Download citation
Download citation
link to html
The crystal structure of the title compound, [Mn(NCS)2(hmt)2(H2O)2]·[Mn(NCS)2(H2O)4]·2H2O, where hmt is hexa­methyl­ene­tetr­amine (C6H12N4), shows that each Mn atom is in an octahedral coordination enviroment, and that the independent uncharged components [Mn(NCS)2(hmt)2(H2O)2], [Mn(NCS)2(H2O)4] and H2O are linked together by three kinds of hydrogen bonds (O—H...N, O—H...O and O—H...S) to form a three-dimensional supramolecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801004068/wn6000sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801004068/wn6000Isup2.hkl
Contains datablock I

CCDC reference: 162799

Key indicators

  • Single-crystal X-ray study
  • T = 288 K
  • Mean [sigma](N-C) = 0.002 Å
  • R factor = 0.024
  • wR factor = 0.062
  • Data-to-parameter ratio = 14.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_731 Alert B Bond Calc 0.82(3), Rep 0.819(5) .... 6.00 s.u-Ratio O4 -H4OA 1.555 1.555
Author response: Hydrogen atoms sites solution of water was used the method of difference Fourier map. O-H distance was restraint with "DFix.82" instruction during the refinement.
PLAT_735  Alert B D-H     Calc     0.82(3), Rep    0.819(5) ....       6.00 s.u-Ratio
                     O4   -H4OA    1.555   1.555
Author response: Hydrogen atoms sites solution of water was used the method of difference Fourier map. O-H distance was restraint with "DFix.82" instruction during the refinement.
PLAT_736  Alert B H...A   Calc     2.00(3), Rep    2.001(6) ....       5.00 s.u-Ratio
                     H4OA -N4      1.555   1.555
Author response: Hydrogen atoms sites solution of water was used the method of difference Fourier map. O-H distance was restraint with "DFix.82" instruction during the refinement.

Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor O1 - H1OB ? PLAT_731 Alert C Bond Calc 0.818(17), Rep 0.818(5) .... 3.40 s.u-Ratio O1 -H1OA 1.555 1.555 PLAT_731 Alert C Bond Calc 0.82(2), Rep 0.818(5) .... 4.00 s.u-Ratio O1 -H1OB 1.555 1.555 PLAT_731 Alert C Bond Calc 0.823(18), Rep 0.823(5) .... 3.60 s.u-Ratio O2 -H2OA 1.555 1.555 PLAT_731 Alert C Bond Calc 0.82(2), Rep 0.822(5) .... 4.00 s.u-Ratio O2 -H2OB 1.555 1.555 PLAT_731 Alert C Bond Calc 0.815(14), Rep 0.815(5) .... 2.80 s.u-Ratio O3 -H3OA 1.555 1.555 PLAT_731 Alert C Bond Calc 0.817(12), Rep 0.816(5) .... 2.40 s.u-Ratio O3 -H3OB 1.555 1.555 PLAT_731 Alert C Bond Calc 0.819(18), Rep 0.818(5) .... 3.60 s.u-Ratio O4 -H4OB 1.555 1.555 PLAT_735 Alert C D-H Calc 0.819(18), Rep 0.818(5) .... 3.60 s.u-Ratio O4 -H4OB 1.555 1.555 PLAT_735 Alert C D-H Calc 0.82(2), Rep 0.822(5) .... 4.00 s.u-Ratio O2 -H2OB 1.555 1.555 PLAT_735 Alert C D-H Calc 0.823(18), Rep 0.823(5) .... 3.60 s.u-Ratio O2 -H2OA 1.555 1.555 PLAT_735 Alert C D-H Calc 0.817(12), Rep 0.816(5) .... 2.40 s.u-Ratio O3 -H3OB 1.555 1.555 PLAT_735 Alert C D-H Calc 0.815(14), Rep 0.815(5) .... 2.80 s.u-Ratio O3 -H3OA 1.555 1.555 PLAT_735 Alert C D-H Calc 0.818(17), Rep 0.818(5) .... 3.40 s.u-Ratio O1 -H1OA 1.555 1.555 PLAT_736 Alert C H...A Calc 1.991(18), Rep 1.992(7) .... 2.57 s.u-Ratio H2OA -N3 1.555 1.555 PLAT_736 Alert C H...A Calc 1.925(16), Rep 1.925(6) .... 2.67 s.u-Ratio H1OA -O4 1.555 2.666 General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C16 H40 Mn2 N12 O8 S4 Atom count from _chemical_formula_moiety:C16 H40 Mn1 N12 O8 S4
0 Alert Level A = Potentially serious problem
3 Alert Level B = Potential problem
16 Alert Level C = Please check

Comment top

Metal complexes that assemble into specific supramolecular structures in the crystal lattice have generated considerable interest because of their potential use in developing new materials with magnetic, optical and catalytic properties (Lehn, 1990). Materials with multidimensional supramolecular architectures have been organized by coordinate, covalent or hydrogen bonding (Gemma & Jonathan, 1999). The vast majority of current work centers around the controlled assembly of donor and acceptor building blocks (particularly involving hydrogen-bond acid–base pairs, e.g. nucleobase) in order to generate an entirely supramolecular polymer, i.e. a material held together solely by non-covalent interactions. With this in mind, considering hexamethylenetetramine (hmt) as a potential tetradentate ligand or hydrogen-bond acceptor, and suitable for the self-assembly of supramolecular architectures (Stuart et al., 1998), we sought to synthesize a multidimensional supramolecular compound containing it. Herein we report the three-dimensional supramolecular architecture of [Mn(hmt)2(H2O)2(NCS)2]·[Mn(H2O)4(NCS)2]·2H2O, (I).

The molecular structure of (I) is shown in Fig. 1. The geometry around Mn1 is octahedral; the two O atoms of the coordinated water molecules and the two N atoms from two NCS- define the equatorial positions, whereas an N atom from each of the hmt ligands occupies the axial ones. The axial Mn1—N1 bond distance of 2.4213 (13) Å is significantly longer than the equatorial Mn1—O1 bonds of 2.1865 (12) Å and the Mn1—N5 bonds of 2.1342 (15) Å. Mn2 is also in an octahedral environment. The coordination polyhedron is formed by two NCS- and four water molecules, elongated along the axis defined by the water molecules; the axial Mn2—O2 distance is 2.2132 (13) Å. Both Mn1- and Mn2-containing species are located on inversion centres. In Fig. 2, both the interlayer Mn1···Mn1 and Mn2···Mn2 distances are 7.969 Å, the distance of Mn1···Mn1 between adjacent chains is 9.280 Å in the same layer, the shortest intermolecular Mn1···Mn2 distance is 7.296 Å and the shorter intermolecular Mn1···Mn2 distance is 8.640 Å. The independent moieties [Mn(hmt)2(H2O)2(NCS)2] and [Mn(H2O)4(NCS)2] are connected by four hydrogen bonds (Table 2) to form a two-dimensional structure. Adjacent two-dimensional chains are connected by further hydrogen bonds to form a three-dimensional supramolecular architecture.

Experimental top

To 1 mmol of hmt and 2 mmol of MnCl2·4H2O in 3.5 ml of water solution, 2 ml aqueous solution of NH4SCN was added and the mixture stirred for ca 10 min. The resulting solution was allowed to stand for 2 d. Colorless crystals were collected in 34% yield.

Refinement top

H atoms were placed in calculated positions (C—H = 0.97 Å), assigned fixed isotropic displacement parameters at 1.2 times the equivalent Uiso of the atoms to which they are attached and were allowed to ride on their respective parent atoms.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 40% probability displacement ellipsoids and some neighbouring atoms linked by hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed along the a axis.
(I) top
Crystal data top
[Mn(NCS)2(C6H12N4)2(H2O)2]·[Mn(NCS)2(H2O)4]·2H2OZ = 1
Mr = 766.72F(000) = 398
Triclinic, P1Dx = 1.507 Mg m3
a = 7.969 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.111 (1) ÅCell parameters from 26 reflections
c = 13.076 (2) Åθ = 2.8–17.2°
α = 94.34 (1)°µ = 1.05 mm1
β = 96.83 (1)°T = 288 K
γ = 115.16 (1)°Block, colourless
V = 844.76 (19) Å30.48 × 0.48 × 0.40 mm
Data collection top
Siemens P4
diffractometer
2853 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.010
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
ω scansh = 09
Absorption correction: ψ scan
(XSCANS; Siemens, 1994)
k = 1110
Tmin = 0.615, Tmax = 0.653l = 1616
3694 measured reflections3 standard reflections every 97 reflections
3316 independent reflections intensity decay: 3.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.1263P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3316 reflectionsΔρmax = 0.33 e Å3
226 parametersΔρmin = 0.27 e Å3
12 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0364 (17)
Crystal data top
[Mn(NCS)2(C6H12N4)2(H2O)2]·[Mn(NCS)2(H2O)4]·2H2Oγ = 115.16 (1)°
Mr = 766.72V = 844.76 (19) Å3
Triclinic, P1Z = 1
a = 7.969 (1) ÅMo Kα radiation
b = 9.111 (1) ŵ = 1.05 mm1
c = 13.076 (2) ÅT = 288 K
α = 94.34 (1)°0.48 × 0.48 × 0.40 mm
β = 96.83 (1)°
Data collection top
Siemens P4
diffractometer
2853 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1994)
Rint = 0.010
Tmin = 0.615, Tmax = 0.6533 standard reflections every 97 reflections
3694 measured reflections intensity decay: 3.5%
3316 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02412 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
3316 reflectionsΔρmin = 0.27 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.50000.02889 (10)
Mn20.00000.50000.00000.03183 (11)
S10.16159 (7)0.37686 (7)0.44188 (4)0.05815 (16)
S20.66791 (6)0.21450 (6)0.17286 (4)0.05044 (14)
N10.42844 (17)0.09081 (14)0.33825 (9)0.0284 (3)
N20.5533 (2)0.22801 (17)0.19114 (11)0.0383 (3)
N30.2372 (2)0.00512 (16)0.16372 (10)0.0354 (3)
N40.3028 (2)0.26803 (16)0.26084 (11)0.0391 (3)
N50.2048 (2)0.1341 (2)0.49683 (12)0.0475 (4)
N60.2969 (2)0.37415 (18)0.07137 (12)0.0453 (4)
O10.4996 (2)0.21088 (15)0.59150 (10)0.0433 (3)
O20.03956 (19)0.27697 (16)0.03734 (11)0.0463 (3)
O30.0833 (2)0.4221 (2)0.14557 (10)0.0612 (4)
O40.1863 (2)0.50706 (16)0.32481 (11)0.0467 (3)
C10.5968 (2)0.1713 (2)0.28886 (12)0.0344 (4)
H1A0.69120.26410.33680.041*
H1B0.64900.09460.27480.041*
C20.2858 (2)0.04843 (18)0.26183 (12)0.0337 (4)
H2A0.33430.12770.24730.040*
H2B0.17300.10200.29190.040*
C30.3508 (2)0.2099 (2)0.35709 (12)0.0358 (4)
H3A0.23880.15910.38830.043*
H3B0.44230.30300.40600.043*
C40.4101 (3)0.0862 (2)0.11935 (13)0.0401 (4)
H4A0.46010.00830.10400.048*
H4B0.38020.12210.05460.048*
C50.4729 (3)0.3427 (2)0.21334 (14)0.0440 (4)
H5A0.44180.37940.14910.053*
H5B0.56610.43800.26000.053*
C60.1634 (2)0.1252 (2)0.18730 (14)0.0413 (4)
H6A0.04990.07320.21710.050*
H6B0.13090.16170.12330.050*
C70.0528 (2)0.2347 (2)0.47418 (12)0.0347 (4)
C80.4509 (2)0.30931 (19)0.11229 (13)0.0330 (3)
H1OA0.5946 (17)0.2925 (18)0.6187 (17)0.071 (8)*
H1OB0.4048 (18)0.210 (3)0.610 (2)0.105 (11)*
H2OA0.0512 (19)0.196 (2)0.0704 (16)0.085 (9)*
H2OB0.1345 (18)0.294 (3)0.0629 (17)0.085 (9)*
H3OA0.1931 (10)0.367 (2)0.1501 (15)0.072 (8)*
H3OB0.013 (2)0.457 (2)0.2016 (8)0.065 (7)*
H4OA0.215 (4)0.436 (2)0.3025 (17)0.087 (9)*
H4OB0.145 (3)0.488 (3)0.3792 (11)0.081 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02875 (18)0.02442 (17)0.02892 (18)0.00741 (14)0.00444 (13)0.00397 (13)
Mn20.02604 (18)0.03186 (19)0.03127 (19)0.00747 (14)0.00344 (14)0.00213 (14)
S10.0347 (3)0.0591 (3)0.0584 (3)0.0038 (2)0.0001 (2)0.0058 (2)
S20.0278 (2)0.0529 (3)0.0610 (3)0.0132 (2)0.0016 (2)0.0058 (2)
N10.0315 (7)0.0236 (6)0.0278 (6)0.0102 (5)0.0045 (5)0.0029 (5)
N20.0368 (8)0.0362 (7)0.0350 (7)0.0084 (6)0.0058 (6)0.0130 (6)
N30.0400 (8)0.0270 (7)0.0296 (7)0.0077 (6)0.0010 (6)0.0022 (5)
N40.0454 (8)0.0309 (7)0.0394 (8)0.0186 (7)0.0039 (6)0.0021 (6)
N50.0328 (8)0.0511 (9)0.0477 (9)0.0072 (7)0.0066 (7)0.0133 (7)
N60.0311 (8)0.0449 (9)0.0506 (9)0.0104 (7)0.0004 (7)0.0006 (7)
O10.0457 (8)0.0363 (7)0.0462 (7)0.0183 (6)0.0058 (6)0.0035 (6)
O20.0381 (7)0.0374 (7)0.0547 (8)0.0121 (6)0.0021 (6)0.0073 (6)
O30.0342 (7)0.0901 (11)0.0368 (8)0.0044 (8)0.0056 (6)0.0191 (7)
O40.0542 (8)0.0436 (7)0.0440 (8)0.0244 (7)0.0067 (7)0.0002 (6)
C10.0324 (8)0.0349 (8)0.0328 (8)0.0110 (7)0.0052 (7)0.0097 (7)
C20.0388 (9)0.0250 (8)0.0304 (8)0.0077 (7)0.0041 (7)0.0042 (6)
C30.0420 (9)0.0327 (8)0.0326 (8)0.0183 (7)0.0015 (7)0.0006 (7)
C40.0496 (10)0.0399 (9)0.0285 (8)0.0167 (8)0.0074 (7)0.0074 (7)
C50.0515 (11)0.0259 (8)0.0422 (10)0.0080 (8)0.0056 (8)0.0093 (7)
C60.0377 (9)0.0390 (9)0.0410 (9)0.0142 (8)0.0046 (7)0.0036 (7)
C70.0353 (9)0.0420 (9)0.0285 (8)0.0170 (8)0.0090 (7)0.0083 (7)
C80.0336 (9)0.0289 (8)0.0368 (9)0.0132 (7)0.0092 (7)0.0052 (7)
Geometric parameters (Å, º) top
Mn1—N5i2.1341 (15)N4—C31.473 (2)
Mn1—N52.1341 (15)N4—C61.476 (2)
Mn1—O1i2.1866 (12)N5—C71.151 (2)
Mn1—O12.1866 (12)N6—C81.149 (2)
Mn1—N12.4213 (13)O1—H1OA0.818 (5)
Mn1—N1i2.4213 (13)O1—H1OB0.818 (5)
Mn2—O32.1616 (13)O2—H2OA0.823 (5)
Mn2—O3ii2.1616 (13)O2—H2OB0.822 (5)
Mn2—N6ii2.1886 (15)O3—H3OA0.815 (5)
Mn2—N62.1886 (15)O3—H3OB0.816 (5)
Mn2—O2ii2.2132 (13)O4—H4OA0.819 (5)
Mn2—O22.2132 (13)O4—H4OB0.818 (5)
S1—C71.6244 (17)C1—H1A0.97
S2—C81.6324 (17)C1—H1B0.97
N1—C31.479 (2)C2—H2A0.97
N1—C11.482 (2)C2—H2B0.97
N1—C21.4871 (19)C3—H3A0.97
N2—C51.468 (2)C3—H3B0.97
N2—C41.470 (2)C4—H4A0.97
N2—C11.472 (2)C4—H4B0.97
N3—C41.473 (2)C5—H5A0.97
N3—C21.474 (2)C5—H5B0.97
N3—C61.475 (2)C6—H6A0.97
N4—C51.471 (2)C6—H6B0.97
N5i—Mn1—N5180.0Mn1—O1—H1OB122.8 (16)
N5i—Mn1—O1i90.22 (6)H1OA—O1—H1OB112.3 (13)
N5—Mn1—O1i89.78 (6)Mn2—O2—H2OA117.3 (17)
N5i—Mn1—O189.78 (6)Mn2—O2—H2OB113.5 (17)
N5—Mn1—O190.22 (6)H2OA—O2—H2OB110.5 (13)
O1i—Mn1—O1180.00 (6)Mn2—O3—H3OA121.6 (14)
N5i—Mn1—N191.80 (5)Mn2—O3—H3OB123.9 (14)
N5—Mn1—N188.20 (5)H3OA—O3—H3OB113.8 (13)
O1i—Mn1—N188.28 (5)H4OA—O4—H4OB111.5 (13)
O1—Mn1—N191.72 (5)N2—C1—N1112.23 (13)
N5i—Mn1—N1i88.20 (5)N2—C1—H1A109.2
N5—Mn1—N1i91.80 (5)N1—C1—H1A109.2
O1i—Mn1—N1i91.72 (5)N2—C1—H1B109.2
O1—Mn1—N1i88.28 (5)N1—C1—H1B109.2
N1—Mn1—N1i180.0H1A—C1—H1B107.9
O3—Mn2—O3ii180.000 (1)N3—C2—N1112.10 (12)
O3—Mn2—N6ii91.79 (6)N3—C2—H2A109.2
O3ii—Mn2—N6ii88.21 (6)N1—C2—H2A109.2
O3—Mn2—N688.21 (6)N3—C2—H2B109.2
O3ii—Mn2—N691.79 (6)N1—C2—H2B109.2
N6ii—Mn2—N6180.00 (9)H2A—C2—H2B107.9
O3—Mn2—O2ii89.78 (6)N4—C3—N1112.35 (13)
O3ii—Mn2—O2ii90.22 (6)N4—C3—H3A109.1
N6ii—Mn2—O2ii91.64 (5)N1—C3—H3A109.1
N6—Mn2—O2ii88.36 (5)N4—C3—H3B109.1
O3—Mn2—O290.22 (6)N1—C3—H3B109.1
O3ii—Mn2—O289.78 (6)H3A—C3—H3B107.9
N6ii—Mn2—O288.36 (5)N2—C4—N3111.58 (13)
N6—Mn2—O291.64 (5)N2—C4—H4A109.3
O2ii—Mn2—O2180.0N3—C4—H4A109.3
C3—N1—C1107.72 (12)N2—C4—H4B109.3
C3—N1—C2107.55 (12)N3—C4—H4B109.3
C1—N1—C2107.60 (12)H4A—C4—H4B108.0
C3—N1—Mn1110.08 (9)N2—C5—N4112.13 (13)
C1—N1—Mn1112.35 (9)N2—C5—H5A109.2
C2—N1—Mn1111.33 (9)N4—C5—H5A109.2
C5—N2—C4107.96 (14)N2—C5—H5B109.2
C5—N2—C1108.65 (13)N4—C5—H5B109.2
C4—N2—C1108.52 (12)H5A—C5—H5B107.9
C4—N3—C2108.35 (13)N3—C6—N4111.32 (13)
C4—N3—C6108.71 (13)N3—C6—H6A109.4
C2—N3—C6108.43 (13)N4—C6—H6A109.4
C5—N4—C3108.69 (13)N3—C6—H6B109.4
C5—N4—C6107.74 (14)N4—C6—H6B109.4
C3—N4—C6108.49 (13)H6A—C6—H6B108.0
C7—N5—Mn1160.59 (15)N5—C7—S1179.83 (19)
C8—N6—Mn2177.51 (15)N6—C8—S2178.40 (16)
Mn1—O1—H1OA124.3 (15)
N5—Mn1—N1—C371.47 (10)C6—N3—C2—N159.01 (17)
N5i—Mn1—N1—C3108.53 (10)C3—N1—C2—N357.98 (17)
O1—Mn1—N1—C318.70 (10)C1—N1—C2—N357.83 (17)
O1i—Mn1—N1—C3161.30 (10)Mn1—N1—C2—N3178.66 (10)
N5—Mn1—N1—C1168.48 (11)C5—N4—C3—N157.98 (17)
N5i—Mn1—N1—C111.52 (11)C6—N4—C3—N158.90 (18)
O1—Mn1—N1—C1101.36 (10)C1—N1—C3—N457.78 (16)
O1i—Mn1—N1—C178.64 (10)C2—N1—C3—N457.94 (16)
N5—Mn1—N1—C247.71 (11)Mn1—N1—C3—N4179.40 (10)
N5i—Mn1—N1—C2132.29 (11)C5—N2—C4—N358.58 (17)
O1—Mn1—N1—C2137.88 (10)C1—N2—C4—N359.01 (18)
O1i—Mn1—N1—C242.12 (10)C2—N3—C4—N259.06 (17)
O1—Mn1—N5—C7167.5 (4)C6—N3—C4—N258.59 (17)
O1i—Mn1—N5—C712.5 (4)C4—N2—C5—N459.58 (17)
N1i—Mn1—N5—C7104.2 (4)C1—N2—C5—N457.93 (17)
N1—Mn1—N5—C775.8 (4)C3—N4—C5—N257.73 (17)
C5—N2—C1—N158.35 (17)C6—N4—C5—N259.63 (17)
C4—N2—C1—N158.80 (17)C4—N3—C6—N458.62 (17)
C3—N1—C1—N257.94 (16)C2—N3—C6—N458.98 (17)
C2—N1—C1—N257.75 (16)C5—N4—C6—N358.67 (17)
Mn1—N1—C1—N2179.36 (10)C3—N4—C6—N358.82 (18)
C4—N3—C2—N158.82 (17)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4OB···S1iii0.82 (1)2.63 (1)3.3533 (16)148 (2)
O2—H2OB···S2iv0.82 (1)2.54 (1)3.2949 (15)154 (2)
O4—H4OA···N40.82 (1)2.00 (1)2.817 (2)174 (3)
O2—H2OA···N30.82 (1)1.99 (1)2.8055 (19)170 (2)
O3—H3OB···O4v0.82 (1)2.00 (1)2.797 (2)166 (2)
O3—H3OA···N2vi0.82 (1)2.04 (1)2.843 (2)169 (2)
O1—H1OA···O4vii0.82 (1)1.93 (1)2.7424 (19)176 (2)
Symmetry codes: (iii) x, y, z+1; (iv) x1, y, z; (v) x, y, z; (vi) x+1, y, z; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C6H12N4)2(H2O)2]·[Mn(NCS)2(H2O)4]·2H2O
Mr766.72
Crystal system, space groupTriclinic, P1
Temperature (K)288
a, b, c (Å)7.969 (1), 9.111 (1), 13.076 (2)
α, β, γ (°)94.34 (1), 96.83 (1), 115.16 (1)
V3)844.76 (19)
Z1
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.48 × 0.48 × 0.40
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1994)
Tmin, Tmax0.615, 0.653
No. of measured, independent and
observed [I > 2σ(I)] reflections
3694, 3316, 2853
Rint0.010
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.06
No. of reflections3316
No. of parameters226
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Mn1—N52.1341 (15)Mn2—O32.1616 (13)
Mn1—O12.1866 (12)Mn2—N62.1886 (15)
Mn1—N12.4213 (13)Mn2—O22.2132 (13)
N5—Mn1—O190.22 (6)O3—Mn2—N6ii91.79 (6)
N5—Mn1—N188.20 (5)O3—Mn2—O290.22 (6)
N5i—Mn1—N1i88.20 (5)N6—Mn2—O291.64 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4OB···S1iii0.818 (5)2.631 (14)3.3533 (16)148 (2)
O2—H2OB···S2iv0.822 (5)2.536 (11)3.2949 (15)154 (2)
O4—H4OA···N40.819 (5)2.001 (6)2.817 (2)174 (3)
O2—H2OA···N30.823 (5)1.992 (7)2.8055 (19)170 (2)
O3—H3OB···O4v0.816 (5)1.998 (7)2.797 (2)166 (2)
O3—H3OA···N2vi0.815 (5)2.040 (7)2.843 (2)168.5 (19)
O1—H1OA···O4vii0.818 (5)1.925 (6)2.7424 (19)176 (2)
Symmetry codes: (iii) x, y, z+1; (iv) x1, y, z; (v) x, y, z; (vi) x+1, y, z; (vii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds