Download citation
Download citation
link to html
In the title compound, C14H21NO5S2, the imine group belonging to the tosyl­amide substituent occupies an axial position at the S atom of the thiane ring; the latter adopts a chair conformation. The torsion angle C(Ph)—S(O2)—N=S in the bridge between the two rings is −93.6 (2)° and the S—N=S bond angle is 122.15 (14)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801005347/ya6017sup1.cif
Contains datablocks general, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801005347/ya6017Isup2.hkl
Contains datablock I

CCDC reference: 165643

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.047
  • wR factor = 0.136
  • Data-to-parameter ratio = 18.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of Tmax/Tmin expected RT(exp) is > 1.10 Absorption corrections should be applied. Tmin and Tmax expected: 0.860 0.949 RT(exp) = 1.103
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

A view of the molecular structure of the title compound, (I), is shown in Fig. 1, from which it can be seen that the thiopyran ring adopts a chair conformation and the imine group at the ring S atom occupies an axial position. The torsion angles C7—S2—N1—S1 and S2—N1—S1—C6 are -93.6 (2) and -173.39 (18)°, respectively.

The S1—N1 distance of 1.561 (2) Å is significantly shorter than the S2—N1 distance of 1.620 (2) Å, a result that is consistent with the predominance of the canonical structure shown in the Scheme. This difference in the S—N distances shows an opposite sense, compared to the difference between the S—N bonds observed in the unoxidized (at S1) form of the molecule [1.639 (3) and 1.609 (3) Å for the distances corresponding to S1—N1 and S2—N1, respectively, as reported in Creaser et al. (2001)]. Oxidation at S1 also results in an expansion in the S1—N1—S2 angle to 122.15 (14)°, from 111.5 (1)°.

Conformational preferences for molecules closely related to (I) have been examined by Kálmán et al. (Jalsovszky, Kucsman, Ruff, Argay et al., 1987; Jalsovszky, Kucsman, Ruff, Koritsánszky et al., 1987).

Experimental top

The title compound was prepared in 70% yield by the sodium hypochlorite oxidation (Campbell & Johnson, 1978) of N-(4,4-dimethoxy-1-thianylidene)-4-methyl-1-benzenesulfonamide (Creaser et al., 2001) and was recrystallized from an ethanol solution of the compound to give colourless crystals, m.p. 424–426 K. Found: C 48.6, H 6.4, N 4.0%; calculated for C14H21NO5S2: C 48.4, H 6.9, N 4.0%.

Refinement top

The H atoms were placed in geometrically calculated positions and included in the final refinement in the riding-model approximation with an overall displacement parameter (refined).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR92 (Altomare, et al. 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
(I) top
Crystal data top
C14H21NO5S2F(000) = 736
Mr = 347.44Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.516 (8) ÅCell parameters from 21 reflections
b = 6.039 (2) Åθ = 8.0–26.0°
c = 14.940 (7) ŵ = 0.35 mm1
β = 112.17 (3)°T = 223 K
V = 1631 (1) Å3Plate, colourless
Z = 40.44 × 0.37 × 0.15 mm
Data collection top
Rigaku AFC-6R
diffractometer
Rint = 0.020
Radiation source: Rigaku rotating anodeθmax = 27.6°, θmin = 3.1°
Graphite monochromatorh = 2523
ω–2θ scansk = 70
4273 measured reflectionsl = 019
3762 independent reflections3 standard reflections every 400 reflections
2668 reflections with I > 2σ(I) intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0529P)2 + 1.3963P]
where P = (Fo2 + 2Fc2)/3
3762 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H21NO5S2V = 1631 (1) Å3
Mr = 347.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.516 (8) ŵ = 0.35 mm1
b = 6.039 (2) ÅT = 223 K
c = 14.940 (7) Å0.44 × 0.37 × 0.15 mm
β = 112.17 (3)°
Data collection top
Rigaku AFC-6R
diffractometer
Rint = 0.020
4273 measured reflections3 standard reflections every 400 reflections
3762 independent reflections intensity decay: 1.2%
2668 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
3762 reflectionsΔρmin = 0.39 e Å3
200 parameters
Special details top

Experimental. The scan width was (1.05 + 0.35tanθ)° with an ω scan speed of 32° per minute (up to 5 scans to achieve I/σ(I) > 20). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23417 (4)0.01127 (12)0.16572 (5)0.03030 (18)
S20.23138 (3)0.22891 (11)0.00526 (4)0.02696 (17)
O10.15973 (11)0.0939 (4)0.13772 (16)0.0494 (6)
O20.23315 (11)0.0155 (3)0.03750 (14)0.0364 (5)
O30.28154 (10)0.3964 (3)0.00236 (14)0.0356 (5)
O40.47242 (10)0.0390 (4)0.35260 (15)0.0398 (5)
O50.38518 (11)0.3025 (3)0.35486 (14)0.0385 (5)
N10.24813 (12)0.2078 (4)0.11972 (15)0.0285 (5)
C20.29228 (15)0.2295 (5)0.1580 (2)0.0348 (6)
H2A0.28030.26690.09070.071 (3)*
H2B0.28340.35950.19030.071 (3)*
C30.37379 (15)0.1656 (5)0.20428 (19)0.0335 (6)
H3A0.40370.28810.19780.071 (3)*
H3B0.38290.03990.16990.071 (3)*
C40.39764 (14)0.1060 (5)0.31161 (19)0.0309 (6)
C50.35510 (15)0.0923 (5)0.3269 (2)0.0337 (6)
H5A0.36480.21960.29390.071 (3)*
H5B0.37310.12650.39540.071 (3)*
C60.27188 (16)0.0537 (5)0.29020 (19)0.0360 (6)
H6A0.26170.06670.32640.071 (3)*
H6B0.24800.18580.30150.071 (3)*
C70.14086 (14)0.3356 (5)0.04847 (18)0.0277 (5)
C80.08076 (15)0.2028 (5)0.0538 (2)0.0353 (6)
H80.08850.06180.02670.071 (3)*
C90.00969 (16)0.2830 (6)0.0996 (2)0.0409 (7)
H90.03030.19410.10360.071 (3)*
C100.00333 (16)0.4939 (5)0.1398 (2)0.0365 (6)
C1010.08120 (18)0.5814 (7)0.1893 (3)0.0519 (9)
H10A0.11590.47180.18640.071 (3)*
H10B0.08700.71370.15720.071 (3)*
H10C0.09010.61440.25560.071 (3)*
C110.05722 (17)0.6214 (5)0.1342 (2)0.0402 (7)
H110.04930.76140.16220.071 (3)*
C120.12923 (16)0.5463 (5)0.0880 (2)0.0339 (6)
H120.16910.63610.08360.071 (3)*
C410.52506 (17)0.1986 (6)0.3479 (3)0.0526 (9)
H41A0.57410.13860.37730.071 (3)*
H41B0.52120.33040.38160.071 (3)*
H41C0.51520.23380.28150.071 (3)*
C420.40243 (19)0.2942 (6)0.4574 (2)0.0490 (8)
H42A0.39200.43530.47900.071 (3)*
H42B0.45390.25980.49040.071 (3)*
H42C0.37290.18210.47110.071 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0272 (3)0.0324 (4)0.0310 (3)0.0010 (3)0.0106 (3)0.0050 (3)
S20.0284 (3)0.0275 (3)0.0258 (3)0.0022 (3)0.0111 (2)0.0012 (3)
O10.0305 (11)0.0601 (15)0.0540 (13)0.0088 (11)0.0119 (10)0.0170 (12)
O20.0432 (11)0.0318 (11)0.0345 (10)0.0026 (9)0.0151 (9)0.0070 (9)
O30.0335 (10)0.0390 (12)0.0367 (10)0.0089 (9)0.0160 (8)0.0016 (9)
O40.0271 (10)0.0430 (13)0.0444 (11)0.0021 (9)0.0080 (9)0.0021 (10)
O50.0460 (12)0.0308 (11)0.0355 (10)0.0018 (9)0.0118 (9)0.0050 (9)
N10.0313 (11)0.0282 (12)0.0263 (10)0.0005 (9)0.0112 (9)0.0006 (9)
C20.0395 (15)0.0232 (14)0.0368 (14)0.0015 (12)0.0089 (12)0.0026 (12)
C30.0356 (14)0.0325 (15)0.0327 (14)0.0059 (12)0.0132 (12)0.0035 (12)
C40.0310 (13)0.0284 (15)0.0308 (13)0.0017 (11)0.0090 (11)0.0003 (11)
C50.0367 (15)0.0330 (16)0.0290 (13)0.0037 (12)0.0095 (11)0.0026 (12)
C60.0400 (15)0.0425 (17)0.0281 (13)0.0082 (13)0.0160 (12)0.0054 (13)
C70.0293 (13)0.0271 (14)0.0256 (12)0.0011 (11)0.0091 (10)0.0008 (11)
C80.0320 (14)0.0300 (15)0.0409 (15)0.0032 (12)0.0102 (12)0.0085 (13)
C90.0310 (14)0.0449 (19)0.0448 (16)0.0048 (13)0.0119 (13)0.0053 (15)
C100.0352 (14)0.0392 (17)0.0339 (13)0.0066 (13)0.0115 (11)0.0003 (13)
C1010.0411 (17)0.059 (2)0.0526 (19)0.0131 (16)0.0140 (15)0.0056 (18)
C110.0447 (17)0.0280 (16)0.0432 (16)0.0040 (13)0.0112 (14)0.0047 (13)
C120.0355 (14)0.0265 (14)0.0369 (14)0.0057 (12)0.0105 (12)0.0015 (12)
C410.0346 (16)0.061 (2)0.061 (2)0.0107 (16)0.0160 (15)0.0067 (18)
C420.059 (2)0.050 (2)0.0371 (16)0.0103 (17)0.0180 (15)0.0132 (15)
Geometric parameters (Å, º) top
S1—O11.441 (2)C2—C31.526 (4)
S1—N11.561 (2)C3—C41.534 (4)
S1—C61.767 (3)C4—C51.523 (4)
S1—C21.771 (3)C5—C61.523 (4)
S2—O31.442 (2)C7—C121.385 (4)
S2—O21.445 (2)C7—C81.398 (4)
S2—N11.620 (2)C8—C91.382 (4)
S2—C71.764 (3)C9—C101.390 (4)
O4—C41.412 (3)C10—C111.386 (4)
O4—C411.430 (4)C10—C1011.512 (4)
O5—C41.416 (3)C11—C121.387 (4)
O5—C421.440 (3)
O1—S1—N1119.35 (13)O4—C4—C5104.0 (2)
O1—S1—C6110.88 (14)O5—C4—C5113.2 (2)
N1—S1—C6101.70 (14)O4—C4—C3112.1 (2)
O1—S1—C2108.88 (15)O5—C4—C3104.1 (2)
N1—S1—C2112.31 (13)C5—C4—C3111.9 (2)
C6—S1—C2102.18 (14)C6—C5—C4113.2 (2)
O3—S2—O2117.43 (12)C5—C6—S1112.14 (19)
O3—S2—N1105.43 (12)C12—C7—C8120.3 (3)
O2—S2—N1111.56 (12)C12—C7—S2120.3 (2)
O3—S2—C7107.53 (13)C8—C7—S2119.4 (2)
O2—S2—C7108.16 (12)C9—C8—C7119.3 (3)
N1—S2—C7106.12 (12)C8—C9—C10121.4 (3)
C4—O4—C41115.5 (2)C11—C10—C9118.0 (3)
C4—O5—C42116.4 (2)C11—C10—C101120.8 (3)
S1—N1—S2122.15 (14)C9—C10—C101121.2 (3)
C3—C2—S1111.5 (2)C10—C11—C12121.9 (3)
C2—C3—C4112.7 (2)C7—C12—C11119.0 (3)
O4—C4—O5111.7 (2)

Experimental details

Crystal data
Chemical formulaC14H21NO5S2
Mr347.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)19.516 (8), 6.039 (2), 14.940 (7)
β (°) 112.17 (3)
V3)1631 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.44 × 0.37 × 0.15
Data collection
DiffractometerRigaku AFC-6R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4273, 3762, 2668
Rint0.020
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.02
No. of reflections3762
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.39

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1992), SIR92 (Altomare, et al. 1994), SHELXL97 (Sheldrick, 1997), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds