Download citation
Download citation
link to html
The crystal structure of the title compound, di­aqua­di-μ3-hydro­xo-di-μ2-hydro­xo-tetraphenanthrolinetetracopper(II)tetranitrate dihydrate, [Cu4(OH)4(C10H8N2)4(H2O)2](NO3)4·2H2O, was determined by single-crystal X-ray diffraction. The tetranuclear copper structure has a chair form and each copper has a tetragonal pyramidal coordination geometry. The compound was synthesized by the hydro­(solvo)­thermal method and there is a fluorescence peak at 450 nm.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801006018/wn6011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801006018/wn6011Isup2.hkl
Contains datablock I

CCDC reference: 165632

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.069
  • wR factor = 0.130
  • Data-to-parameter ratio = 10.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

Current research work on the structures, fluorescence and magnetic properties of polynuclear transition metal compounds is aimed at understanding the structural and chemical features governing electronic exchange coupling through multiatom bridging ligands. Although the greatest effort and success have been in the study of dinuclear Cu2+ complexes, there has been little work on oligomeric copper complexes with more than two copper ions (Gutieramento et al., 2000), particulary on chair form tetranuclear copper complexes connected by µ-hydroxo which have generally been observed as central bridging ligands (Ferrer et al., 2000). We report here a chair-form tetranuclear copper complex, [Cu43OH)22OH)2(phen)4(H2O)2](NO3)4·2H2O (phen is phenanthroline), (I).

The cation structure of the title compound is shown in Fig. 1. In the chair-form tetranuclear copper structure, each copper has a tetragonal pyramidal coordination geometry. The bond lengths from the µ2-O atoms (O2 and O2a) to Cu atoms are shorter than those from the µ3-O atoms (O2 and O2a) to Cu (Cu1, Cu2 and Cu2a, Cu1a) atoms. In particular, the bond lengths O1—Cu2a and O2—Cu2 are 2.322 (19) and 2.34 (2) Å, respectively. Selected bond lengths and bond angles are listed in Table 1. The two 1,10-phenanthroline molecules coordinating with Cu1 and Cu2 are almost coplanar and the two pairs of 1,10-phenanthroline molecules are parallel. The Cu1—Cu2 and Cu2—Cu2a distances are 2.919 and 2.926 Å, respectively. The short metal–metal bond distance may permit a direct interaction or the spin–spin coupling may be accomplished by a super-exchange mechanism (Carlin, 1969).

Experimental top

The title compound was synthesized by the hydro(solvo)thermal method. 0.5 g Cu(NO3)2nH2O, 0.2 g 1,10-phenanthroline and 6 ml H2O were added to a 25 ml Teflon-lined Parr autoclave. The autoclave was sealed and heated under static conditions for 96 h at 443 K; the reaction was cooled to room temperature over a period of 50 h.

Computing details top

Data collection: SMART (Siemens, 1998); cell refinement: SMART; data reduction: SAINT (Siemens, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: please provide.

Figures top
[Figure 1] Fig. 1. The cationic structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity.
Diaquadi-µ3-hydroxo-di-µ2-hydroxo-tetraphenanthrolinetetracopper(II) tetranitrate dihydrate top
Crystal data top
[Cu4(OH)4(C10H8N2)4(H2O)2](NO3)4·2H2OZ = 1
Mr = 1355.04F(000) = 684
Triclinic, P1Dx = 1.715 Mg m3
a = 10.1504 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9299 (3) ÅCell parameters from 47 reflections
c = 12.6337 (1) Åθ = 1.8–25.0°
α = 111.073 (1)°µ = 1.69 mm1
β = 90.906 (2)°T = 293 K
γ = 111.218 (2)°Cube, blue
V = 1311.91 (4) Å30.30 × 0.18 × 0.12 mm
Data collection top
Siemens SMART CCD
diffractometer
4544 independent reflections
Radiation source: fine-focus sealed tube2762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 127
Tmin = 0.597, Tmax = 0.816k = 1414
6772 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.39 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4544 reflections(Δ/σ)max = 0.008
440 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cu4(OH)4(C10H8N2)4(H2O)2](NO3)4·2H2Oγ = 111.218 (2)°
Mr = 1355.04V = 1311.91 (4) Å3
Triclinic, P1Z = 1
a = 10.1504 (1) ÅMo Kα radiation
b = 11.9299 (3) ŵ = 1.69 mm1
c = 12.6337 (1) ÅT = 293 K
α = 111.073 (1)°0.30 × 0.18 × 0.12 mm
β = 90.906 (2)°
Data collection top
Siemens SMART CCD
diffractometer
4544 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2762 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.816Rint = 0.040
6772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.39Δρmax = 0.76 e Å3
4544 reflectionsΔρmin = 0.57 e Å3
440 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.07137 (8)0.20032 (7)0.22381 (7)0.0364 (3)
Cu20.14418 (8)0.00019 (7)0.05315 (7)0.0344 (3)
N10.2437 (5)0.0087 (5)0.0859 (4)0.0319 (13)
N40.0184 (6)0.2146 (5)0.3673 (5)0.0385 (14)
N20.2270 (5)0.1286 (5)0.0570 (5)0.0345 (14)
N30.0024 (5)0.3416 (5)0.2306 (5)0.0317 (13)
N50.3649 (8)0.1851 (10)0.4818 (7)0.075 (2)
N60.2649 (9)0.3516 (6)0.0738 (7)0.0555 (18)
O10.2986 (5)0.3374 (4)0.3010 (4)0.0545 (15)
O20.1000 (4)0.0444 (4)0.2066 (3)0.0375 (12)
H2A0.09430.00290.25720.045*
O30.0799 (7)0.1384 (6)0.0574 (5)0.0357 (15)
O40.3005 (7)0.0855 (6)0.3920 (6)0.0792 (19)
O50.3808 (9)0.2949 (8)0.4920 (6)0.122 (3)
O60.4296 (9)0.1768 (8)0.5602 (7)0.151 (4)
O70.3077 (7)0.3558 (6)0.0207 (6)0.095 (2)
O80.3485 (7)0.3906 (7)0.1331 (7)0.109 (3)
O90.1363 (7)0.3044 (6)0.1056 (6)0.095 (2)
O100.4166 (6)0.5632 (5)0.2601 (5)0.0904 (19)
C150.1308 (9)0.5131 (8)0.2544 (8)0.057 (3)
C70.3895 (7)0.2288 (6)0.0337 (6)0.0382 (18)
C20.3346 (8)0.0450 (7)0.2428 (7)0.045 (2)
C90.2824 (8)0.2743 (7)0.1227 (8)0.046 (2)
C10.2501 (7)0.0531 (7)0.1566 (6)0.0387 (18)
C220.0276 (9)0.1505 (8)0.4352 (7)0.057 (2)
C200.1858 (9)0.2381 (9)0.5420 (8)0.065 (3)
C80.3689 (8)0.2925 (7)0.0442 (7)0.046 (2)
C140.0467 (8)0.4945 (7)0.1714 (8)0.051 (2)
C180.2473 (9)0.3962 (8)0.4876 (7)0.063 (3)
H10A0.30380.40720.54460.076*
C190.1765 (7)0.3100 (7)0.4740 (7)0.047 (2)
C160.1477 (7)0.4499 (7)0.3311 (7)0.0429 (19)
C170.2339 (10)0.4609 (10)0.4204 (9)0.066 (3)
C210.1112 (9)0.1581 (8)0.5222 (7)0.070 (3)
H14A0.11660.10950.56650.084*
C130.0180 (8)0.4048 (7)0.1621 (7)0.043 (2)
C60.4797 (7)0.2402 (7)0.1211 (7)0.043 (2)
C30.4167 (8)0.0293 (7)0.2580 (7)0.048 (2)
C100.2136 (8)0.1898 (7)0.1279 (7)0.0428 (19)
C40.4121 (6)0.0963 (6)0.1830 (6)0.0357 (17)
C50.4882 (8)0.1784 (7)0.1930 (7)0.042 (2)
C240.0779 (7)0.3640 (6)0.3145 (6)0.0346 (17)
C230.0900 (7)0.2957 (6)0.3879 (6)0.0369 (18)
C120.3248 (6)0.0821 (6)0.0997 (6)0.0333 (17)
C110.3131 (7)0.1469 (6)0.0234 (6)0.0328 (17)
H130.342 (6)0.091 (6)0.286 (5)0.04 (2)*
H120.143 (6)0.185 (5)0.171 (5)0.023 (17)*
H110.482 (7)0.027 (7)0.317 (6)0.07 (2)*
H100.416 (6)0.340 (6)0.041 (5)0.04 (2)*
H90.540 (6)0.189 (6)0.247 (6)0.04 (2)*
H80.262 (8)0.244 (7)0.594 (7)0.10 (3)*
H60.072 (6)0.393 (6)0.100 (5)0.05 (2)*
H50.033 (6)0.531 (6)0.115 (5)0.04 (2)*
H40.269 (6)0.312 (5)0.170 (5)0.018 (17)*
H30.023 (6)0.097 (5)0.422 (5)0.034 (19)*
H20.527 (7)0.306 (7)0.128 (6)0.08 (3)*
H10.169 (10)0.570 (9)0.263 (8)0.12 (4)*
H170.127 (8)0.180 (7)0.051 (8)0.05 (3)*
H160.194 (8)0.118 (7)0.151 (6)0.09 (3)*
H150.262 (7)0.502 (6)0.414 (6)0.03 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0417 (6)0.0350 (5)0.0389 (6)0.0226 (4)0.0178 (4)0.0138 (4)
Cu20.0365 (6)0.0374 (5)0.0378 (6)0.0230 (4)0.0156 (4)0.0152 (4)
N10.031 (3)0.034 (3)0.031 (3)0.015 (3)0.008 (3)0.010 (3)
N40.044 (4)0.037 (3)0.039 (4)0.018 (3)0.017 (3)0.017 (3)
N20.038 (4)0.035 (3)0.039 (4)0.021 (3)0.015 (3)0.016 (3)
N30.029 (3)0.029 (3)0.037 (4)0.013 (3)0.010 (3)0.010 (3)
N50.058 (5)0.115 (8)0.063 (6)0.031 (6)0.010 (5)0.051 (6)
N60.065 (6)0.045 (4)0.068 (5)0.025 (4)0.015 (5)0.031 (4)
O10.041 (3)0.047 (3)0.065 (4)0.019 (3)0.005 (3)0.010 (3)
O20.060 (3)0.041 (3)0.031 (3)0.034 (2)0.024 (2)0.021 (2)
O30.039 (4)0.036 (3)0.041 (3)0.021 (3)0.020 (3)0.017 (3)
O40.080 (5)0.098 (5)0.064 (4)0.032 (4)0.012 (4)0.040 (4)
O50.160 (7)0.118 (6)0.103 (6)0.090 (6)0.008 (5)0.026 (5)
O60.169 (8)0.154 (7)0.110 (7)0.013 (6)0.035 (6)0.083 (6)
O70.099 (5)0.097 (5)0.089 (5)0.034 (4)0.001 (4)0.042 (4)
O80.088 (5)0.146 (6)0.151 (7)0.058 (5)0.080 (5)0.107 (6)
O90.057 (4)0.101 (5)0.145 (7)0.030 (4)0.010 (4)0.069 (5)
O100.108 (5)0.078 (4)0.084 (5)0.032 (4)0.042 (4)0.033 (4)
C150.045 (5)0.042 (5)0.075 (7)0.026 (4)0.000 (5)0.004 (5)
C70.028 (4)0.030 (4)0.046 (5)0.013 (3)0.001 (3)0.002 (4)
C20.045 (5)0.044 (5)0.048 (5)0.014 (4)0.016 (4)0.025 (4)
C90.052 (5)0.042 (5)0.056 (6)0.025 (4)0.009 (4)0.026 (4)
C10.035 (5)0.036 (4)0.041 (5)0.010 (4)0.009 (4)0.015 (4)
C220.067 (6)0.055 (6)0.053 (6)0.028 (5)0.029 (5)0.022 (5)
C200.055 (6)0.069 (6)0.055 (6)0.023 (5)0.032 (5)0.007 (5)
C80.047 (5)0.045 (5)0.056 (6)0.028 (4)0.010 (4)0.023 (4)
C140.046 (5)0.046 (5)0.060 (6)0.020 (4)0.008 (4)0.018 (5)
C180.067 (6)0.076 (6)0.049 (6)0.044 (5)0.034 (5)0.010 (5)
C190.043 (5)0.048 (5)0.038 (5)0.016 (4)0.015 (4)0.007 (4)
C160.034 (5)0.040 (5)0.049 (5)0.020 (4)0.008 (4)0.006 (4)
C170.052 (6)0.066 (7)0.070 (8)0.040 (6)0.007 (5)0.001 (6)
C210.091 (7)0.071 (6)0.050 (6)0.024 (6)0.023 (5)0.033 (5)
C130.036 (5)0.039 (5)0.057 (6)0.018 (4)0.017 (4)0.017 (4)
C60.037 (5)0.047 (5)0.044 (5)0.028 (4)0.007 (4)0.003 (4)
C30.034 (5)0.050 (5)0.041 (5)0.005 (4)0.017 (4)0.010 (4)
C100.033 (5)0.045 (5)0.052 (5)0.017 (4)0.010 (4)0.018 (4)
C40.025 (4)0.045 (4)0.030 (4)0.010 (3)0.012 (3)0.010 (4)
C50.034 (5)0.042 (5)0.044 (5)0.021 (4)0.017 (4)0.005 (4)
C240.029 (4)0.031 (4)0.036 (4)0.014 (3)0.010 (3)0.003 (3)
C230.031 (4)0.034 (4)0.033 (4)0.009 (3)0.007 (3)0.002 (3)
C120.023 (4)0.031 (4)0.033 (4)0.009 (3)0.005 (3)0.001 (3)
C110.025 (4)0.032 (4)0.034 (4)0.010 (3)0.001 (3)0.006 (3)
Geometric parameters (Å, º) top
Cu1—O21.922 (4)C2—C31.392 (10)
Cu1—O31.977 (6)C2—C11.394 (10)
Cu1—N42.022 (6)C2—H130.89 (6)
Cu1—N32.022 (5)C9—C81.345 (11)
Cu1—O12.235 (4)C9—C101.404 (9)
Cu1—Cu22.9191 (10)C9—H40.85 (5)
Cu2—O21.924 (4)C1—H161.10 (7)
Cu2—O31.966 (6)C22—C211.396 (11)
Cu2—N22.013 (5)C22—H30.93 (5)
Cu2—N12.029 (5)C20—C211.379 (11)
Cu2—O3i2.318 (6)C20—C191.399 (11)
N1—C11.337 (8)C20—H81.02 (8)
N1—C121.375 (7)C8—H100.85 (5)
N4—C221.323 (9)C14—C131.418 (9)
N4—C231.366 (8)C14—H50.96 (6)
N2—C101.326 (9)C18—C171.317 (13)
N2—C111.360 (8)C18—C191.420 (10)
N3—C131.316 (9)C18—H10A0.9300
N3—C241.357 (8)C19—C231.411 (9)
N5—O51.218 (9)C16—C241.404 (8)
N5—O61.233 (8)C16—C171.435 (13)
N5—O41.253 (9)C17—H150.68 (5)
N6—O91.213 (7)C21—H14A0.9300
N6—O81.217 (9)C13—H60.97 (6)
N6—O71.241 (8)C6—C51.347 (10)
O2—H2A0.9300C6—H21.04 (7)
O3—Cu2i2.318 (6)C3—C41.435 (10)
O3—H170.58 (7)C3—H111.01 (7)
C15—C141.369 (11)C10—H120.91 (5)
C15—C161.405 (11)C4—C121.389 (9)
C15—H10.87 (8)C4—C51.426 (9)
C7—C81.421 (10)C5—H90.87 (6)
C7—C111.425 (8)C24—C231.419 (9)
C7—C61.446 (10)C12—C111.420 (9)
O2—Cu1—O381.9 (2)C1—C2—H13122 (4)
O2—Cu1—N495.8 (2)C8—C9—C10119.2 (8)
O3—Cu1—N4157.3 (2)C8—C9—H4122 (4)
O2—Cu1—N3169.30 (19)C10—C9—H4119 (4)
O3—Cu1—N396.5 (2)N1—C1—C2122.5 (7)
N4—Cu1—N381.6 (2)N1—C1—H16124 (4)
O2—Cu1—O195.62 (17)C2—C1—H16114 (4)
O3—Cu1—O1102.1 (2)N4—C22—C21123.1 (8)
N4—Cu1—O1100.7 (2)N4—C22—H3117 (4)
N3—Cu1—O195.06 (18)C21—C22—H3120 (4)
O2—Cu1—Cu240.65 (13)C21—C20—C19119.2 (8)
O3—Cu1—Cu242.09 (17)C21—C20—H8128 (5)
N4—Cu1—Cu2135.16 (16)C19—C20—H8112 (4)
N3—Cu1—Cu2138.57 (17)C9—C8—C7120.8 (7)
O1—Cu1—Cu295.07 (12)C9—C8—H10122 (5)
O2—Cu2—O382.1 (2)C7—C8—H10117 (5)
O2—Cu2—N296.9 (2)C15—C14—C13117.7 (9)
O3—Cu2—N2174.9 (2)C15—C14—H5126 (4)
O2—Cu2—N1164.44 (19)C13—C14—H5116 (4)
O3—Cu2—N197.7 (2)C17—C18—C19120.7 (8)
N2—Cu2—N181.9 (2)C17—C18—H10A119.6
O2—Cu2—O3i101.9 (2)C19—C18—H10A119.6
O3—Cu2—O3i83.7 (3)C20—C19—C23117.2 (7)
N2—Cu2—O3i101.4 (2)C20—C19—C18123.9 (8)
N1—Cu2—O3i93.6 (2)C23—C19—C18118.9 (8)
O2—Cu2—Cu140.60 (11)C24—C16—C15116.0 (8)
O3—Cu2—Cu142.39 (18)C24—C16—C17117.8 (8)
N2—Cu2—Cu1135.62 (17)C15—C16—C17126.2 (8)
N1—Cu2—Cu1134.52 (15)C18—C17—C16122.9 (9)
O3i—Cu2—Cu1100.32 (13)C18—C17—H15135 (7)
C1—N1—C12117.8 (6)C16—C17—H15102 (7)
C1—N1—Cu2129.8 (4)C20—C21—C22119.7 (9)
C12—N1—Cu2112.1 (4)C20—C21—H14A120.2
C22—N4—C23117.5 (7)C22—C21—H14A120.2
C22—N4—Cu1130.2 (5)N3—C13—C14122.8 (8)
C23—N4—Cu1112.1 (5)N3—C13—H6123 (4)
C10—N2—C11118.4 (6)C14—C13—H6114 (4)
C10—N2—Cu2129.4 (5)C5—C6—C7121.1 (7)
C11—N2—Cu2112.1 (5)C5—C6—H2124 (4)
C13—N3—C24118.6 (6)C7—C6—H2114 (4)
C13—N3—Cu1129.0 (5)C2—C3—C4118.3 (7)
C24—N3—Cu1112.3 (5)C2—C3—H11117 (4)
O5—N5—O6116.4 (10)C4—C3—H11124 (4)
O5—N5—O4123.2 (8)N2—C10—C9123.0 (8)
O6—N5—O4120.0 (10)N2—C10—H12114 (4)
O9—N6—O8121.4 (8)C9—C10—H12122 (4)
O9—N6—O7117.1 (8)C12—C4—C5119.7 (7)
O8—N6—O7121.4 (9)C12—C4—C3117.1 (7)
Cu1—O2—Cu298.75 (19)C5—C4—C3123.1 (7)
Cu1—O2—H2A130.6C6—C5—C4121.1 (7)
Cu2—O2—H2A130.6C6—C5—H9120 (4)
Cu2—O3—Cu195.5 (3)C4—C5—H9119 (4)
Cu2—O3—Cu2i96.3 (3)N3—C24—C16123.4 (7)
Cu1—O3—Cu2i111.9 (3)N3—C24—C23116.9 (6)
Cu2—O3—H17109 (9)C16—C24—C23119.7 (7)
Cu1—O3—H17107 (9)N4—C23—C19123.4 (7)
Cu2i—O3—H17131 (9)N4—C23—C24116.5 (6)
C14—C15—C16121.4 (8)C19—C23—C24120.1 (7)
C14—C15—H1119 (7)N1—C12—C4123.9 (7)
C16—C15—H1120 (7)N1—C12—C11115.7 (6)
C8—C7—C11116.0 (7)C4—C12—C11120.4 (6)
C8—C7—C6125.9 (7)N2—C11—C12117.8 (6)
C11—C7—C6118.1 (7)N2—C11—C7122.5 (7)
C3—C2—C1120.2 (8)C12—C11—C7119.7 (7)
C3—C2—H13118 (4)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu4(OH)4(C10H8N2)4(H2O)2](NO3)4·2H2O
Mr1355.04
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.1504 (1), 11.9299 (3), 12.6337 (1)
α, β, γ (°)111.073 (1), 90.906 (2), 111.218 (2)
V3)1311.91 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.30 × 0.18 × 0.12
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.597, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
6772, 4544, 2762
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.130, 1.39
No. of reflections4544
No. of parameters440
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 0.57

Computer programs: SMART (Siemens, 1998), SMART, SAINT (Siemens, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), please provide.

Selected geometric parameters (Å, º) top
Cu1—O21.922 (4)Cu2—O21.924 (4)
Cu1—O31.977 (6)Cu2—O31.966 (6)
Cu1—N42.022 (6)Cu2—N22.013 (5)
Cu1—N32.022 (5)Cu2—N12.029 (5)
Cu1—O12.235 (4)Cu2—O3i2.318 (6)
Cu1—Cu22.9191 (10)O3—Cu2i2.318 (6)
O2—Cu1—O381.9 (2)O3—Cu2—N197.7 (2)
O2—Cu1—N495.8 (2)N2—Cu2—N181.9 (2)
O3—Cu1—N4157.3 (2)O2—Cu2—O3i101.9 (2)
O2—Cu1—N3169.30 (19)O3—Cu2—O3i83.7 (3)
O3—Cu1—N396.5 (2)N2—Cu2—O3i101.4 (2)
N4—Cu1—N381.6 (2)N1—Cu2—O3i93.6 (2)
O2—Cu1—O195.62 (17)O2—Cu2—Cu140.60 (11)
O3—Cu1—O1102.1 (2)O3—Cu2—Cu142.39 (18)
N4—Cu1—O1100.7 (2)N2—Cu2—Cu1135.62 (17)
N3—Cu1—O195.06 (18)N1—Cu2—Cu1134.52 (15)
O2—Cu1—Cu240.65 (13)O3i—Cu2—Cu1100.32 (13)
O3—Cu1—Cu242.09 (17)C1—N1—C12117.8 (6)
N4—Cu1—Cu2135.16 (16)C1—N1—Cu2129.8 (4)
N3—Cu1—Cu2138.57 (17)C12—N1—Cu2112.1 (4)
O1—Cu1—Cu295.07 (12)Cu1—O2—Cu298.75 (19)
O2—Cu2—O382.1 (2)Cu2—O3—Cu195.5 (3)
O2—Cu2—N296.9 (2)Cu2—O3—Cu2i96.3 (3)
O3—Cu2—N2174.9 (2)Cu1—O3—Cu2i111.9 (3)
O2—Cu2—N1164.44 (19)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds