Download citation
Download citation
link to html
The title compound, [TiCl2(C17H21NO2S)], has a five-coordinate Ti atom bonded to the N and one O atom of the sulfon­amide, which is tethered by a substituted two-carbon chain to a bound cyclo­penta­diene, the cyclo­penta­diene and two Cl atoms. The Ti—N/O(sulfon­amide) bond lengths are 2.0095 (19) and 2.2819 (13) Å, respectively, with the Ti—O bond through one face of the approximate tetrahedron formed by the other four bonds about the titanium.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801007061/tk6016sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801007061/tk6016Isup2.hkl
Contains datablock I

CCDC reference: 165637

Key indicators

  • Single-crystal X-ray study
  • T = 163 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.021
  • wR factor = 0.056
  • Data-to-parameter ratio = 17.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.50 From the CIF: _reflns_number_total 3902 Count of symmetry unique reflns 2271 Completeness (_total/calc) 171.82% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1631 Fraction of Friedel pairs measured 0.718 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

The title compound, (I), is related to previously reported structures (Lensink et al., 2001; Lensink, 1998). The crystal structure consists of independent molecules of the absolute configuration shown (Fig. 1) with only one weak intermolecular contact C13—H13····O1(x - 1/2, -3/2 - y, -2 - z) of 2.48 Å. The Ti atom has fivefold coordination through the N and one O atom of the sulfonamide, a cyclopentadiene (assumed to occupy one coordination site) linked via an ethyl linkage to the nitrogen, and two Cl atoms. The S—O bonds [O1: 1.431 (1); O2: 1.471 (1) Å] confirm the significant bonding of atom O2 to the titanium in comparison with the free ligand (Gainsford & Lensink, 1996). The Ti—Cg distance is 2.04 Å, within the narrow range 2.01–2.08 Å observed previously (Lensink et al., 2001; Allen & Kennard, 1993; Cambridge Structural Database, 2000). The Ti coordination geometry can best be described as based on a tetrahedron formed by the cyclopentadiene, Cl1, Cl2 and N1, with the Ti—O2 bond through the face formed by N1, Cl1 and Cl2; the angles subtended by O2 at the Ti atom to these three atoms are 65.33 (5), 83.39 (4) and 77.39 (4)°, respectively.

Experimental top

The title compound was prepared from the stoichiometric reaction of Ti(NMe2)4 with N-(3-methyl-2-p-tolylsulfonamidobutyl)cyclopentadiene followed by treatment with excess Me3SiCl. Crystals were obtained from dichloromethane/pentane. Details and spectroscopic data will be reported in a future publication.

Refinement top

All H atoms, except those on methyl C atoms, were constrained to an isotropic displacement parameter 1.2 times that of the equivalent U of their parent atom. The factor was 1.5 times for the methyl H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 in WinGX (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (Farrugia, 1997). Displacement ellipsoids are drawn at the 30% probability level. H atoms (unlabelled) have arbitrary radii.
Dichoro[(3-methyl-2-p-tolylsulfonamidobutyl)-κ2N,O:η5-cyclopentadienyl]- titanium top
Crystal data top
[TiCl2(C17H21NO2S)]Dx = 1.466 Mg m3
Mr = 422.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8192 reflections
a = 8.8053 (18) Åθ = 2.7–26.4°
b = 13.885 (3) ŵ = 0.85 mm1
c = 15.647 (3) ÅT = 163 K
V = 1913.0 (7) Å3Block, yellow
Z = 40.60 × 0.54 × 0.53 mm
F(000) = 872
Data collection top
CCD area-detector
diffractometer
3902 independent reflections
Radiation source: fine-focus sealed tube3769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.192 pixels mm-1θmax = 26.5°, θmin = 2.7°
ϕ and ω scansh = 1110
Absorption correction: multi scan
(Blessing, 1995)
k = 1717
Tmin = 0.571, Tmax = 0.639l = 719
10578 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.3134P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.032
3902 reflectionsΔρmax = 0.20 e Å3
220 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[TiCl2(C17H21NO2S)]V = 1913.0 (7) Å3
Mr = 422.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8053 (18) ŵ = 0.85 mm1
b = 13.885 (3) ÅT = 163 K
c = 15.647 (3) Å0.60 × 0.54 × 0.53 mm
Data collection top
CCD area-detector
diffractometer
3902 independent reflections
Absorption correction: multi scan
(Blessing, 1995)
3769 reflections with I > 2σ(I)
Tmin = 0.571, Tmax = 0.639Rint = 0.018
10578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.17 e Å3
3902 reflectionsAbsolute structure: Flack (1983)
220 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 0.8 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.06464 (4)0.75884 (2)0.857962 (18)0.02795 (8)
S10.19418 (5)0.68270 (3)0.77800 (2)0.02726 (9)
Cl20.08012 (6)0.64725 (3)0.96755 (3)0.04066 (11)
Cl10.24725 (6)0.72021 (4)0.75960 (3)0.04341 (12)
O10.33386 (16)0.65957 (9)0.82000 (8)0.0377 (3)
O20.05716 (17)0.62834 (8)0.80174 (8)0.0359 (3)
N10.13216 (16)0.78905 (10)0.79873 (9)0.0273 (3)
C10.2225 (2)0.66440 (11)0.66797 (10)0.0280 (4)
C20.3684 (2)0.64777 (12)0.63846 (11)0.0323 (4)
H20.45290.65180.67600.039*
C30.3885 (2)0.62506 (14)0.55252 (12)0.0394 (4)
H30.48810.61330.53160.047*
C40.2675 (3)0.61925 (14)0.49740 (11)0.0410 (5)
C50.1213 (2)0.63977 (14)0.52810 (12)0.0394 (4)
H50.03750.63860.48990.047*
C60.0974 (2)0.66184 (12)0.61389 (11)0.0331 (4)
H60.00170.67480.63490.040*
C70.2902 (3)0.58909 (19)0.40564 (13)0.0581 (6)
H7A0.39250.60720.38700.087*
H7B0.21490.62130.36950.087*
H7C0.27790.51920.40080.087*
C80.2392 (2)0.87172 (12)0.80426 (12)0.0343 (4)
H80.31250.85870.85170.041*
C90.1378 (3)0.95795 (14)0.83067 (18)0.0537 (6)
H9A0.19571.00130.86890.064*
H9B0.10830.99490.77920.064*
C100.0009 (2)0.92340 (13)0.87543 (12)0.0376 (4)
C110.1479 (2)0.91827 (14)0.83980 (12)0.0379 (4)
H110.17610.93990.78440.045*
C120.2450 (3)0.87588 (15)0.89988 (13)0.0449 (5)
H120.35040.86410.89240.054*
C130.1610 (3)0.85419 (15)0.97200 (13)0.0484 (5)
H130.19940.82591.02290.058*
C140.0095 (3)0.88093 (14)0.95742 (13)0.0438 (5)
H140.07280.87210.99590.053*
C150.3299 (2)0.89083 (13)0.72281 (15)0.0411 (4)
H150.39210.83210.71070.049*
C160.4398 (3)0.97457 (16)0.7382 (2)0.0724 (9)
H16A0.50170.98490.68700.109*
H16B0.50600.95930.78670.109*
H16C0.38191.03320.75080.109*
C170.2335 (3)0.91055 (16)0.64506 (16)0.0549 (6)
H17A0.15860.85890.63830.082*
H17B0.29830.91330.59420.082*
H17C0.18080.97220.65220.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.03233 (15)0.02809 (15)0.02343 (13)0.00239 (13)0.00169 (12)0.00180 (11)
S10.0376 (2)0.02122 (18)0.02294 (17)0.00409 (17)0.00184 (17)0.00013 (15)
Cl20.0467 (3)0.0435 (2)0.0318 (2)0.0046 (2)0.0083 (2)0.01186 (18)
Cl10.0435 (2)0.0426 (3)0.0441 (3)0.0050 (2)0.0103 (2)0.00163 (19)
O10.0472 (8)0.0388 (7)0.0272 (6)0.0157 (6)0.0026 (5)0.0001 (5)
O20.0510 (8)0.0238 (6)0.0329 (6)0.0030 (6)0.0115 (6)0.0013 (5)
N10.0319 (7)0.0216 (7)0.0284 (7)0.0009 (6)0.0010 (6)0.0022 (5)
C10.0414 (10)0.0197 (7)0.0228 (7)0.0003 (7)0.0010 (7)0.0002 (6)
C20.0383 (9)0.0304 (9)0.0281 (8)0.0021 (7)0.0015 (8)0.0002 (7)
C30.0467 (11)0.0403 (10)0.0313 (9)0.0046 (8)0.0083 (8)0.0023 (8)
C40.0605 (13)0.0358 (10)0.0266 (9)0.0044 (9)0.0036 (8)0.0012 (7)
C50.0513 (11)0.0371 (10)0.0299 (9)0.0052 (9)0.0070 (8)0.0006 (8)
C60.0385 (10)0.0287 (8)0.0321 (8)0.0025 (7)0.0000 (7)0.0002 (7)
C70.0762 (17)0.0695 (15)0.0285 (10)0.0000 (13)0.0057 (10)0.0079 (9)
C80.0330 (9)0.0245 (8)0.0454 (10)0.0010 (7)0.0066 (8)0.0079 (7)
C90.0576 (13)0.0261 (10)0.0774 (16)0.0029 (9)0.0176 (12)0.0142 (10)
C100.0483 (11)0.0250 (9)0.0396 (10)0.0049 (8)0.0041 (8)0.0100 (8)
C110.0484 (11)0.0325 (9)0.0328 (9)0.0146 (9)0.0000 (8)0.0009 (7)
C120.0420 (11)0.0462 (11)0.0466 (11)0.0142 (9)0.0069 (9)0.0037 (9)
C130.0676 (15)0.0463 (12)0.0314 (9)0.0164 (11)0.0126 (10)0.0034 (8)
C140.0583 (12)0.0381 (11)0.0351 (10)0.0149 (9)0.0105 (9)0.0121 (8)
C150.0273 (9)0.0254 (9)0.0707 (13)0.0001 (7)0.0091 (9)0.0004 (9)
C160.0351 (11)0.0313 (11)0.151 (3)0.0064 (10)0.0098 (16)0.0045 (14)
C170.0683 (15)0.0418 (11)0.0547 (13)0.0031 (11)0.0096 (12)0.0127 (10)
Geometric parameters (Å, º) top
Ti1—N12.0095 (15)C7—H7B0.9800
Ti1—O22.2819 (13)C7—H7C0.9800
Ti1—Cl12.2895 (6)C8—C151.527 (3)
Ti1—Cl22.3150 (6)C8—C91.549 (3)
Ti1—C112.3491 (19)C8—H81.0000
Ti1—C142.3520 (19)C9—C101.488 (3)
Ti1—C122.365 (2)C9—H9A0.9900
Ti1—C102.3686 (19)C9—H9B0.9900
Ti1—C132.3784 (19)C10—C111.411 (3)
S1—O11.4309 (14)C10—C141.414 (3)
S1—O21.4709 (14)C11—C121.401 (3)
S1—N11.6075 (14)C11—H110.9500
S1—C11.7582 (16)C12—C131.383 (3)
N1—C81.488 (2)C12—H120.9500
C1—C21.385 (3)C13—C141.404 (3)
C1—C61.389 (3)C13—H130.9500
C2—C31.393 (3)C14—H140.9500
C2—H20.9500C15—C171.509 (3)
C3—C41.374 (3)C15—C161.532 (3)
C3—H30.9500C15—H151.0000
C4—C51.403 (3)C16—H16A0.9800
C4—C71.509 (3)C16—H16B0.9800
C5—C61.393 (3)C16—H16C0.9800
C5—H50.9500C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C7—H7A0.9800C17—H17C0.9800
N1—Ti1—O265.33 (5)C4—C7—H7B109.5
N1—Ti1—Cl1110.15 (4)H7A—C7—H7B109.5
O2—Ti1—Cl183.39 (4)C4—C7—H7C109.5
N1—Ti1—Cl2122.15 (4)H7A—C7—H7C109.5
O2—Ti1—Cl277.39 (4)H7B—C7—H7C109.5
Cl1—Ti1—Cl2107.44 (2)N1—C8—C15114.63 (14)
N1—Ti1—C1190.95 (6)N1—C8—C9104.30 (15)
O2—Ti1—C11148.02 (6)C15—C8—C9112.92 (16)
Cl1—Ti1—C1185.43 (5)N1—C8—H8108.2
Cl2—Ti1—C11134.58 (5)C15—C8—H8108.2
N1—Ti1—C1488.66 (7)C9—C8—H8108.2
O2—Ti1—C14136.91 (7)C10—C9—C8110.44 (16)
Cl1—Ti1—C14139.35 (6)C10—C9—H9A109.6
Cl2—Ti1—C1490.26 (6)C8—C9—H9A109.6
C11—Ti1—C1457.67 (7)C10—C9—H9B109.6
N1—Ti1—C12124.30 (7)C8—C9—H9B109.6
O2—Ti1—C12165.49 (7)H9A—C9—H9B108.1
Cl1—Ti1—C1282.86 (6)C11—C10—C14106.77 (18)
Cl2—Ti1—C12102.41 (6)C11—C10—C9125.69 (19)
C11—Ti1—C1234.57 (7)C14—C10—C9127.3 (2)
C14—Ti1—C1257.31 (8)C11—C10—Ti171.84 (11)
N1—Ti1—C1069.36 (6)C14—C10—Ti171.93 (11)
O2—Ti1—C10134.35 (6)C9—C10—Ti1116.83 (12)
Cl1—Ti1—C10118.03 (5)C12—C11—C10108.43 (17)
Cl2—Ti1—C10125.04 (5)C12—C11—Ti173.34 (11)
C11—Ti1—C1034.80 (7)C10—C11—Ti173.36 (11)
C14—Ti1—C1034.86 (7)C12—C11—H11125.8
C12—Ti1—C1057.61 (7)C10—C11—H11125.8
N1—Ti1—C13122.51 (7)Ti1—C11—H11119.3
O2—Ti1—C13154.01 (6)C13—C12—C11108.2 (2)
Cl1—Ti1—C13112.59 (6)C13—C12—Ti173.58 (11)
Cl2—Ti1—C1378.22 (6)C11—C12—Ti172.09 (11)
C11—Ti1—C1356.97 (7)C13—C12—H12125.9
C14—Ti1—C1334.52 (8)C11—C12—H12125.9
C12—Ti1—C1333.89 (8)Ti1—C12—H12120.2
C10—Ti1—C1357.39 (7)C12—C13—C14108.56 (19)
O1—S1—O2118.29 (8)C12—C13—Ti172.53 (11)
O1—S1—N1113.93 (8)C14—C13—Ti171.71 (11)
O2—S1—N198.15 (8)C12—C13—H13125.7
O1—S1—C1107.19 (8)C14—C13—H13125.7
O2—S1—C1106.82 (8)Ti1—C13—H13121.7
N1—S1—C1112.24 (8)C13—C14—C10107.97 (19)
S1—O2—Ti194.33 (6)C13—C14—Ti173.77 (12)
C8—N1—S1120.35 (12)C10—C14—Ti173.22 (11)
C8—N1—Ti1132.89 (11)C13—C14—H14126.0
S1—N1—Ti1101.20 (7)C10—C14—H14126.0
C2—C1—C6121.88 (15)Ti1—C14—H14118.9
C2—C1—S1118.81 (13)C17—C15—C8114.20 (16)
C6—C1—S1119.21 (14)C17—C15—C16110.2 (2)
C1—C2—C3118.53 (17)C8—C15—C16109.3 (2)
C1—C2—H2120.7C17—C15—H15107.6
C3—C2—H2120.7C8—C15—H15107.6
C4—C3—C2121.39 (18)C16—C15—H15107.6
C4—C3—H3119.3C15—C16—H16A109.5
C2—C3—H3119.3C15—C16—H16B109.5
C3—C4—C5119.03 (16)H16A—C16—H16B109.5
C3—C4—C7120.7 (2)C15—C16—H16C109.5
C5—C4—C7120.2 (2)H16A—C16—H16C109.5
C6—C5—C4120.85 (18)H16B—C16—H16C109.5
C6—C5—H5119.6C15—C17—H17A109.5
C4—C5—H5119.6C15—C17—H17B109.5
C1—C6—C5118.25 (18)H17A—C17—H17B109.5
C1—C6—H6120.9C15—C17—H17C109.5
C5—C6—H6120.9H17A—C17—H17C109.5
C4—C7—H7A109.5H17B—C17—H17C109.5
O1—S1—O2—Ti1114.88 (7)C14—C10—C11—C121.6 (2)
N1—S1—O2—Ti17.96 (7)C9—C10—C11—C12175.92 (18)
C1—S1—O2—Ti1124.24 (7)Ti1—C10—C11—C1265.48 (13)
N1—Ti1—O2—S16.93 (6)C14—C10—C11—Ti163.91 (12)
Cl1—Ti1—O2—S1122.71 (6)C9—C10—C11—Ti1110.44 (18)
Cl2—Ti1—O2—S1127.71 (6)N1—Ti1—C11—C12165.81 (12)
C11—Ti1—O2—S152.40 (14)O2—Ti1—C11—C12153.81 (13)
C14—Ti1—O2—S151.14 (11)Cl1—Ti1—C11—C1284.05 (12)
C12—Ti1—O2—S1141.4 (2)Cl2—Ti1—C11—C1226.04 (15)
C10—Ti1—O2—S10.55 (11)C14—Ti1—C11—C1278.00 (14)
C13—Ti1—O2—S1107.13 (16)C10—Ti1—C11—C12115.71 (16)
O1—S1—N1—C840.15 (15)C13—Ti1—C11—C1236.72 (13)
O2—S1—N1—C8166.12 (13)N1—Ti1—C11—C1050.10 (11)
C1—S1—N1—C881.90 (15)O2—Ti1—C11—C1090.48 (14)
O1—S1—N1—Ti1116.77 (8)Cl1—Ti1—C11—C10160.24 (10)
O2—S1—N1—Ti19.20 (8)Cl2—Ti1—C11—C1089.68 (12)
C1—S1—N1—Ti1121.18 (8)C14—Ti1—C11—C1037.72 (11)
O2—Ti1—N1—C8158.94 (17)C12—Ti1—C11—C10115.71 (16)
Cl1—Ti1—N1—C8128.72 (14)C13—Ti1—C11—C1078.99 (12)
Cl2—Ti1—N1—C8103.85 (15)C10—C11—C12—C130.3 (2)
C11—Ti1—N1—C843.24 (16)Ti1—C11—C12—C1365.22 (14)
C14—Ti1—N1—C814.39 (16)C10—C11—C12—Ti165.49 (13)
C12—Ti1—N1—C833.55 (18)N1—Ti1—C12—C1398.70 (14)
C10—Ti1—N1—C815.35 (15)O2—Ti1—C12—C13133.0 (2)
C13—Ti1—N1—C87.27 (18)Cl1—Ti1—C12—C13151.74 (14)
O2—Ti1—N1—S16.45 (6)Cl2—Ti1—C12—C1345.37 (14)
Cl1—Ti1—N1—S178.78 (7)C11—Ti1—C12—C13116.0 (2)
Cl2—Ti1—N1—S148.65 (8)C14—Ti1—C12—C1336.83 (13)
C11—Ti1—N1—S1164.26 (7)C10—Ti1—C12—C1378.45 (15)
C14—Ti1—N1—S1138.11 (8)N1—Ti1—C12—C1117.26 (15)
C12—Ti1—N1—S1173.96 (7)O2—Ti1—C12—C11111.0 (2)
C10—Ti1—N1—S1167.84 (9)Cl1—Ti1—C12—C1192.30 (12)
C13—Ti1—N1—S1145.23 (8)Cl2—Ti1—C12—C11161.33 (11)
O1—S1—C1—C29.99 (16)C14—Ti1—C12—C1179.13 (14)
O2—S1—C1—C2137.71 (14)C10—Ti1—C12—C1137.51 (11)
N1—S1—C1—C2115.82 (14)C13—Ti1—C12—C11116.0 (2)
O1—S1—C1—C6166.57 (13)C11—C12—C13—C141.2 (2)
O2—S1—C1—C638.85 (15)Ti1—C12—C13—C1463.08 (14)
N1—S1—C1—C667.62 (15)C11—C12—C13—Ti164.25 (14)
C6—C1—C2—C32.0 (3)N1—Ti1—C13—C12104.46 (14)
S1—C1—C2—C3174.50 (14)O2—Ti1—C13—C12155.28 (14)
C1—C2—C3—C40.2 (3)Cl1—Ti1—C13—C1230.59 (15)
C2—C3—C4—C52.1 (3)Cl2—Ti1—C13—C12134.77 (14)
C2—C3—C4—C7176.5 (2)C11—Ti1—C13—C1237.48 (13)
C3—C4—C5—C62.7 (3)C14—Ti1—C13—C12117.09 (19)
C7—C4—C5—C6175.97 (19)C10—Ti1—C13—C1279.17 (14)
C2—C1—C6—C51.4 (3)N1—Ti1—C13—C1412.64 (15)
S1—C1—C6—C5175.05 (14)O2—Ti1—C13—C1487.62 (19)
C4—C5—C6—C10.9 (3)Cl1—Ti1—C13—C14147.69 (11)
S1—N1—C8—C1559.59 (19)Cl2—Ti1—C13—C14108.14 (12)
Ti1—N1—C8—C15152.08 (13)C11—Ti1—C13—C1479.62 (13)
S1—N1—C8—C9176.42 (14)C12—Ti1—C13—C14117.09 (19)
Ti1—N1—C8—C928.1 (2)C10—Ti1—C13—C1437.93 (12)
N1—C8—C9—C1024.2 (2)C12—C13—C14—C102.1 (2)
C15—C8—C9—C10149.33 (18)Ti1—C13—C14—C1065.76 (13)
C8—C9—C10—C11103.7 (2)C12—C13—C14—Ti163.61 (14)
C8—C9—C10—C1469.5 (3)C11—C10—C14—C132.3 (2)
C8—C9—C10—Ti117.5 (2)C9—C10—C14—C13176.51 (18)
N1—Ti1—C10—C11124.95 (12)Ti1—C10—C14—C1366.12 (14)
O2—Ti1—C10—C11132.21 (10)C11—C10—C14—Ti163.85 (12)
Cl1—Ti1—C10—C1122.45 (12)C9—C10—C14—Ti1110.38 (18)
Cl2—Ti1—C10—C11119.56 (10)N1—Ti1—C14—C13169.37 (13)
C14—Ti1—C10—C11115.24 (17)O2—Ti1—C14—C13140.14 (11)
C12—Ti1—C10—C1137.26 (11)Cl1—Ti1—C14—C1349.25 (16)
C13—Ti1—C10—C1177.69 (12)Cl2—Ti1—C14—C1368.48 (12)
N1—Ti1—C10—C14119.81 (13)C11—Ti1—C14—C1377.40 (13)
O2—Ti1—C10—C14112.54 (13)C12—Ti1—C14—C1336.14 (12)
Cl1—Ti1—C10—C14137.69 (11)C10—Ti1—C14—C13115.05 (18)
Cl2—Ti1—C10—C144.32 (14)N1—Ti1—C14—C1054.31 (12)
C11—Ti1—C10—C14115.24 (17)O2—Ti1—C14—C10104.81 (13)
C12—Ti1—C10—C1477.99 (13)Cl1—Ti1—C14—C1065.80 (16)
C13—Ti1—C10—C1437.55 (13)Cl2—Ti1—C14—C10176.47 (12)
N1—Ti1—C10—C93.47 (16)C11—Ti1—C14—C1037.65 (12)
O2—Ti1—C10—C910.7 (2)C12—Ti1—C14—C1078.91 (13)
Cl1—Ti1—C10—C999.03 (17)C13—Ti1—C14—C10115.05 (18)
Cl2—Ti1—C10—C9118.96 (16)N1—C8—C15—C1758.4 (2)
C11—Ti1—C10—C9121.5 (2)C9—C8—C15—C1760.9 (2)
C14—Ti1—C10—C9123.3 (2)N1—C8—C15—C16177.67 (16)
C12—Ti1—C10—C9158.7 (2)C9—C8—C15—C1663.1 (2)
C13—Ti1—C10—C9160.8 (2)

Experimental details

Crystal data
Chemical formula[TiCl2(C17H21NO2S)]
Mr422.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)163
a, b, c (Å)8.8053 (18), 13.885 (3), 15.647 (3)
V3)1913.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.60 × 0.54 × 0.53
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correctionMulti scan
(Blessing, 1995)
Tmin, Tmax0.571, 0.639
No. of measured, independent and
observed [I > 2σ(I)] reflections
10578, 3902, 3769
Rint0.018
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.06
No. of reflections3902
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17
Absolute structureFlack (1983)
Absolute structure parameter0.01 (2)

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 in WinGX (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ti1—N12.0095 (15)Ti1—C102.3686 (19)
Ti1—O22.2819 (13)Ti1—C132.3784 (19)
Ti1—Cl12.2895 (6)S1—O11.4309 (14)
Ti1—Cl22.3150 (6)S1—O21.4709 (14)
Ti1—C112.3491 (19)S1—N11.6075 (14)
Ti1—C142.3520 (19)S1—C11.7582 (16)
Ti1—C122.365 (2)N1—C81.488 (2)
N1—Ti1—O265.33 (5)O1—S1—N1113.93 (8)
N1—Ti1—Cl1110.15 (4)O2—S1—N198.15 (8)
O2—Ti1—Cl183.39 (4)S1—O2—Ti194.33 (6)
N1—Ti1—Cl2122.15 (4)C8—N1—S1120.35 (12)
O2—Ti1—Cl277.39 (4)C8—N1—Ti1132.89 (11)
Cl1—Ti1—Cl2107.44 (2)N1—C8—C15114.63 (14)
N1—Ti1—C1190.95 (6)N1—C8—C9104.30 (15)
O2—Ti1—C11148.02 (6)C10—C9—C8110.44 (16)
N1—S1—O2—Ti17.96 (7)O2—S1—C1—C2137.71 (14)
C1—S1—O2—Ti1124.24 (7)S1—N1—C8—C1559.59 (19)
O2—S1—N1—C8166.12 (13)N1—C8—C9—C1024.2 (2)
C1—S1—N1—C881.90 (15)C8—C9—C10—C11103.7 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds