 (10)
C10.0282 (16)0.0330 (15)0.0327 (16)0.0042 (13)0.0098 (13)0.0009 (13)
C20.0294 (17)0.0323 (16)0.0367 (18)0.0041 (13)0.0054 (14)0.0011 (14)
C30.0347 (18)0.0255 (14)0.0268 (16)0.0017 (12)0.0003 (13)0.0048 (12)
C40.0330 (17)0.0284 (15)0.0272 (16)0.0033 (13)0.0019 (13)0.0036 (12)
C50.041 (2)0.0249 (14)0.0283 (16)0.0027 (13)0.0045 (14)0.0026 (12)
C60.044 (2)0.0352 (17)0.0324 (18)0.0066 (15)0.0023 (15)0.0069 (14)
S10.0393 (5)0.0311 (4)0.0305 (4)0.0033 (3)0.0059 (3)0.0018 (3)
N20.0376 (16)0.0263 (13)0.0309 (14)0.0022 (11)0.0049 (12)0.0012 (11)
O40.0380 (13)0.0305 (11)0.0341 (12)0.0044 (10)0.0112 (10)0.0008 (9)
O50.0410 (16)0.0540 (16)0.0648 (19)0.0153 (13)0.0126 (14)0.0007 (14)
O60.070 (2)0.0502 (16)0.0307 (14)0.0002 (14)0.0004 (13)0.0073 (11)
C70.0281 (16)0.0252 (14)0.0296 (16)0.0017 (12)0.0021 (13)0.0012 (12)
C80.0247 (15)0.0255 (14)0.0273 (15)0.0005 (12)0.0005 (12)0.0017 (12)
C90.0317 (18)0.0278 (14)0.0358 (18)0.0017 (12)0.0034 (14)0.0010 (13)
C100.0372 (19)0.0250 (15)0.047 (2)0.0008 (13)0.0109 (16)0.0001 (14)
C110.042 (2)0.0305 (16)0.052 (2)0.0096 (15)0.0120 (17)0.0125 (15)
C120.0338 (19)0.0427 (18)0.0353 (18)0.0068 (14)0.0015 (15)0.0089 (14)
C130.0277 (16)0.0309 (15)0.0274 (15)0.0002 (13)0.0017 (12)0.0015 (12)
Geometric parameters (Å, º) top
Ni1—O12.078 (2)C5—C61.510 (4)
Ni1—O1i2.078 (2)S1—O61.430 (3)
Ni1—O2i2.082 (2)S1—O51.433 (3)
Ni1—O22.082 (2)S1—N21.621 (3)
Ni1—N12.108 (2)S1—C131.761 (3)
Ni1—N1i2.108 (2)N2—C71.336 (4)
O1—C21.435 (4)O4—C71.248 (4)
O2—C41.442 (4)C7—C81.506 (4)
O3—C61.403 (4)C8—C91.375 (4)
N1—C51.483 (4)C8—C131.377 (4)
N1—C11.495 (4)C9—C101.392 (5)
N1—C31.499 (4)C10—C111.381 (5)
C1—C21.497 (4)C11—C121.382 (5)
C3—C41.499 (4)C12—C131.371 (4)
O1—Ni1—O1i180.00 (17)C4—C3—N1110.3 (2)
O1—Ni1—O2i88.44 (9)O2—C4—C3109.7 (2)
O1i—Ni1—O2i91.56 (9)N1—C5—C6118.9 (3)
O1—Ni1—O291.56 (9)O3—C6—C5111.2 (3)
O1i—Ni1—O288.44 (9)O6—S1—O5115.92 (18)
O2i—Ni1—O2180.00 (12)O6—S1—N2110.93 (16)
O1—Ni1—N182.12 (9)O5—S1—N2110.55 (17)
O1i—Ni1—N197.88 (9)O6—S1—C13110.51 (15)
O2i—Ni1—N197.07 (9)O5—S1—C13110.84 (17)
O2—Ni1—N182.93 (9)N2—S1—C1396.40 (14)
O1—Ni1—N1i97.88 (9)C7—N2—S1111.9 (2)
O1i—Ni1—N1i82.12 (9)O4—C7—N2123.3 (3)
O2i—Ni1—N1i82.93 (9)O4—C7—C8123.3 (3)
O2—Ni1—N1i97.07 (9)N2—C7—C8113.4 (3)
N1—Ni1—N1i180.00 (18)C9—C8—C13120.4 (3)
C2—O1—Ni1112.09 (18)C9—C8—C7128.8 (3)
C4—O2—Ni1104.97 (16)C13—C8—C7110.7 (3)
C5—N1—C1110.8 (2)C8—C9—C10117.4 (3)
C5—N1—C3111.9 (2)C11—C10—C9121.4 (3)
C1—N1—C3111.1 (2)C10—C11—C12121.0 (3)
C5—N1—Ni1110.33 (18)C13—C12—C11116.9 (3)
C1—N1—Ni1104.48 (18)C12—C13—C8122.9 (3)
C3—N1—Ni1108.03 (18)C12—C13—S1129.5 (3)
N1—C1—C2110.1 (2)C8—C13—S1107.5 (2)
O1—C2—C1108.6 (2)
O2i—Ni1—O1—C2101.22 (19)C1—N1—C5—C654.7 (4)
O2—Ni1—O1—C278.78 (19)C3—N1—C5—C669.8 (4)
N1—Ni1—O1—C23.86 (19)Ni1—N1—C5—C6169.9 (2)
N1i—Ni1—O1—C2176.14 (19)N1—C5—C6—O370.7 (4)
O1—Ni1—O2—C4111.10 (19)O6—S1—N2—C7113.0 (3)
O1i—Ni1—O2—C468.90 (19)O5—S1—N2—C7117.0 (3)
N1—Ni1—O2—C429.24 (19)C13—S1—N2—C71.9 (3)
N1i—Ni1—O2—C4150.76 (19)S1—N2—C7—O4177.3 (3)
O1—Ni1—N1—C5141.9 (2)S1—N2—C7—C82.4 (4)
O1i—Ni1—N1—C538.1 (2)O4—C7—C8—C94.0 (5)
O2i—Ni1—N1—C554.5 (2)N2—C7—C8—C9176.3 (3)
O2—Ni1—N1—C5125.5 (2)O4—C7—C8—C13177.9 (3)
O1—Ni1—N1—C122.84 (17)N2—C7—C8—C131.8 (4)
O1i—Ni1—N1—C1157.16 (17)C13—C8—C9—C100.3 (5)
O2i—Ni1—N1—C164.59 (18)C7—C8—C9—C10178.2 (3)
O2—Ni1—N1—C1115.41 (18)C8—C9—C10—C110.1 (5)
O1—Ni1—N1—C395.51 (19)C9—C10—C11—C120.1 (6)
O1i—Ni1—N1—C384.49 (19)C10—C11—C12—C130.4 (5)
O2i—Ni1—N1—C3177.06 (18)C11—C12—C13—C80.6 (5)
O2—Ni1—N1—C32.94 (18)C11—C12—C13—S1177.5 (3)
C5—N1—C1—C2165.2 (3)C9—C8—C13—C120.6 (5)
C3—N1—C1—C269.8 (3)C7—C8—C13—C12178.9 (3)
Ni1—N1—C1—C246.5 (3)C9—C8—C13—S1177.9 (2)
Ni1—O1—C2—C130.2 (3)C7—C8—C13—S10.4 (3)
N1—C1—C2—O152.1 (3)O6—S1—C13—C1267.3 (4)
C5—N1—C3—C498.0 (3)O5—S1—C13—C1262.6 (4)
C1—N1—C3—C4137.6 (3)N2—S1—C13—C12177.5 (3)
Ni1—N1—C3—C423.6 (3)O6—S1—C13—C8114.4 (2)
Ni1—O2—C4—C351.1 (3)O5—S1—C13—C8115.7 (3)
N1—C3—C4—O251.2 (3)N2—S1—C13—C80.8 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2ii0.79 (4)1.93 (4)2.692 (3)161 (4)
O2—H2O···O4ii0.84 (4)1.89 (4)2.734 (3)178 (4)
O3—H3O···O4iii0.77 (6)2.06 (6)2.823 (3)173 (6)
C9—H9···O3iv0.932.583.394 (4)147
C11—H11···O6v0.932.503.352 (4)153
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H15NO3)2](C7H4NO3S)2
Mr721.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.3714 (4), 12.9097 (8), 15.7403 (9)
β (°) 97.732 (1)
V3)1484.27 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.31 × 0.30 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.759, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
9255, 3417, 2396
Rint0.048
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 0.99
No. of reflections3417
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.48, 0.42

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O12.078 (2)S1—O51.433 (3)
Ni1—O22.082 (2)S1—N21.621 (3)
Ni1—N12.108 (2)S1—C131.761 (3)
O1—C21.435 (4)N2—C71.336 (4)
O2—C41.442 (4)O4—C71.248 (4)
O3—C61.403 (4)C7—C81.506 (4)
N1—C51.483 (4)C8—C91.375 (4)
N1—C11.495 (4)C8—C131.377 (4)
N1—C31.499 (4)C9—C101.392 (5)
C1—C21.497 (4)C10—C111.381 (5)
C3—C41.499 (4)C11—C121.382 (5)
C5—C61.510 (4)C12—C131.371 (4)
S1—O61.430 (3)
O1—Ni1—O2i88.44 (9)O1i—Ni1—N197.88 (9)
O1i—Ni1—O2i91.56 (9)O2i—Ni1—N197.07 (9)
O1—Ni1—N182.12 (9)O2—Ni1—N182.93 (9)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2ii0.79 (4)1.93 (4)2.692 (3)161 (4)
O2—H2O···O4ii0.84 (4)1.89 (4)2.734 (3)178 (4)
O3—H3O···O4iii0.77 (6)2.06 (6)2.823 (3)173 (6)
C9—H9···O3iv0.932.583.394 (4)146.5
C11—H11···O6v0.932.503.352 (4)152.5
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z1/2; (v) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds