Download citation
Download citation
link to html
The title compound, strontium trinickel bis­(diphosphate), SrNi3(P2O7)2, is isostructural with all other mixed metal pyrophosphates having the same stoichiometry. The Sr and one of the Ni ions are located on a crystallographic centre of inversion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801005700/br6014sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801005700/br6014Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](P-O) = 0.001 Å
  • R factor = 0.021
  • wR factor = 0.054
  • Data-to-parameter ratio = 20.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: Ni3 O14 P4 Sr1 Atom count from _chemical_formula_moiety:Ni3 O7 P2 Sr1

Comment top

Pyrophosphates are of interest because of their complex network architecture and several structures have been previously determined. The title compound, SrNi3(P2O7)2, has already been investigated by powder diffraction (El-Bali, 1993), but since its single-crystal structure has not been determined yet, it is presented here.

The Sr and one of the Ni ions are located on a crystallographic centre of inversion. All other atoms occupy general positions. The structure consists of infinite zigzag chains of NiO6 octahedra sharing either trans or skew edges. These chains are connected by P2O7 moieties to form a three-dimensional network into which the Sr ions are incorporated via connections to eight O atoms. The structure of SrNi3(P2O7)2 is isostructural with all other metal pyrophosphates having the same stoichiometry: Ni3Pb(P2O7)2 (Krasnikov et al., 1985), CaNi3(P2O7)2, CaCo3(P2O7)2 and SrFe3(P2O7)2 (Lii et al., 1993), and PbCo3(P2O7)2 and PbFe3(P2O7)2 (Elmarzouki et al., 1995).

Experimental top

A mixture of (NH4)2HPO4, Sr(OH)2 and NiCl2 was ground together and heated to approximately 800 K. The molten mass was maintained at this temperature for two days and then cooled down to room temperature (El-Bali, 1993).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level. Symmetry operators: (A) 1 - x, y + 0.5, 0.5 - z; (B) x, 1.5 - y, z - 0.5; (C) x, y + 1, z; (D) 1 - x, 1 - y, z; (E) 1 - x, 2 - y, -z; (F) x - 1, y, z; (G) x - 1, 1.5 - y, 0.5 - z.
Strontium trinickel bis(diphosphate) top
Crystal data top
SrNi3(P2O7)2F(000) = 588
Mr = 611.63Dx = 4.093 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4116 (4) ÅCell parameters from 39700 reflections
b = 7.6542 (3) Åθ = 3.8–37.3°
c = 9.4486 (6) ŵ = 11.69 mm1
β = 112.194 (5)°T = 173 K
V = 496.30 (5) Å3Block, yellow
Z = 20.24 × 0.18 × 0.16 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2076 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 34.3°, θmin = 4.0°
Absorption correction: empirical (using intensity measurements)
(MULABS; Spek, 1990; Blessing, 1995)
h = 1111
Tmin = 0.101, Tmax = 0.156k = 1210
26742 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.4865P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.78 e Å3
2076 reflectionsΔρmin = 0.78 e Å3
104 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.096 (2)
Crystal data top
SrNi3(P2O7)2V = 496.30 (5) Å3
Mr = 611.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4116 (4) ŵ = 11.69 mm1
b = 7.6542 (3) ÅT = 173 K
c = 9.4486 (6) Å0.24 × 0.18 × 0.16 mm
β = 112.194 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2076 independent reflections
Absorption correction: empirical (using intensity measurements)
(MULABS; Spek, 1990; Blessing, 1995)
2027 reflections with I > 2σ(I)
Tmin = 0.101, Tmax = 0.156Rint = 0.052
26742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021104 parameters
wR(F2) = 0.0540 restraints
S = 1.13Δρmax = 0.78 e Å3
2076 reflectionsΔρmin = 0.78 e Å3
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.50001.00000.00000.01074 (7)
Ni10.18424 (3)0.62596 (3)0.02578 (2)0.00958 (7)
Ni20.00001.00000.00000.00934 (7)
P10.60256 (6)0.44098 (5)0.20097 (4)0.00920 (8)
P20.88811 (6)0.70400 (5)0.19372 (4)0.00911 (8)
O10.39757 (18)0.47873 (17)0.19242 (14)0.0113 (2)
O20.62427 (18)0.31912 (17)0.08281 (14)0.01178 (19)
O30.73161 (18)0.38239 (16)0.36484 (14)0.01116 (19)
O40.67992 (17)0.62943 (16)0.17742 (14)0.0112 (2)
O50.97336 (18)0.57480 (16)0.11291 (14)0.01094 (19)
O60.99820 (18)0.71065 (16)0.36620 (13)0.01111 (19)
O70.84443 (18)0.87709 (16)0.11085 (14)0.0112 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01043 (10)0.01129 (10)0.01150 (10)0.00001 (6)0.00528 (7)0.00012 (6)
Ni10.00949 (10)0.00950 (10)0.01023 (10)0.00014 (6)0.00425 (7)0.00016 (6)
Ni20.00950 (13)0.00890 (13)0.01007 (12)0.00003 (8)0.00420 (10)0.00001 (8)
P10.00881 (16)0.00958 (16)0.00973 (16)0.00004 (12)0.00408 (12)0.00005 (12)
P20.00937 (15)0.00872 (15)0.00969 (15)0.00011 (12)0.00413 (12)0.00005 (12)
O10.0095 (4)0.0126 (5)0.0128 (5)0.0006 (4)0.0051 (4)0.0010 (4)
O20.0124 (5)0.0120 (5)0.0119 (4)0.0005 (4)0.0055 (4)0.0019 (4)
O30.0108 (4)0.0118 (5)0.0101 (4)0.0001 (4)0.0031 (4)0.0006 (3)
O40.0092 (4)0.0106 (5)0.0138 (5)0.0014 (4)0.0046 (4)0.0005 (4)
O50.0118 (5)0.0103 (4)0.0120 (4)0.0001 (4)0.0059 (4)0.0009 (4)
O60.0125 (5)0.0103 (5)0.0098 (4)0.0007 (4)0.0033 (4)0.0004 (3)
O70.0116 (5)0.0104 (5)0.0125 (4)0.0004 (4)0.0055 (4)0.0013 (4)
Geometric parameters (Å, º) top
Sr1—O72.5453 (12)Ni2—O3vi2.1164 (12)
Sr1—O7i2.5453 (12)Ni2—Sr1vii3.7058 (2)
Sr1—O2ii2.6234 (13)P1—O21.5094 (13)
Sr1—O2iii2.6234 (13)P1—O11.5184 (13)
Sr1—O3iv2.6541 (13)P1—O31.5474 (13)
Sr1—O3v2.6541 (13)P1—O41.5985 (13)
Sr1—O1v2.7169 (13)P1—Sr1viii3.2230 (4)
Sr1—O1iv2.7169 (13)P2—O71.5105 (13)
Sr1—P1v3.2229 (4)P2—O61.5231 (12)
Sr1—P1iv3.2229 (4)P2—O51.5247 (13)
Sr1—O4i3.3083 (12)P2—O41.5971 (13)
Sr1—O43.3083 (12)O1—Sr1viii2.7169 (13)
Ni1—O6vi2.0415 (12)O2—Ni1iii2.0841 (12)
Ni1—O5vii2.0606 (12)O2—Sr1ix2.6234 (13)
Ni1—O5iii2.0704 (12)O3—Ni2viii2.1164 (12)
Ni1—O2iii2.0841 (12)O3—Ni1viii2.1961 (12)
Ni1—O12.0901 (13)O3—Sr1viii2.6541 (13)
Ni1—O3iv2.1961 (12)O5—Ni1x2.0606 (12)
Ni2—O6iv2.0458 (12)O5—Ni1iii2.0704 (12)
Ni2—O6vi2.0458 (12)O6—Ni1xi2.0416 (12)
Ni2—O7i2.0552 (12)O6—Ni2viii2.0458 (12)
Ni2—O7vii2.0552 (12)O7—Ni2x2.0552 (12)
Ni2—O3iv2.1163 (12)
O7—Sr1—O7i180.0O1—Ni1—O3iv97.34 (5)
O7—Sr1—O2ii92.11 (4)O6vi—Ni1—Sr175.48 (4)
O7i—Sr1—O2ii87.89 (4)O5vii—Ni1—Sr1138.98 (3)
O7—Sr1—O2iii87.89 (4)O5iii—Ni1—Sr1137.70 (3)
O7i—Sr1—O2iii92.11 (4)O2iii—Ni1—Sr142.18 (3)
O2ii—Sr1—O2iii180.00 (6)O1—Ni1—Sr198.45 (4)
O7—Sr1—O3iv114.02 (4)O3iv—Ni1—Sr143.74 (3)
O7i—Sr1—O3iv65.98 (4)O6iv—Ni2—O6vi180.0
O2ii—Sr1—O3iv112.97 (4)O6iv—Ni2—O7i94.60 (5)
O2iii—Sr1—O3iv67.03 (4)O6vi—Ni2—O7i85.40 (5)
O7—Sr1—O3v65.98 (4)O6iv—Ni2—O7vii85.40 (5)
O7i—Sr1—O3v114.02 (4)O6vi—Ni2—O7vii94.60 (5)
O2ii—Sr1—O3v67.03 (4)O7i—Ni2—O7vii180.0
O2iii—Sr1—O3v112.97 (4)O6iv—Ni2—O3iv100.20 (5)
O3iv—Sr1—O3v180.0O6vi—Ni2—O3iv79.80 (5)
O7—Sr1—O1v107.09 (4)O7i—Ni2—O3iv85.52 (5)
O7i—Sr1—O1v72.91 (4)O7vii—Ni2—O3iv94.48 (5)
O2ii—Sr1—O1v100.84 (4)O6iv—Ni2—O3vi79.80 (5)
O2iii—Sr1—O1v79.16 (4)O6vi—Ni2—O3vi100.20 (5)
O3iv—Sr1—O1v124.39 (4)O7i—Ni2—O3vi94.48 (5)
O3v—Sr1—O1v55.61 (4)O7vii—Ni2—O3vi85.52 (5)
O7—Sr1—O1iv72.91 (4)O3iv—Ni2—O3vi180.00 (7)
O7i—Sr1—O1iv107.09 (4)O6iv—Ni2—Sr1103.11 (3)
O2ii—Sr1—O1iv79.16 (4)O6vi—Ni2—Sr176.89 (3)
O2iii—Sr1—O1iv100.84 (4)O7i—Ni2—Sr141.10 (3)
O3iv—Sr1—O1iv55.61 (4)O7vii—Ni2—Sr1138.90 (3)
O3v—Sr1—O1iv124.39 (4)O3iv—Ni2—Sr144.61 (3)
O1v—Sr1—O1iv180.0O3vi—Ni2—Sr1135.39 (3)
O7—Sr1—P1v83.14 (3)O6iv—Ni2—Sr1vii76.89 (3)
O7i—Sr1—P1v96.86 (3)O6vi—Ni2—Sr1vii103.11 (3)
O2ii—Sr1—P1v87.62 (3)O7i—Ni2—Sr1vii138.90 (3)
O2iii—Sr1—P1v92.38 (3)O7vii—Ni2—Sr1vii41.10 (3)
O3iv—Sr1—P1v151.52 (3)O3iv—Ni2—Sr1vii135.40 (3)
O3v—Sr1—P1v28.48 (3)O3vi—Ni2—Sr1vii44.61 (3)
O1v—Sr1—P1v28.00 (3)Sr1—Ni2—Sr1vii180.0
O1iv—Sr1—P1v152.00 (3)O2—P1—O1117.54 (7)
O7—Sr1—P1iv96.86 (3)O2—P1—O3111.27 (7)
O7i—Sr1—P1iv83.14 (3)O1—P1—O3109.65 (7)
O2ii—Sr1—P1iv92.38 (3)O2—P1—O4108.09 (7)
O2iii—Sr1—P1iv87.62 (3)O1—P1—O4103.01 (7)
O3iv—Sr1—P1iv28.48 (3)O3—P1—O4106.39 (7)
O3v—Sr1—P1iv151.52 (3)O2—P1—Sr1viii149.48 (5)
O1v—Sr1—P1iv152.00 (3)O1—P1—Sr1viii57.14 (5)
O1iv—Sr1—P1iv28.00 (3)O3—P1—Sr1viii54.89 (5)
P1v—Sr1—P1iv180.0O4—P1—Sr1viii102.20 (5)
O7—Sr1—O4i132.46 (3)O7—P2—O6116.65 (7)
O7i—Sr1—O4i47.54 (3)O7—P2—O5110.95 (7)
O2ii—Sr1—O4i51.81 (3)O6—P2—O5113.68 (7)
O2iii—Sr1—O4i128.19 (3)O7—P2—O4104.68 (7)
O3iv—Sr1—O4i108.93 (3)O6—P2—O4102.87 (7)
O3v—Sr1—O4i71.07 (3)O5—P2—O4106.73 (7)
O1v—Sr1—O4i60.68 (3)O7—P2—Sr137.37 (5)
O1iv—Sr1—O4i119.32 (3)O6—P2—Sr1121.93 (5)
P1v—Sr1—O4i67.61 (2)O5—P2—Sr1124.07 (5)
P1iv—Sr1—O4i112.39 (2)O4—P2—Sr167.41 (5)
O7—Sr1—O447.54 (3)P1—O1—Ni1126.85 (7)
O7i—Sr1—O4132.46 (3)P1—O1—Sr1viii94.87 (6)
O2ii—Sr1—O4128.19 (3)Ni1—O1—Sr1viii126.85 (5)
O2iii—Sr1—O451.81 (3)P1—O2—Ni1iii121.48 (7)
O3iv—Sr1—O471.07 (3)P1—O2—Sr1ix132.26 (7)
O3v—Sr1—O4108.93 (3)Ni1iii—O2—Sr1ix105.58 (5)
O1v—Sr1—O4119.32 (3)P1—O3—Ni2viii124.43 (7)
O1iv—Sr1—O460.68 (3)P1—O3—Ni1viii133.49 (7)
P1v—Sr1—O4112.39 (2)Ni2viii—O3—Ni1viii93.50 (5)
P1iv—Sr1—O467.61 (2)P1—O3—Sr1viii96.63 (6)
O4i—Sr1—O4180.00 (4)Ni2viii—O3—Sr1viii101.34 (5)
O6vi—Ni1—O5vii90.51 (5)Ni1viii—O3—Sr1viii101.36 (5)
O6vi—Ni1—O5iii85.70 (5)P2—O4—P1133.89 (8)
O5vii—Ni1—O5iii77.30 (5)P2—O4—Sr186.12 (5)
O6vi—Ni1—O2iii84.75 (5)P1—O4—Sr1138.34 (6)
O5vii—Ni1—O2iii174.47 (5)P2—O5—Ni1x126.67 (7)
O5iii—Ni1—O2iii99.46 (5)P2—O5—Ni1iii123.84 (7)
O6vi—Ni1—O1173.91 (5)Ni1x—O5—Ni1iii102.70 (5)
O5vii—Ni1—O193.94 (5)P2—O6—Ni1xi138.60 (8)
O5iii—Ni1—O199.32 (5)P2—O6—Ni2viii120.71 (7)
O2iii—Ni1—O191.01 (5)Ni1xi—O6—Ni2viii100.46 (5)
O6vi—Ni1—O3iv78.03 (5)P2—O7—Ni2x127.88 (7)
O5vii—Ni1—O3iv96.04 (5)P2—O7—Sr1121.52 (7)
O5iii—Ni1—O3iv162.42 (5)Ni2x—O7—Sr1106.84 (5)
O2iii—Ni1—O3iv85.77 (5)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z1/2; (vi) x1, y+3/2, z1/2; (vii) x1, y, z; (viii) x+1, y1/2, z+1/2; (ix) x, y1, z; (x) x+1, y, z; (xi) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaSrNi3(P2O7)2
Mr611.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.4116 (4), 7.6542 (3), 9.4486 (6)
β (°) 112.194 (5)
V3)496.30 (5)
Z2
Radiation typeMo Kα
µ (mm1)11.69
Crystal size (mm)0.24 × 0.18 × 0.16
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(MULABS; Spek, 1990; Blessing, 1995)
Tmin, Tmax0.101, 0.156
No. of measured, independent and
observed [I > 2σ(I)] reflections
26742, 2076, 2027
Rint0.052
(sin θ/λ)max1)0.794
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.13
No. of reflections2076
No. of parameters104
Δρmax, Δρmin (e Å3)0.78, 0.78

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Sheldrick, 1991).

Selected bond lengths (Å) top
Sr1—O72.5453 (12)Ni1—O2vi2.0841 (12)
Sr1—O2i2.6234 (13)Ni1—O12.0901 (13)
Sr1—O3ii2.6541 (13)Ni1—O3ii2.1961 (12)
Sr1—O1iii2.7169 (13)Ni2—O6ii2.0458 (12)
Ni1—O6iv2.0415 (12)Ni2—O7vii2.0552 (12)
Ni1—O5v2.0606 (12)Ni2—O3ii2.1163 (12)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x1, y+3/2, z1/2; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x+1, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds