Download citation
Download citation
link to html
In the crystal structure of the title compound, C20H18N4O22+·2NO3, two pyridinium rings form dihedral angles of 48.0 (2) and 33.3 (4)° with the mean quinoxaline plane, and a dihedral angle of 52.6 (2)° with each other. The orientation of the pyridinium rings is such that their N atoms face each other. Both pyridinium N—H groups participate in N—H...O hydrogen bonds involving the O atoms of the nitrate anions. There exist significant π–π interactions responsible for the formation of the stacks along the b axis of the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801004834/ya6015sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801004834/ya6015Isup2.hkl
Contains datablock I

CCDC reference: 162836

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.042
  • wR factor = 0.110
  • Data-to-parameter ratio = 11.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

2,3-Bis(2-pyridyl)quinoxaline and its derivatives represent an important class of chelating agents which have been extensively studied over the last two decades. Most of the studies focused on the electrochemical and photochemical properties of their metal complexes (Balzani et al., 1996; Scott et al., 1999). Aromatic compounds of this type also exhibit proton-sponge properties (Staab & Saupe, 1988; Robertson et al., 1998), i.e. represent the species which can act as external proton acceptors through the formation of N—H···Y hydrogen bonds. In the present paper, we report the crystal structure of the nitrate salt of diprotonated 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (Bpdq), i.e. C20H18N4O22+·2NO3-, (I).

The cation of (I) consists of a quinoxaline ring system substituted with two protonated pyridine rings and two methoxy groups (Fig. 1). The pyridine rings cannot be coplanar with each other or with the quinoxaline system, as the planar conformation would have caused sterically unacceptable contacts between the pyridyl ortho-H atoms. In fact, the existence of the adjacent pyridinium substituents causes substantial out-of-plane twist even within the quinoxaline itself, the torsion angle C2—C3—C12—C18 being 6.9 (3)°; the mean atomic displacement from the least-squares quinoxaline plane is 0.0324 (3) Å. The pyridinium rings C12–C16/N3 and C17–C21/N4 form dihedral angles of 48.0 (2) and 33.3 (4)°, respectively, with the mean quinoxaline plane, and a dihedral angle of 52.6 (2)° with each other. The orientation of the pyridinium rings is such that their N atoms face each other. These geometrical characteristics are similar to those observed in the structures of the analogues of (I) (Rasmussen et al., 1990; Du et al., 2001).

Selected bond distances and angles are given in Table 1. The C2—N1 and C3—N2 bond distances [1.313 (2) and 1.322 (2) Å, respectively] are noticeably shorter than N1—C9 and N2—C4 [1.355 (2) and 1.358 (2) Å, respectively], which is typical for quinoxaline system geometry (Anthony et al., 1998; Rasmussen et al., 1990). All N—C bond lengths are well within the range of values normally considered standard for single C—N and double CN bonds [1.47 (Sasada, 1984) and 1.28 Å (Wang et al., 1998), respectively].

Each pyridinium N—H group participates in N—H···O hydrogen bonds involving the nitrate O atom (Fig. 2 and Table 2). Furthermore, the neighbouring cations in the crystal of (I) show substantial ππ-stacking interactions; the closest approach between the quinoxaline rings is about 3.5 Å, the cationic stacks are stretching along the c axis of the crystal.

Experimental top

2,3-Bis(2-pyridyl)-5,8-dimethoxyquinoxaline (Bpdq) was prepared by the reaction of 1,4-dimethoxy-2,3-phenylenediamine (0.4 g, 2.4 mmol) and 2,2'-bipyridyl (0.5 g, 2.4 mmol) in ethanol (30 ml) at reflux for 4 h under argon, by a method similar to that reported in the literature (Waterland et al., 1998). Orange single crystals of the title compound suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the acetonitrile solution of Bpdq in the presence of HNO3.

Refinement top

H-atoms positions were calculated and included in subsequent refinement in the riding motion approximation.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) view of diprotonated Bpdq shown with 30% probability ellipsoids.
[Figure 2] Fig. 2. The packing diagram showing the cationic stacks in the crystal of (I).
2,3-bis(2-pyridinio)-5,8-dimethoxyquinoxaline dinitrate top
Crystal data top
C20H18N4O22+·2NO3F(000) = 976
Mr = 470.40Dx = 1.525 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.1380 (13) ÅCell parameters from 7963 reflections
b = 7.2682 (6) Åθ = 1.3–25.0°
c = 18.0257 (15) ŵ = 0.12 mm1
β = 104.344 (2)°T = 298 K
V = 2048.4 (3) Å3Prism, orange
Z = 40.30 × 0.20 × 0.15 mm
Data collection top
Bruker SMART 1000
diffractometer
2323 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: multi-scan
[SAINT (Bruker, 1998) and SADABS (Sheldrick, 1997)]
θmax = 25.0°
Tmin = 0.965, Tmax = 0.982h = 1519
8042 measured reflectionsk = 78
3569 independent reflectionsl = 2121
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0555P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max = 0.010
wR(F2) = 0.110Δρmax = 0.29 e Å3
S = 0.97Δρmin = 0.17 e Å3
3569 reflectionsExtinction correction: SHELXL97
309 parametersExtinction coefficient: 0.0151 (12)
H-atom parameters constrained
Crystal data top
C20H18N4O22+·2NO3V = 2048.4 (3) Å3
Mr = 470.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1380 (13) ŵ = 0.12 mm1
b = 7.2682 (6) ÅT = 298 K
c = 18.0257 (15) Å0.30 × 0.20 × 0.15 mm
β = 104.344 (2)°
Data collection top
Bruker SMART 1000
diffractometer
3569 independent reflections
Absorption correction: multi-scan
[SAINT (Bruker, 1998) and SADABS (Sheldrick, 1997)]
2323 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.040
8042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042309 parameters
wR(F2) = 0.110H-atom parameters constrained
S = 0.97Δρmax = 0.29 e Å3
3569 reflectionsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Full-matrix

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40571 (10)0.6735 (2)1.05675 (9)0.0341 (4)
N20.34234 (10)0.7641 (2)0.90253 (9)0.0341 (4)
N30.14904 (10)0.8475 (2)0.94308 (9)0.0382 (4)
H3A0.17140.89050.98800.046*
N40.20014 (10)0.5057 (2)1.05107 (9)0.0388 (4)
H4B0.18670.47361.00370.047*
O10.57194 (9)0.7010 (2)1.12419 (8)0.0511 (4)
O20.45021 (9)0.8501 (2)0.81438 (8)0.0480 (4)
C20.32338 (12)0.6700 (3)1.02416 (11)0.0314 (5)
C30.29038 (12)0.7244 (3)0.94658 (11)0.0319 (5)
C40.42792 (12)0.7621 (3)0.93427 (11)0.0333 (5)
C50.48624 (13)0.8119 (3)0.88965 (12)0.0376 (5)
C60.57093 (13)0.8219 (3)0.92497 (13)0.0419 (5)
H6A0.60940.85400.89630.050*
C70.60206 (14)0.7849 (3)1.00354 (13)0.0415 (5)
H7A0.66050.79401.02560.050*
C80.54861 (13)0.7362 (3)1.04808 (12)0.0372 (5)
C90.45968 (12)0.7223 (3)1.01330 (11)0.0336 (5)
C100.50296 (15)0.9484 (4)0.77466 (13)0.0620 (7)
H10A0.47190.96830.72250.093*
H10B0.55350.87790.77560.093*
H10C0.51891.06480.79920.093*
C110.65922 (14)0.7295 (4)1.16291 (14)0.0606 (7)
H11A0.66750.69991.21620.091*
H11B0.67410.85601.15790.091*
H11C0.69490.65191.14080.091*
C120.19879 (12)0.7488 (3)0.90748 (11)0.0331 (5)
C130.16333 (13)0.6831 (3)0.83523 (12)0.0387 (5)
H13A0.19630.61560.80940.046*
C140.07809 (14)0.7180 (3)0.80111 (13)0.0458 (6)
H14A0.05380.67470.75200.055*
C150.02945 (14)0.8159 (3)0.83947 (13)0.0471 (6)
H15A0.02810.83790.81710.057*
C160.06666 (13)0.8808 (3)0.91116 (13)0.0452 (6)
H16A0.03440.94830.93770.054*
C170.29371 (13)0.6529 (3)1.15385 (11)0.0400 (5)
H17A0.34250.72281.17330.048*
C180.27060 (12)0.6083 (3)1.07707 (11)0.0333 (5)
C190.15032 (14)0.4520 (3)1.09596 (13)0.0502 (6)
H19A0.10120.38391.07540.060*
C200.17103 (16)0.4962 (4)1.17200 (14)0.0552 (7)
H20A0.13580.46071.20320.066*
C210.24455 (15)0.5939 (3)1.20173 (13)0.0482 (6)
H21A0.26110.62001.25380.058*
O30.18556 (10)0.3121 (2)0.92612 (9)0.0576 (5)
O40.05221 (13)0.3601 (3)0.90596 (16)0.1056 (8)
O50.10246 (15)0.2249 (3)0.82050 (12)0.1011 (8)
O60.21296 (16)0.0560 (3)0.18721 (11)0.1036 (8)
O70.23531 (11)0.0266 (3)0.07477 (11)0.0673 (5)
O80.11559 (12)0.0417 (4)0.09471 (13)0.0958 (8)
N50.11136 (15)0.2981 (3)0.88328 (13)0.0589 (6)
N60.18783 (14)0.0156 (3)0.12064 (12)0.0516 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0274 (9)0.0386 (10)0.0354 (9)0.0006 (8)0.0062 (8)0.0035 (8)
N20.0309 (10)0.0378 (10)0.0333 (9)0.0014 (8)0.0073 (8)0.0013 (8)
N30.0333 (10)0.0463 (11)0.0332 (9)0.0001 (8)0.0046 (8)0.0015 (8)
N40.0374 (10)0.0464 (11)0.0329 (9)0.0073 (9)0.0092 (8)0.0011 (8)
O10.0294 (8)0.0810 (12)0.0377 (9)0.0023 (8)0.0013 (7)0.0024 (8)
O20.0407 (9)0.0675 (11)0.0374 (8)0.0109 (8)0.0126 (7)0.0034 (8)
C20.0294 (11)0.0354 (12)0.0287 (10)0.0001 (9)0.0059 (9)0.0028 (9)
C30.0293 (11)0.0360 (12)0.0307 (11)0.0025 (9)0.0080 (9)0.0023 (9)
C40.0298 (12)0.0334 (11)0.0370 (12)0.0003 (9)0.0092 (9)0.0049 (9)
C50.0355 (12)0.0414 (13)0.0378 (12)0.0012 (10)0.0125 (10)0.0026 (10)
C60.0336 (12)0.0475 (14)0.0484 (13)0.0038 (10)0.0172 (10)0.0065 (11)
C70.0284 (11)0.0424 (13)0.0538 (14)0.0011 (10)0.0102 (10)0.0072 (11)
C80.0304 (11)0.0408 (12)0.0373 (12)0.0017 (9)0.0025 (10)0.0061 (10)
C90.0303 (11)0.0329 (11)0.0381 (12)0.0007 (9)0.0093 (9)0.0062 (9)
C100.0596 (16)0.084 (2)0.0489 (15)0.0214 (15)0.0247 (12)0.0022 (14)
C110.0324 (13)0.094 (2)0.0495 (15)0.0041 (13)0.0017 (11)0.0032 (14)
C120.0302 (11)0.0377 (11)0.0318 (11)0.0024 (9)0.0082 (9)0.0032 (9)
C130.0365 (12)0.0433 (12)0.0350 (12)0.0008 (10)0.0065 (10)0.0010 (10)
C140.0419 (13)0.0505 (14)0.0392 (13)0.0052 (11)0.0012 (11)0.0023 (11)
C150.0300 (12)0.0531 (15)0.0532 (15)0.0001 (11)0.0008 (11)0.0091 (12)
C160.0303 (12)0.0520 (14)0.0526 (14)0.0060 (11)0.0091 (11)0.0047 (12)
C170.0387 (12)0.0437 (13)0.0356 (12)0.0010 (10)0.0054 (10)0.0006 (10)
C180.0297 (11)0.0367 (12)0.0326 (11)0.0019 (9)0.0061 (9)0.0016 (9)
C190.0480 (14)0.0522 (15)0.0543 (15)0.0114 (12)0.0202 (12)0.0033 (12)
C200.0674 (17)0.0565 (16)0.0528 (15)0.0054 (14)0.0357 (13)0.0046 (13)
C210.0594 (15)0.0511 (14)0.0379 (13)0.0073 (13)0.0191 (12)0.0057 (11)
O30.0447 (10)0.0757 (12)0.0440 (9)0.0042 (9)0.0050 (8)0.0106 (8)
O40.0436 (12)0.115 (2)0.157 (2)0.0016 (13)0.0230 (14)0.0125 (17)
O50.133 (2)0.1011 (18)0.0487 (12)0.0421 (14)0.0172 (12)0.0112 (11)
O60.173 (2)0.0816 (16)0.0438 (12)0.0015 (15)0.0028 (13)0.0161 (11)
O70.0625 (12)0.0721 (13)0.0735 (13)0.0099 (10)0.0283 (10)0.0007 (10)
O80.0469 (12)0.131 (2)0.1087 (17)0.0034 (13)0.0181 (12)0.0244 (15)
N50.0544 (14)0.0546 (14)0.0586 (14)0.0148 (11)0.0034 (13)0.0114 (11)
N60.0578 (14)0.0458 (12)0.0494 (13)0.0084 (10)0.0099 (11)0.0019 (10)
Geometric parameters (Å, º) top
N1—C21.313 (2)C6—C71.406 (3)
N1—C91.355 (2)C7—C81.363 (3)
N2—C31.322 (2)C8—C91.420 (3)
N2—C41.358 (2)C12—C131.372 (3)
N3—C121.351 (3)C13—C141.384 (3)
N3—C161.333 (2)C14—C151.367 (3)
N4—C181.343 (2)C15—C161.367 (3)
N4—C191.333 (3)C17—C211.377 (3)
O1—C81.354 (2)C17—C181.380 (3)
O1—C111.424 (2)C19—C201.366 (3)
O2—C51.366 (2)C20—C211.372 (3)
O2—C101.432 (3)O3—N51.258 (2)
C2—C31.423 (3)O4—N51.214 (3)
C2—C181.496 (3)O5—N51.227 (3)
C3—C121.482 (3)O6—N61.204 (2)
C4—C91.419 (3)O7—N61.261 (2)
C4—C51.428 (3)O8—N61.217 (3)
C5—C61.359 (3)
C2—N1—C9118.07 (17)N1—C9—C4120.63 (18)
C3—N2—C4118.35 (17)N1—C9—C8119.16 (18)
C16—N3—C12122.51 (19)C4—C9—C8120.20 (18)
C19—N4—C18122.47 (18)N3—C12—C13118.58 (18)
C8—O1—C11117.52 (18)N3—C12—C3118.53 (18)
C5—O2—C10116.03 (16)C13—C12—C3122.82 (18)
N1—C2—C3121.67 (18)C12—C13—C14119.5 (2)
N1—C2—C18113.16 (17)C15—C14—C13120.2 (2)
C3—C2—C18125.16 (17)C16—C15—C14119.0 (2)
N2—C3—C2120.81 (18)N3—C16—C15120.2 (2)
N2—C3—C12113.23 (17)C21—C17—C18120.1 (2)
C2—C3—C12125.93 (17)N4—C18—C17118.38 (18)
N2—C4—C9120.14 (18)N4—C18—C2120.69 (17)
N2—C4—C5120.23 (18)C17—C18—C2120.93 (18)
C9—C4—C5119.50 (18)N4—C19—C20120.4 (2)
C6—C5—O2125.84 (19)C19—C20—C21119.1 (2)
C6—C5—C4118.5 (2)C20—C21—C17119.5 (2)
O2—C5—C4115.68 (18)O4—N5—O5123.3 (3)
C5—C6—C7121.9 (2)O4—N5—O3118.1 (2)
C8—C7—C6121.5 (2)O5—N5—O3118.5 (3)
O1—C8—C7126.04 (19)O6—N6—O8121.4 (3)
O1—C8—C9115.52 (18)O6—N6—O7121.9 (2)
C7—C8—C9118.43 (19)O8—N6—O7116.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3a···O7i0.861.922.762 (4)166
N4—H4b···O30.861.822.617 (2)153
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H18N4O22+·2NO3
Mr470.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.1380 (13), 7.2682 (6), 18.0257 (15)
β (°) 104.344 (2)
V3)2048.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
[SAINT (Bruker, 1998) and SADABS (Sheldrick, 1997)]
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8042, 3569, 2323
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 0.97
No. of reflections3569
No. of parameters309
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker, 1998).

Selected geometric parameters (Å, º) top
N1—C21.313 (2)N3—C161.333 (2)
N1—C91.355 (2)N4—C181.343 (2)
N2—C31.322 (2)N4—C191.333 (3)
N2—C41.358 (2)O1—C111.424 (2)
N3—C121.351 (3)O2—C101.432 (3)
C2—N1—C9118.07 (17)C19—N4—C18122.47 (18)
C3—N2—C4118.35 (17)C8—O1—C11117.52 (18)
C16—N3—C12122.51 (19)C5—O2—C10116.03 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3a···O7i.8601.9202.762 (4)165.81
N4—H4b···O3.8601.8222.617 (2)152.77
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds