Download citation
Download citation
link to html
The title compound, 1,6,7,12,13,18-hexa­aza­tri­naphthyl­ene (HATN) tetra­chloro­form solvate, C24H12N6·4CH3Cl, belongs to a series of planar bridging ligands with an extensive delocalized π-electron system. The planar mol­ecules pack in pairs with a π–π stacking of a symmetry-related quinoline moiety and are surounded by solvent mol­ecules of chloro­form. The latter are involved in C—H...N contacts with the six pyrazine N atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801002938/bt6014sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801002938/bt6014Isup2.hkl
Contains datablock I

CCDC reference: 159857

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.036
  • wR factor = 0.064
  • Data-to-parameter ratio = 15.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
GOODF_01 Alert B The least squares goodness of fit parameter lies outside the range 0.60 <> 4.00 Goodness of fit given = 0.569 RINTA_01 Alert B The value of Rint is greater than 0.15 Rint given 0.168 General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C28 H16 Cl12 N6 Atom count from _chemical_formula_moiety:C28 H20 Cl8 N6
0 Alert Level A = Potentially serious problem
2 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Hexaazatrinaphthalene (HATN) is one of a series of compounds which contain three sites for possible bidentate coordination to a metal center. It is thought that delocalization of the π-electron system may provide facile electronic communication between coordinated metal centers leading to interesting physical properties. The parent compound of this series, 1,4,5,8,9,12-hexaazatriphenylene (HAT), has recently been reported to form a robust (10,3)-a network containing chiral micropres on coordinating AgI (Abrahams at al., 1998). The chemistry of ruthenium(II) (Kirsch-De Mesmaeker et al., 1989; Rutherford et al., 1997) and mixed RuII/OsII (Rutherford et al., 1998) complexes of HAT have also been studied. The hexaphenyl derivative of HAT has been used to form a number of capped polymetallic complexes with copper(I) and silver(I) (Baxter, Lehn, Baum et al., 1993; Baxter, Lehn, Baum & Fenske, 1999; Baxter, Lehn, Kneisel et al., 1999). The synthesis of a number of HAT derivatives have been reported (Rademacher et al., 1994) and the crystal structure of HAT-hexacarboxamide was published in 1996 (Beeson et al., 1996). The crystal structures of a number of mono- and binuclear PdII and ReI complexes with the hexamethyl derivative of HATN have been reported (Catalano et al., 1994). Two trinuclear copper(I) complexes were recently synthesized (Okubo et al., 1999) using the HAT–hexacarbonitrile anion, which was prepared electrolytically. The complexes were found to exhibit anion-trapping behaviour in the solid state and in solution.

The title compound, (I), crystallizes with four molecules of CHCl3 per molecule of HATN. The molecule is planar with a maxium deviation for atom N3 of 0.034 Å from the best least-squares plane through all of the non-H atoms comprising the molecule (Fig. 1). The pattern of bond distances and angles in HATN does not suggest a regular delocalized congujated system as observed in HAT–hexacarboxamide (Beeson et al., 1996). The central six-membered ring has three short fused bonds C1—C2, C3—C4 and C5—C6 [average value 1.425 (2) Å] and three long non-fused bonds C2—C3, C4—C5 and C6—C1 [average value 1.479 (2) Å]. The same pattern was observed in HAT–hexacarboxamide (Beeson et al., 1996) but with slightly shorter distances, i.e. 1.405 (10) Å and 1.457 (6) Å, respectively. The remainder of the carbon–carbon bonds have an average value of 1.42 (1) Å except two bonds in the outer fused benzene rings. Surprisingly, here the average value is 1.351 (2) Å for bonds C8—C9, C10—C11, C14—C15, C16—C17, C20—C21 and C22—C23.

In the crystal the HATN molecules stack in pairs, related by a center of symmetry. These `dimers' stack up the a axis and are surounded by solvent molecules of chloroform (Fig. 2). Each pyrazine N atom is involved in a C—H···N contact with the chloroform solvent molecules. Details are given in Table 2. The symmetry-related quinoline moieties involving atoms N1/N2/C1/C7–C12/C2 [symmetry code: 1 - x, 1 - y, 1 - z], are overlapped with an average non-bonded interatomic distance of 3.66 (1) Å. This is larger than the expected van der Waals separation of ca 3.2 Å for π-complexation of aromatic rings. In contrast, it was found that molecules of HAT–hexacarboxamide (Beeson et al., 1996) also stack in pairs but with an average separation of 3.31 (9) Å, indicating the presence of π-complexation.

Experimental top

Hexaketocyclohexane octahydrate (1.0 g, 3.20 mmol) and 1,2-phenylenediamine (1.14 g, 10.5 mmol) were added to 200 ml of absolute ethanol. The reaction mixture was refluxed for 12 h after which the solution was cooled to room temperature. The pale-orange precipitate formed was filtered off and dried under vacuum. Recrystallization from CHCl3 gave extremely thin orange plate-like crystals.

Refinement top

The Rint value is rather high which is probably due to the poor quality of the crystal and its thinness. Less than one third of the unique reflections can be considered to be observed and the observed reflections to parameter ratio is only 4.3. The aromatic H atoms were placed in calculated positions and treated as riding atoms using SHELXL97 default parameters. The CHCl3 H atoms were located from Fourier difference maps and refined isotropically.

Computing details top

Data collection: EXPOSE (Stoe, 2000); cell refinement: CELL (Stoe, 2000); data reduction: INTEGRATE (Stoe, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. PLATON (Spek, 1990) plot of (I) (displacement ellipsoids at the 50% probability level).
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis, showing the CHCl3 solvent molecules between pairs of HATN molecules and the C–H···N interactions.
(I) top
Crystal data top
C24H12N6·4CH2Cl2F(000) = 1720
Mr = 861.87Dx = 1.665 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.1170 (13) ÅCell parameters from 4774 reflections
b = 11.6285 (6) Åθ = 2.0–25.9°
c = 19.9737 (16) ŵ = 1.00 mm1
β = 101.624 (10)°T = 223 K
V = 3439.1 (4) Å3Plate, orange
Z = 40.35 × 0.15 × 0.10 mm
Data collection top
STOE IPDS
diffractometer
1836 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.168
Graphite monochromatorθmax = 25.9°, θmin = 2.0°
Detector resolution: 0.81 pixels mm-1h = 1818
ϕ oscillation scansk = 1413
26548 measured reflectionsl = 2424
6626 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.57 w = 1/[σ2(Fo2) + (0.0002P)2]
where P = (Fo2 + 2Fc2)/3
6626 reflections(Δ/σ)max = 0.003
431 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H12N6·4CH2Cl2V = 3439.1 (4) Å3
Mr = 861.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1170 (13) ŵ = 1.00 mm1
b = 11.6285 (6) ÅT = 223 K
c = 19.9737 (16) Å0.35 × 0.15 × 0.10 mm
β = 101.624 (10)°
Data collection top
STOE IPDS
diffractometer
1836 reflections with I > 2σ(I)
26548 measured reflectionsRint = 0.168
6626 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.57Δρmax = 0.22 e Å3
6626 reflectionsΔρmin = 0.24 e Å3
431 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3994 (2)0.3252 (4)0.45947 (17)0.0282 (11)
N20.4092 (2)0.5338 (4)0.38857 (17)0.0276 (10)
N30.4669 (2)0.5341 (4)0.26793 (17)0.0279 (10)
N40.5205 (2)0.3247 (4)0.21489 (18)0.0280 (11)
N50.5068 (3)0.1231 (4)0.28136 (18)0.0265 (11)
N60.4454 (3)0.1240 (4)0.40601 (19)0.0300 (11)
C10.4275 (3)0.3290 (4)0.4004 (2)0.0230 (12)
C20.4321 (3)0.4345 (5)0.3652 (2)0.0238 (13)
C30.4644 (3)0.4347 (5)0.2994 (2)0.0259 (13)
C40.4907 (3)0.3289 (5)0.2729 (2)0.0247 (13)
C50.4842 (3)0.2196 (5)0.3091 (2)0.0264 (13)
C60.4530 (3)0.2202 (5)0.3718 (2)0.0233 (12)
C70.3770 (3)0.4266 (5)0.4850 (2)0.0283 (13)
C80.3483 (3)0.4279 (5)0.5487 (2)0.0369 (15)
H80.34520.35910.57280.044*
C90.3256 (3)0.5290 (6)0.5741 (2)0.0432 (16)
H90.30700.53000.61620.052*
C100.3295 (3)0.6330 (5)0.5384 (2)0.0399 (15)
H100.31340.70230.55710.048*
C110.3560 (3)0.6338 (5)0.4777 (2)0.0367 (15)
H110.35750.70350.45420.044*
C120.3814 (3)0.5309 (5)0.4494 (2)0.0280 (12)
C130.4973 (3)0.5312 (5)0.2072 (2)0.0280 (13)
C140.5020 (3)0.6343 (5)0.1710 (2)0.0369 (15)
H140.48430.70410.18800.044*
C150.5320 (3)0.6326 (5)0.1119 (2)0.0381 (15)
H150.53390.70130.08730.046*
C160.5608 (3)0.5277 (5)0.0862 (2)0.0374 (15)
H160.58280.52820.04540.045*
C170.5568 (3)0.4275 (5)0.1197 (2)0.0355 (15)
H170.57520.35880.10180.043*
C180.5250 (3)0.4258 (5)0.1816 (2)0.0267 (13)
C190.4998 (3)0.0243 (5)0.3153 (2)0.0295 (13)
C200.5237 (3)0.0822 (5)0.2899 (2)0.0342 (14)
H200.54350.08440.24820.041*
C210.5186 (3)0.1809 (5)0.3247 (2)0.0371 (14)
H210.53480.25090.30700.045*
C220.4891 (3)0.1796 (5)0.3870 (2)0.0369 (14)
H220.48630.24880.41080.044*
C230.4646 (3)0.0801 (5)0.4133 (3)0.0355 (14)
H230.44430.08100.45470.043*
C240.4695 (3)0.0250 (5)0.3790 (2)0.0262 (13)
C310.2832 (4)0.6825 (5)0.2673 (3)0.0392 (16)
H310.338 (3)0.667 (4)0.287 (2)0.049 (18)*
Cl310.23065 (9)0.54928 (13)0.24764 (8)0.0568 (4)
Cl320.28716 (10)0.76000 (14)0.19267 (7)0.0589 (5)
Cl330.22771 (10)0.76198 (15)0.32036 (7)0.0634 (5)
C410.4534 (4)0.0932 (5)0.1037 (3)0.0569 (18)
H410.454 (3)0.124 (4)0.154 (3)0.083 (19)*
Cl410.40452 (12)0.19691 (17)0.04394 (8)0.0847 (6)
Cl420.38381 (13)0.02646 (18)0.09672 (8)0.0969 (6)
Cl430.56067 (12)0.0580 (2)0.09175 (9)0.1032 (8)
C510.2667 (4)0.0902 (5)0.4851 (2)0.0421 (15)
H510.331 (3)0.133 (4)0.4715 (19)0.043 (14)*
Cl510.21582 (12)0.01231 (16)0.42567 (7)0.0825 (6)
Cl520.29716 (10)0.02419 (17)0.56579 (7)0.0765 (6)
Cl530.18975 (10)0.20203 (14)0.48962 (7)0.0623 (5)
C610.7089 (4)0.1680 (4)0.2435 (2)0.0341 (14)
H610.644 (3)0.164 (4)0.231 (2)0.061 (18)*
Cl610.75584 (10)0.23592 (14)0.18163 (7)0.0588 (5)
Cl620.74293 (10)0.02317 (13)0.25315 (8)0.0554 (4)
Cl630.73841 (11)0.23977 (14)0.32198 (7)0.0641 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.027 (3)0.035 (3)0.023 (2)0.001 (2)0.0065 (19)0.001 (2)
N20.032 (3)0.032 (3)0.021 (2)0.001 (2)0.0112 (18)0.000 (2)
N30.030 (2)0.024 (3)0.029 (2)0.003 (2)0.0055 (19)0.005 (2)
N40.032 (3)0.029 (3)0.027 (2)0.001 (2)0.014 (2)0.004 (2)
N50.029 (3)0.023 (3)0.028 (2)0.000 (2)0.007 (2)0.001 (2)
N60.037 (3)0.023 (3)0.032 (3)0.000 (2)0.011 (2)0.003 (2)
C10.026 (3)0.023 (4)0.021 (3)0.001 (2)0.005 (2)0.001 (2)
C20.017 (3)0.021 (4)0.031 (3)0.003 (3)0.001 (2)0.004 (3)
C30.033 (3)0.023 (4)0.024 (3)0.005 (3)0.010 (2)0.001 (2)
C40.019 (3)0.024 (4)0.032 (3)0.002 (2)0.008 (2)0.001 (2)
C50.023 (3)0.031 (4)0.025 (3)0.001 (3)0.006 (2)0.001 (3)
C60.020 (3)0.022 (4)0.026 (3)0.004 (2)0.000 (2)0.002 (2)
C70.028 (3)0.030 (4)0.029 (3)0.000 (3)0.010 (2)0.004 (3)
C80.048 (4)0.039 (4)0.026 (3)0.000 (3)0.014 (3)0.001 (3)
C90.057 (4)0.051 (5)0.027 (3)0.000 (3)0.018 (3)0.006 (3)
C100.048 (4)0.036 (4)0.040 (3)0.002 (3)0.019 (3)0.012 (3)
C110.042 (4)0.036 (4)0.035 (3)0.004 (3)0.016 (3)0.005 (3)
C120.034 (3)0.021 (4)0.029 (3)0.004 (3)0.007 (2)0.006 (3)
C130.030 (3)0.033 (4)0.022 (3)0.005 (3)0.007 (2)0.002 (3)
C140.051 (4)0.023 (4)0.039 (3)0.003 (3)0.016 (3)0.007 (3)
C150.042 (4)0.043 (5)0.030 (3)0.004 (3)0.010 (3)0.010 (3)
C160.035 (3)0.055 (5)0.025 (3)0.006 (3)0.012 (2)0.009 (3)
C170.037 (3)0.049 (5)0.024 (3)0.001 (3)0.016 (3)0.001 (3)
C180.027 (3)0.028 (4)0.026 (3)0.001 (3)0.007 (2)0.002 (3)
C190.023 (3)0.029 (4)0.037 (3)0.001 (3)0.007 (2)0.005 (3)
C200.039 (4)0.027 (4)0.036 (3)0.001 (3)0.008 (3)0.006 (3)
C210.043 (4)0.021 (4)0.046 (3)0.001 (3)0.006 (3)0.003 (3)
C220.045 (4)0.018 (4)0.047 (3)0.001 (3)0.008 (3)0.007 (3)
C230.041 (4)0.028 (4)0.040 (3)0.002 (3)0.016 (3)0.008 (3)
C240.025 (3)0.028 (4)0.025 (3)0.000 (3)0.006 (2)0.001 (3)
C310.041 (4)0.036 (4)0.041 (3)0.004 (3)0.008 (3)0.002 (3)
Cl310.0549 (11)0.0387 (11)0.0712 (9)0.0071 (8)0.0007 (8)0.0025 (9)
Cl320.0648 (11)0.0558 (13)0.0574 (10)0.0074 (9)0.0155 (8)0.0210 (9)
Cl330.0703 (11)0.0659 (14)0.0552 (10)0.0200 (10)0.0152 (8)0.0128 (9)
C410.076 (5)0.062 (5)0.033 (3)0.018 (4)0.013 (3)0.006 (3)
Cl410.0939 (14)0.0822 (16)0.0742 (11)0.0152 (12)0.0075 (10)0.0135 (10)
Cl420.1248 (16)0.0756 (16)0.0979 (13)0.0355 (14)0.0406 (12)0.0031 (11)
Cl430.0674 (13)0.150 (2)0.0898 (14)0.0051 (13)0.0093 (10)0.0476 (13)
C510.045 (4)0.042 (4)0.043 (3)0.007 (3)0.017 (3)0.005 (3)
Cl510.1141 (14)0.0657 (15)0.0626 (10)0.0028 (12)0.0059 (10)0.0261 (10)
Cl520.0567 (10)0.1175 (18)0.0513 (9)0.0028 (11)0.0015 (8)0.0233 (10)
Cl530.0645 (11)0.0586 (13)0.0671 (10)0.0014 (9)0.0210 (8)0.0083 (8)
C610.041 (4)0.033 (4)0.030 (3)0.007 (3)0.011 (3)0.002 (3)
Cl610.0773 (11)0.0550 (13)0.0534 (9)0.0044 (9)0.0356 (8)0.0076 (8)
Cl620.0696 (10)0.0359 (10)0.0615 (8)0.0108 (9)0.0152 (7)0.0048 (9)
Cl630.0858 (12)0.0661 (14)0.0402 (9)0.0137 (10)0.0119 (8)0.0156 (8)
Geometric parameters (Å, º) top
N1—C11.332 (5)C15—C161.426 (7)
N1—C71.355 (6)C15—H150.9400
N2—C21.318 (5)C16—C171.350 (7)
N2—C121.364 (5)C16—H160.9400
N3—C31.319 (6)C17—C181.415 (6)
N3—C131.382 (5)C17—H170.9400
N4—C41.325 (5)C19—C201.412 (7)
N4—C181.360 (6)C19—C241.437 (5)
N5—C51.327 (6)C20—C211.352 (7)
N5—C191.348 (6)C20—H200.9400
N6—C61.327 (6)C21—C221.405 (6)
N6—C241.352 (6)C21—H210.9400
C1—C21.423 (6)C22—C231.351 (7)
C1—C61.472 (6)C22—H220.9400
C2—C31.491 (6)C23—C241.410 (6)
C3—C41.428 (6)C23—H230.9400
C4—C51.475 (6)C31—Cl331.742 (5)
C5—C61.425 (6)C31—Cl311.750 (6)
C7—C81.423 (6)C31—Cl321.754 (5)
C7—C121.414 (6)C31—H310.87 (4)
C8—C91.352 (7)C41—Cl431.735 (6)
C8—H80.9400C41—Cl411.753 (6)
C9—C101.410 (7)C41—Cl421.733 (6)
C9—H90.9400C41—H411.06 (5)
C10—C111.352 (6)C51—Cl511.747 (5)
C10—H100.9400C51—Cl521.761 (5)
C11—C121.409 (6)C51—Cl531.759 (5)
C11—H110.9400C51—H511.17 (4)
C13—C141.409 (6)C61—Cl611.734 (5)
C13—C181.422 (6)C61—Cl621.760 (5)
C14—C151.347 (6)C61—Cl631.753 (5)
C14—H140.9400C61—H610.96 (4)
C1—N1—C7116.9 (4)C17—C16—C15120.9 (5)
C2—N2—C12116.4 (4)C17—C16—H16119.6
C3—N3—C13116.3 (4)C15—C16—H16119.6
C4—N4—C18117.0 (5)C16—C17—C18120.1 (5)
C5—N5—C19117.3 (4)C16—C17—H17119.9
C6—N6—C24116.9 (4)C18—C17—H17119.9
N1—C1—C2121.5 (5)N4—C18—C17119.9 (5)
N1—C1—C6118.0 (5)N4—C18—C13121.5 (4)
C2—C1—C6120.4 (4)C17—C18—C13118.6 (5)
N2—C2—C1122.5 (4)N5—C19—C20121.0 (5)
N2—C2—C3117.9 (5)N5—C19—C24120.8 (5)
C1—C2—C3119.6 (5)C20—C19—C24118.2 (5)
N3—C3—C4122.8 (4)C21—C20—C19121.0 (5)
N3—C3—C2117.8 (5)C21—C20—H20119.5
C4—C3—C2119.4 (5)C19—C20—H20119.5
N4—C4—C3121.7 (5)C20—C21—C22120.4 (5)
N4—C4—C5117.7 (5)C20—C21—H21119.8
C3—C4—C5120.7 (5)C22—C21—H21119.8
N5—C5—C6122.0 (5)C23—C22—C21120.9 (5)
N5—C5—C4118.4 (4)C23—C22—H22119.5
C6—C5—C4119.6 (5)C21—C22—H22119.5
N6—C6—C5121.8 (5)C22—C23—C24120.6 (5)
N6—C6—C1117.9 (4)C22—C23—H23119.7
C5—C6—C1120.3 (5)C24—C23—H23119.7
N1—C7—C8119.3 (5)N6—C24—C23120.0 (4)
N1—C7—C12121.1 (4)N6—C24—C19121.2 (5)
C8—C7—C12119.6 (5)C23—C24—C19118.8 (5)
C9—C8—C7119.4 (5)Cl33—C31—Cl31110.7 (3)
C9—C8—H8120.3Cl33—C31—Cl32110.4 (3)
C7—C8—H8120.3Cl31—C31—Cl32110.8 (3)
C8—C9—C10121.1 (5)Cl33—C31—H31111 (3)
C8—C9—H9119.5Cl31—C31—H31105 (3)
C10—C9—H9119.5Cl32—C31—H31108 (3)
C11—C10—C9120.6 (5)Cl43—C41—Cl41110.2 (3)
C11—C10—H10119.7Cl43—C41—Cl42111.6 (4)
C9—C10—H10119.7Cl41—C41—Cl42109.4 (3)
C10—C11—C12120.6 (5)Cl43—C41—H41112 (3)
C10—C11—H11119.7Cl41—C41—H41109 (3)
C12—C11—H11119.7Cl42—C41—H41104 (3)
N2—C12—C11119.6 (5)Cl51—C51—Cl52108.8 (3)
N2—C12—C7121.6 (5)Cl51—C51—Cl53109.5 (3)
C11—C12—C7118.8 (4)Cl52—C51—Cl53109.2 (3)
N3—C13—C14119.3 (5)Cl51—C51—H51114 (2)
N3—C13—C18120.7 (5)Cl52—C51—H51108.6 (19)
C14—C13—C18120.0 (4)Cl53—C51—H51107 (2)
C15—C14—C13119.9 (5)Cl61—C61—Cl62111.2 (3)
C15—C14—H14120.1Cl61—C61—Cl63110.7 (3)
C13—C14—H14120.1Cl62—C61—Cl63110.0 (3)
C14—C15—C16120.6 (5)Cl61—C61—H61112 (3)
C14—C15—H15119.7Cl62—C61—H61104 (3)
C16—C15—H15119.7Cl63—C61—H61108 (3)
C7—N1—C1—C21.1 (6)C8—C9—C10—C110.0 (8)
C7—N1—C1—C6179.5 (4)C9—C10—C11—C120.8 (8)
C12—N2—C2—C10.7 (6)C2—N2—C12—C11179.9 (4)
C12—N2—C2—C3178.9 (4)C2—N2—C12—C70.4 (6)
N1—C1—C2—N20.0 (7)C10—C11—C12—N2179.1 (4)
C6—C1—C2—N2179.4 (4)C10—C11—C12—C71.2 (7)
N1—C1—C2—C3179.6 (4)N1—C7—C12—N20.7 (7)
C6—C1—C2—C31.0 (6)C8—C7—C12—N2179.5 (4)
C13—N3—C3—C40.4 (6)N1—C7—C12—C11179.0 (4)
C13—N3—C3—C2179.9 (4)C8—C7—C12—C110.8 (7)
N2—C2—C3—N31.0 (6)C3—N3—C13—C14179.8 (4)
C1—C2—C3—N3179.4 (4)C3—N3—C13—C180.7 (6)
N2—C2—C3—C4179.3 (4)N3—C13—C14—C15179.7 (4)
C1—C2—C3—C40.3 (6)C18—C13—C14—C150.6 (7)
C18—N4—C4—C30.0 (6)C13—C14—C15—C161.3 (7)
C18—N4—C4—C5179.1 (4)C14—C15—C16—C171.5 (7)
N3—C3—C4—N40.8 (7)C15—C16—C17—C180.9 (7)
C2—C3—C4—N4179.5 (4)C4—N4—C18—C17179.5 (4)
N3—C3—C4—C5178.2 (4)C4—N4—C18—C131.2 (6)
C2—C3—C4—C51.4 (6)C16—C17—C18—N4179.5 (4)
C19—N5—C5—C60.5 (7)C16—C17—C18—C130.2 (7)
C19—N5—C5—C4179.7 (4)N3—C13—C18—N41.5 (7)
N4—C4—C5—N51.1 (6)C14—C13—C18—N4179.4 (4)
C3—C4—C5—N5177.9 (4)N3—C13—C18—C17179.1 (4)
N4—C4—C5—C6179.7 (4)C14—C13—C18—C170.0 (7)
C3—C4—C5—C61.3 (6)C5—N5—C19—C20179.1 (4)
C24—N6—C6—C50.6 (7)C5—N5—C19—C240.4 (6)
C24—N6—C6—C1179.8 (4)N5—C19—C20—C21178.5 (5)
N5—C5—C6—N60.4 (7)C24—C19—C20—C210.2 (7)
C4—C5—C6—N6179.6 (4)C19—C20—C21—C220.1 (7)
N5—C5—C6—C1179.2 (4)C20—C21—C22—C230.5 (7)
C4—C5—C6—C10.1 (6)C21—C22—C23—C240.9 (7)
N1—C1—C6—N60.9 (6)C6—N6—C24—C23178.9 (4)
C2—C1—C6—N6178.4 (4)C6—N6—C24—C191.5 (6)
N1—C1—C6—C5179.4 (4)C22—C23—C24—N6179.6 (5)
C2—C1—C6—C51.2 (6)C22—C23—C24—C190.7 (7)
C1—N1—C7—C8178.8 (4)N5—C19—C24—N61.4 (7)
C1—N1—C7—C121.5 (6)C20—C19—C24—N6179.9 (4)
N1—C7—C8—C9179.8 (5)N5—C19—C24—C23178.9 (4)
C12—C7—C8—C90.0 (7)C20—C19—C24—C230.2 (6)
C7—C8—C9—C100.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31···N20.87 (4)2.60 (4)3.260 (7)134 (4)
C31—H31···N30.87 (4)2.57 (5)3.268 (7)138 (4)
C41—H41···N51.06 (5)2.51 (5)3.493 (6)154 (4)
C51—H51···N11.17 (4)2.50 (4)3.489 (6)141 (3)
C51—H51···N61.17 (4)2.37 (4)3.415 (6)147 (3)
C61—H61···N40.96 (4)2.62 (5)3.332 (7)132 (4)
C61—H61···N50.96 (4)2.53 (5)3.333 (7)141 (4)

Experimental details

Crystal data
Chemical formulaC24H12N6·4CH2Cl2
Mr861.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)15.1170 (13), 11.6285 (6), 19.9737 (16)
β (°) 101.624 (10)
V3)3439.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerSTOE IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26548, 6626, 1836
Rint0.168
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.064, 0.57
No. of reflections6626
No. of parameters431
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: EXPOSE (Stoe, 2000), CELL (Stoe, 2000), INTEGRATE (Stoe, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON99 (Spek, 1990), SHELXL97.

Selected bond lengths (Å) top
N1—C11.332 (5)C7—C81.423 (6)
N1—C71.355 (6)C7—C121.414 (6)
N2—C21.318 (5)C9—C101.410 (7)
N2—C121.364 (5)C10—C111.352 (6)
N3—C31.319 (6)C11—C121.409 (6)
N3—C131.382 (5)C13—C141.409 (6)
N4—C41.325 (5)C13—C181.422 (6)
N4—C181.360 (6)C14—C151.347 (6)
N5—C51.327 (6)C15—C161.426 (7)
N5—C191.348 (6)C16—C171.350 (7)
N6—C61.327 (6)C17—C181.415 (6)
N6—C241.352 (6)C19—C201.412 (7)
C1—C21.423 (6)C19—C241.437 (5)
C1—C61.472 (6)C20—C211.352 (7)
C2—C31.491 (6)C21—C221.405 (6)
C3—C41.428 (6)C22—C231.351 (7)
C4—C51.475 (6)C23—C241.410 (6)
C5—C61.425 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31···N20.87 (4)2.60 (4)3.260 (7)134 (4)
C31—H31···N30.87 (4)2.57 (5)3.268 (7)138 (4)
C41—H41···N51.06 (5)2.51 (5)3.493 (6)154 (4)
C51—H51···N11.17 (4)2.50 (4)3.489 (6)141 (3)
C51—H51···N61.17 (4)2.37 (4)3.415 (6)147 (3)
C61—H61···N40.96 (4)2.62 (5)3.332 (7)132 (4)
C61—H61···N50.96 (4)2.53 (5)3.333 (7)141 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds