Download citation
Download citation
link to html
The title compound, dicerium pentadecarhodium heptasilicon, includes two crystallographically independent Ce atoms, Ce1 having an ideal cubooctahedron polyhedron and Ce2 having a distorted polyhedron with 14 apices and an anomalously short Ce-Rh distance of 2.432 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008431/bt6041sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008431/bt6041Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Si-Si) = 0.014 Å
  • R factor = 0.047
  • wR factor = 0.148
  • Data-to-parameter ratio = 16.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry PLATON alerts of the form PLAT_7?? have been detected for an inorganic structure. These tests are under development for inorganics and comments are welcomed. It is not necessary to supply a data validation response form for these alerts at this time.
Red Alert Alert Level A:
ABSTM_02 Alert A Crystal and compound unsuitable for non-numerical corrections. Product of mu and tmid > 3.0 Value of mu given = 24.566 tmid = 0.150
Amber Alert Alert Level B:
PLAT_030 Alert B Refined Extinction parameter within range .... 1.50 Sigma PLAT_731 Alert B Bond Calc 2.329(5), Rep 2.3287(10) .... 5.00 s.u-Ratio RH5 -SI7 1.555 27.555 PLAT_731 Alert B Bond Calc 2.329(5), Rep 2.3287(10) .... 5.00 s.u-Ratio RH5 -SI7 1.555 1.555 PLAT_731 Alert B Bond Calc 2.329(5), Rep 2.3287(10) .... 5.00 s.u-Ratio SI7 -RH5 1.555 9.555 PLAT_731 Alert B Bond Calc 2.329(5), Rep 2.3287(10) .... 5.00 s.u-Ratio SI7 -RH5 1.555 13.555 PLAT_732 Alert B Angle Calc 143.0(2), Rep 142.96(3) .... 6.67 s.u-Ratio RH4 -SI7 -RH3 1.555 1.555 1.555
Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.131 PLAT_731 Alert C Bond Calc 3.2492(13), Rep 3.2492(6) .... 2.17 s.u-Ratio CE2 -RH5 1.555 10.655 PLAT_731 Alert C Bond Calc 3.2492(13), Rep 3.2492(6) .... 2.17 s.u-Ratio CE2 -RH5 1.555 26.655 PLAT_731 Alert C Bond Calc 3.2492(13), Rep 3.2492(6) .... 2.17 s.u-Ratio CE2 -RH5 1.555 34.555 PLAT_731 Alert C Bond Calc 3.2492(13), Rep 3.2492(6) .... 2.17 s.u-Ratio CE2 -RH5 1.555 2.555 PLAT_731 Alert C Bond Calc 3.2492(13), Rep 3.2492(6) .... 2.17 s.u-Ratio CE2 -RH5 1.555 1.555 PLAT_731 Alert C Bond Calc 3.2492(13), Rep 3.2492(6) .... 2.17 s.u-Ratio CE2 -RH5 1.555 33.655 PLAT_731 Alert C Bond Calc 3.2492(13), Rep 3.2492(6) .... 2.17 s.u-Ratio CE2 -RH5 1.555 25.655 PLAT_731 Alert C Bond Calc 3.2492(13), Rep 3.2492(6) .... 2.17 s.u-Ratio CE2 -RH5 1.555 9.555 PLAT_732 Alert C Angle Calc 48.34(11), Rep 48.34(5) .... 2.20 s.u-Ratio SI7 -RH3 -RH5 1.555 1.555 1.555 PLAT_732 Alert C Angle Calc 93.90(13), Rep 93.90(6) .... 2.17 s.u-Ratio SI6 -RH4 -SI7 1.555 1.555 1.555
1 Alert Level A = Potentially serious problem
6 Alert Level B = Potential problem
11 Alert Level C = Please check

Comment top

Intermetallic compounds consisting of Ce, Rh(Pd) and Si exibit many interesting physical properties, for example, magnetism, superconductivity, heavy-electron behavior and valence fluctuations (Buschow, 1993; Trovarelli et al., 1998; Gomez-Berisso et al., 1999). For this reason, we have been investigating ternary Ce–Rh–Si systems looking for new intermetallic compounds (Gribanov et al., 2000a,b; Tursina et al., 2001). Herein, we report the crystal structure of the new ternary compound, Ce2Rh15Si7, (I).

The coordination polyhedra of the Ce atoms are cubooctahedron Ce1 [Rh12] and distorted polyhedron with 14 Ce2 [Rh14] apexes. Coordination polyhedra of the Rh atoms are rather irregular polyhedra with 9 and 10 apexes: Rh3 [Ce1Rh4Si4], Rh4 [Ce2Rh4Si4] and Rh5 [Rh6Si4]. The Si atoms have slightly destorted polyhedra with 10 and 9 apexes: double-capped square antiprisms Si6 [Ce1Rh8Si1] and trigonal prisms with three additional atoms Si7 [Rh9]. All interatomic distances in (I) are typical for such compounds except two Ce2—Rh3 distances [2.432 (3) Å] which are significantly shorter than the sum of the metallic radii d(Ce—Rh) = 3.18 Å. This peculiarity of (I) makes the probability of the existence of isostructural compounds very low as any change in the composition must cause the changes in the crystal structure providing more appropriate Ce—Rh interatomic distances. This can be demonstrated through the comparison of the two crystal structures, (I) and the Ce4Pd29Si14, (II), crystal structure (Tursina et al., 2001), which may be considered as a derivative from the crystal structure of (I).

The Pd substitution for Rh causes negligible changes in the mutual positions of all atoms in the structure of (II) except two Pd atoms (Pd4 and Pd5), corresponding to the Rh3 atoms in structure (I). They change their positions considerably. However, the Pd4 atoms simply move aside of Ce2 atoms, d(Ce2—Pd4) = 2.903 (4) Å, while the Pd5 atoms pass into a new crystallographic position, d(Ce2—Pd5) = 3.339 (2) Å. These atoms shifts in structure (II) causes, firstly, the change of crystal structure [space group Fm3m, a = 18.010 (2) Å], secondly, the decrease in Pd percentage and in number of atoms per unit-cell volume. That is, the Dx falls from 9.787 Mg m-3 in (I) to 9.186 Mg m-3 in (II).

Experimental top

The title compound was prepared from pure elements (Ce 0.98, Rh 0.999, Si 0.99999) by arc-melting under an argon atmosphere. The sample was annealed in double quartz ampoules at 973 K for 600 h and quenched in cool water. The single-crystal used for analysis was selected from the alloy obtained.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering.
[Figure 2] Fig. 2. Projection onto XY plane (a) of Ce2Rh15Si7 unit cell and (b) of Ce4Pd29Si14 1/8 unit cell (X,Y,Z from 0 to 1/2).
(I) top
Crystal data top
Ce2Rh15Si7Mo Kα radiation, λ = 0.71073 Å
Mr = 2020.52Cell parameters from 25 reflections
Cubic, Pm3mθ = 13.1–17.7°
a = 8.818 (1) ŵ = 24.57 mm1
V = 685.66 (13) Å3T = 293 K
Z = 2Prism, dark red
F(000) = 17780.17 × 0.15 × 0.13 mm
Dx = 9.787 Mg m3
Data collection top
Enraf-Nonius CAD-4
diffractometer
251 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.131
Graphite monochromatorθmax = 34.9°, θmin = 2.3°
ω scansh = 014
Absorption correction: multi-scan
(Blessing, 1995)
k = 014
Tmin = 0.034, Tmax = 0.098l = 014
1756 measured reflections3 standard reflections every 120 min
358 independent reflections intensity decay: 2.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max < 0.001
S = 0.86Δρmax = 4.22 e Å3
358 reflectionsΔρmin = 4.12 e Å3
22 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0003 (2)
Crystal data top
Ce2Rh15Si7Z = 2
Mr = 2020.52Mo Kα radiation
Cubic, Pm3mµ = 24.57 mm1
a = 8.818 (1) ÅT = 293 K
V = 685.66 (13) Å30.17 × 0.15 × 0.13 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
251 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.131
Tmin = 0.034, Tmax = 0.0983 standard reflections every 120 min
1756 measured reflections intensity decay: 2.5%
358 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04722 parameters
wR(F2) = 0.1480 restraints
S = 0.86Δρmax = 4.22 e Å3
358 reflectionsΔρmin = 4.12 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.50000.50000.50000.0135 (8)
Ce20.50000.00000.00000.0154 (6)
Rh30.2241 (3)0.00000.00000.0137 (5)
Rh40.26211 (14)0.26211 (14)0.50000.0127 (4)
Rh50.32339 (14)0.32339 (14)0.00000.0133 (4)
Si60.1345 (11)0.50000.50000.0147 (16)
Si70.2130 (6)0.2130 (6)0.2130 (6)0.0147 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.0135 (8)0.0135 (8)0.0135 (8)0.0000.0000.000
Ce20.0144 (11)0.0159 (8)0.0159 (8)0.0000.0000.000
Rh30.0119 (10)0.0146 (6)0.0146 (6)0.0000.0000.000
Rh40.0129 (5)0.0129 (5)0.0123 (7)0.0014 (5)0.0000.000
Rh50.0140 (5)0.0140 (5)0.0119 (7)0.0022 (6)0.0000.000
Si60.010 (3)0.017 (2)0.017 (2)0.0000.0000.000
Si70.0147 (13)0.0147 (13)0.0147 (13)0.0019 (16)0.0019 (16)0.0019 (16)
Geometric parameters (Å, º) top
Ce1—Rh4i2.9666 (18)Rh4—Si62.380 (4)
Ce1—Rh42.9666 (18)Rh4—Si72.604 (7)
Ce1—Rh4ii2.9666 (18)Rh4—Si7xxiv2.604 (7)
Ce1—Rh4iii2.9666 (18)Rh4—Rh5v2.8389 (9)
Ce1—Rh4iv2.9666 (18)Rh4—Rh5xxv2.8389 (9)
Ce1—Rh4v2.9666 (18)Rh4—Rh5x2.8389 (9)
Ce1—Rh4vi2.9666 (18)Rh4—Rh5xxvi2.8389 (9)
Ce1—Rh4vii2.9666 (18)Rh4—Rh4vi2.9666 (18)
Ce1—Rh4viii2.9666 (18)Rh4—Rh4x2.9666 (18)
Ce1—Rh4ix2.9666 (18)Rh4—Rh4ii2.9666 (18)
Ce1—Rh4x2.9666 (18)Rh5—Si7xix2.3287 (10)
Ce1—Rh4xi2.9666 (18)Rh5—Si72.3287 (10)
Ce2—Rh3xii2.433 (3)Rh5—Si6v2.501 (5)
Ce2—Rh32.433 (3)Rh5—Si6xxvii2.501 (5)
Ce2—Rh5xiii3.2492 (6)Rh5—Rh4ii2.8389 (9)
Ce2—Rh5vii3.2492 (6)Rh5—Rh4v2.8389 (9)
Ce2—Rh5xiv3.2492 (6)Rh5—Rh4xxviii2.8389 (9)
Ce2—Rh5xv3.2492 (6)Rh5—Rh4xiv2.8389 (9)
Ce2—Rh53.2492 (6)Rh5—Rh3xxii2.9831 (18)
Ce2—Rh5xvi3.2492 (6)Rh5—Rh5xxix3.115 (2)
Ce2—Rh5xii3.2492 (6)Rh5—Rh5vii3.115 (2)
Ce2—Rh5v3.2492 (6)Si6—Si6xxx2.372 (19)
Ce2—Rh4xvii3.2687 (18)Si6—Rh4x2.380 (4)
Ce2—Rh4ii3.2687 (18)Si6—Rh4xi2.380 (4)
Rh3—Si7xv2.658 (7)Si6—Rh4v2.380 (4)
Rh3—Si72.658 (7)Si6—Rh5xxv2.501 (5)
Rh3—Si7xviii2.658 (7)Si6—Rh5i2.501 (5)
Rh3—Si7xix2.658 (7)Si6—Rh5xxvi2.501 (5)
Rh3—Rh3xx2.794 (4)Si6—Rh5ix2.501 (5)
Rh3—Rh3xxi2.794 (4)Si7—Rh5v2.3287 (10)
Rh3—Rh3xxii2.794 (4)Si7—Rh5xxv2.3287 (10)
Rh3—Rh3v2.794 (4)Si7—Rh4ii2.604 (7)
Rh3—Rh5v2.9831 (18)Si7—Rh4v2.604 (7)
Rh3—Rh52.9831 (18)Si7—Rh3v2.658 (7)
Rh3—Rh5xv2.9831 (18)Si7—Rh3xxii2.658 (7)
Rh4—Si6xxiii2.380 (4)
Rh4i—Ce1—Rh4120.0Si7—Rh4—Rh5v50.44 (6)
Rh4i—Ce1—Rh4ii180.0Si7xxiv—Rh4—Rh5v115.43 (9)
Rh4—Ce1—Rh4ii60.0Si6xxiii—Rh4—Rh5xxv143.84 (8)
Rh4i—Ce1—Rh4iii60.0Si6—Rh4—Rh5xxv56.46 (15)
Rh4—Ce1—Rh4iii180.0Si7—Rh4—Rh5xxv50.44 (6)
Rh4ii—Ce1—Rh4iii120.0Si7xxiv—Rh4—Rh5xxv115.43 (9)
Rh4i—Ce1—Rh4iv60.0Rh5v—Rh4—Rh5xxv90.51 (7)
Rh4—Ce1—Rh4iv120.0Si6xxiii—Rh4—Rh5x56.46 (15)
Rh4ii—Ce1—Rh4iv120.0Si6—Rh4—Rh5x143.84 (8)
Rh4iii—Ce1—Rh4iv60.0Si7—Rh4—Rh5x115.43 (9)
Rh4i—Ce1—Rh4v120.0Si7xxiv—Rh4—Rh5x50.44 (6)
Rh4—Ce1—Rh4v60.0Rh5v—Rh4—Rh5x66.54 (5)
Rh4ii—Ce1—Rh4v60.0Rh5xxv—Rh4—Rh5x127.65 (7)
Rh4iii—Ce1—Rh4v120.0Si6xxiii—Rh4—Rh5xxvi143.84 (8)
Rh4iv—Ce1—Rh4v180.0Si6—Rh4—Rh5xxvi56.46 (15)
Rh4i—Ce1—Rh4vi90.0Si7—Rh4—Rh5xxvi115.43 (9)
Rh4—Ce1—Rh4vi60.0Si7xxiv—Rh4—Rh5xxvi50.44 (6)
Rh4ii—Ce1—Rh4vi90.0Rh5v—Rh4—Rh5xxvi127.65 (7)
Rh4iii—Ce1—Rh4vi120.0Rh5xxv—Rh4—Rh5xxvi66.54 (5)
Rh4iv—Ce1—Rh4vi60.0Rh5x—Rh4—Rh5xxvi90.51 (7)
Rh4v—Ce1—Rh4vi120.0Si6xxiii—Rh4—Rh4vi51.46 (9)
Rh4i—Ce1—Rh4vii120.0Si6—Rh4—Rh4vi109.53 (13)
Rh4—Ce1—Rh4vii90.0Si7—Rh4—Rh4vi143.60 (7)
Rh4ii—Ce1—Rh4vii60.0Si7xxiv—Rh4—Rh4vi55.27 (10)
Rh4iii—Ce1—Rh4vii90.0Rh5v—Rh4—Rh4vi104.67 (4)
Rh4iv—Ce1—Rh4vii60.0Rh5xxv—Rh4—Rh4vi164.49 (3)
Rh4v—Ce1—Rh4vii120.0Rh5x—Rh4—Rh4vi58.50 (3)
Rh4vi—Ce1—Rh4vii60.0Rh5xxvi—Rh4—Rh4vi100.82 (2)
Rh4i—Ce1—Rh4viii120.0Si6xxiii—Rh4—Ce173.2 (2)
Rh4—Ce1—Rh4viii120.0Si6—Rh4—Ce173.2 (2)
Rh4ii—Ce1—Rh4viii60.0Si7—Rh4—Ce1103.60 (13)
Rh4iii—Ce1—Rh4viii60.0Si7xxiv—Rh4—Ce1103.60 (13)
Rh4iv—Ce1—Rh4viii90.0Rh5v—Rh4—Ce1116.17 (3)
Rh4v—Ce1—Rh4viii90.0Rh5xxv—Rh4—Ce1116.17 (3)
Rh4vi—Ce1—Rh4viii120.0Rh5x—Rh4—Ce1116.17 (3)
Rh4vii—Ce1—Rh4viii60.0Rh5xxvi—Rh4—Ce1116.17 (3)
Rh4i—Ce1—Rh4ix90.0Rh4vi—Rh4—Ce160.0
Rh4—Ce1—Rh4ix120.0Si6xxiii—Rh4—Rh4x109.53 (13)
Rh4ii—Ce1—Rh4ix90.0Si6—Rh4—Rh4x51.46 (9)
Rh4iii—Ce1—Rh4ix60.0Si7—Rh4—Rh4x143.60 (7)
Rh4iv—Ce1—Rh4ix120.0Si7xxiv—Rh4—Rh4x55.27 (10)
Rh4v—Ce1—Rh4ix60.0Rh5v—Rh4—Rh4x164.49 (3)
Rh4vi—Ce1—Rh4ix180.0Rh5xxv—Rh4—Rh4x104.67 (4)
Rh4vii—Ce1—Rh4ix120.0Rh5x—Rh4—Rh4x100.82 (2)
Rh4viii—Ce1—Rh4ix60.0Rh5xxvi—Rh4—Rh4x58.50 (3)
Rh4i—Ce1—Rh4x60.0Rh4vi—Rh4—Rh4x60.0
Rh4—Ce1—Rh4x60.0Ce1—Rh4—Rh4x60.0
Rh4ii—Ce1—Rh4x120.0Si6xxiii—Rh4—Rh4ii51.46 (9)
Rh4iii—Ce1—Rh4x120.0Si6—Rh4—Rh4ii109.53 (13)
Rh4iv—Ce1—Rh4x90.0Si7—Rh4—Rh4ii55.27 (10)
Rh4v—Ce1—Rh4x90.0Si7xxiv—Rh4—Rh4ii143.60 (7)
Rh4vi—Ce1—Rh4x60.0Rh5v—Rh4—Rh4ii58.50 (3)
Rh4vii—Ce1—Rh4x120.0Rh5xxv—Rh4—Rh4ii100.82 (2)
Rh4viii—Ce1—Rh4x180.0Rh5x—Rh4—Rh4ii104.67 (4)
Rh4ix—Ce1—Rh4x120.0Rh5xxvi—Rh4—Rh4ii164.49 (3)
Rh4i—Ce1—Rh4xi60.0Rh4vi—Rh4—Rh4ii90.0
Rh4—Ce1—Rh4xi90.0Ce1—Rh4—Rh4ii60.0
Rh4ii—Ce1—Rh4xi120.0Rh4x—Rh4—Rh4ii120.0
Rh4iii—Ce1—Rh4xi90.0Si7xix—Rh5—Si7107.5 (4)
Rh4iv—Ce1—Rh4xi120.0Si7xix—Rh5—Si6v154.5 (3)
Rh4v—Ce1—Rh4xi60.0Si7—Rh5—Si6v97.9 (3)
Rh4vi—Ce1—Rh4xi120.0Si7xix—Rh5—Si6xxvii97.9 (3)
Rh4vii—Ce1—Rh4xi180.0Si7—Rh5—Si6xxvii154.5 (3)
Rh4viii—Ce1—Rh4xi120.0Si6v—Rh5—Si6xxvii56.6 (4)
Rh4ix—Ce1—Rh4xi60.0Si7xix—Rh5—Rh4ii143.75 (11)
Rh4x—Ce1—Rh4xi60.0Si7—Rh5—Rh4ii59.54 (17)
Rh3xii—Ce2—Rh3180.0Si6v—Rh5—Rh4ii52.48 (14)
Rh3xii—Ce2—Rh5xiii61.36 (3)Si6xxvii—Rh5—Rh4ii99.38 (17)
Rh3—Ce2—Rh5xiii118.64 (3)Si7xix—Rh5—Rh4v143.75 (11)
Rh3xii—Ce2—Rh5vii61.36 (3)Si7—Rh5—Rh4v59.54 (17)
Rh3—Ce2—Rh5vii118.64 (3)Si6v—Rh5—Rh4v52.48 (15)
Rh5xiii—Ce2—Rh5vii76.72 (2)Si6xxvii—Rh5—Rh4v99.38 (17)
Rh3xii—Ce2—Rh5xiv118.64 (3)Rh4ii—Rh5—Rh4v63.00 (6)
Rh3—Ce2—Rh5xiv61.36 (3)Si7xix—Rh5—Rh4xxviii59.54 (17)
Rh5xiii—Ce2—Rh5xiv180.00 (6)Si7—Rh5—Rh4xxviii143.75 (11)
Rh5vii—Ce2—Rh5xiv103.28 (2)Si6v—Rh5—Rh4xxviii99.38 (17)
Rh3xii—Ce2—Rh5xv118.64 (3)Si6xxvii—Rh5—Rh4xxviii52.48 (14)
Rh3—Ce2—Rh5xv61.36 (3)Rh4ii—Rh5—Rh4xxviii109.01 (5)
Rh5xiii—Ce2—Rh5xv103.28 (2)Rh4v—Rh5—Rh4xxviii150.65 (7)
Rh5vii—Ce2—Rh5xv180.00 (6)Si7xix—Rh5—Rh4xiv59.54 (17)
Rh5xiv—Ce2—Rh5xv76.72 (2)Si7—Rh5—Rh4xiv143.75 (11)
Rh3xii—Ce2—Rh5118.64 (3)Si6v—Rh5—Rh4xiv99.38 (17)
Rh3—Ce2—Rh561.36 (3)Si6xxvii—Rh5—Rh4xiv52.48 (14)
Rh5xiii—Ce2—Rh5103.28 (2)Rh4ii—Rh5—Rh4xiv150.65 (7)
Rh5vii—Ce2—Rh557.28 (6)Rh4v—Rh5—Rh4xiv109.01 (5)
Rh5xiv—Ce2—Rh576.72 (2)Rh4xxviii—Rh5—Rh4xiv63.00 (6)
Rh5xv—Ce2—Rh5122.72 (6)Si7xix—Rh5—Rh358.51 (18)
Rh3xii—Ce2—Rh5xvi61.36 (3)Si7—Rh5—Rh358.51 (18)
Rh3—Ce2—Rh5xvi118.64 (3)Si6v—Rh5—Rh3141.07 (13)
Rh5xiii—Ce2—Rh5xvi122.72 (6)Si6xxvii—Rh5—Rh3141.07 (13)
Rh5vii—Ce2—Rh5xvi76.72 (2)Rh4ii—Rh5—Rh388.80 (4)
Rh5xiv—Ce2—Rh5xvi57.28 (6)Rh4v—Rh5—Rh3117.94 (4)
Rh5xv—Ce2—Rh5xvi103.28 (2)Rh4xxviii—Rh5—Rh388.80 (4)
Rh5—Ce2—Rh5xvi103.28 (2)Rh4xiv—Rh5—Rh3117.94 (4)
Rh3xii—Ce2—Rh5xii61.36 (3)Si7xix—Rh5—Rh3xxii58.51 (18)
Rh3—Ce2—Rh5xii118.64 (3)Si7—Rh5—Rh3xxii58.51 (18)
Rh5xiii—Ce2—Rh5xii76.72 (2)Si6v—Rh5—Rh3xxii141.07 (13)
Rh5vii—Ce2—Rh5xii122.72 (6)Si6xxvii—Rh5—Rh3xxii141.07 (13)
Rh5xiv—Ce2—Rh5xii103.28 (2)Rh4ii—Rh5—Rh3xxii117.94 (4)
Rh5xv—Ce2—Rh5xii57.28 (6)Rh4v—Rh5—Rh3xxii88.80 (4)
Rh5—Ce2—Rh5xii180.00 (4)Rh4xxviii—Rh5—Rh3xxii117.94 (4)
Rh5xvi—Ce2—Rh5xii76.72 (2)Rh4xiv—Rh5—Rh3xxii88.80 (4)
Rh3xii—Ce2—Rh5v118.64 (3)Rh3—Rh5—Rh3xxii55.86 (10)
Rh3—Ce2—Rh5v61.36 (3)Si7xix—Rh5—Rh5xxix114.71 (14)
Rh5xiii—Ce2—Rh5v57.28 (6)Si7—Rh5—Rh5xxix114.71 (14)
Rh5vii—Ce2—Rh5v103.28 (2)Si6v—Rh5—Rh5xxix51.50 (8)
Rh5xiv—Ce2—Rh5v122.72 (6)Si6xxvii—Rh5—Rh5xxix51.50 (8)
Rh5xv—Ce2—Rh5v76.72 (2)Rh4ii—Rh5—Rh5xxix100.97 (4)
Rh5—Ce2—Rh5v76.72 (2)Rh4v—Rh5—Rh5xxix56.73 (3)
Rh5xvi—Ce2—Rh5v180.0Rh4xxviii—Rh5—Rh5xxix100.97 (4)
Rh5xii—Ce2—Rh5v103.28 (2)Rh4xiv—Rh5—Rh5xxix56.73 (3)
Rh3xii—Ce2—Rh4xvii90.0Rh3—Rh5—Rh5xxix162.93 (5)
Rh3—Ce2—Rh4xvii90.0Rh3xxii—Rh5—Rh5xxix107.07 (5)
Rh5xiii—Ce2—Rh4xvii128.359 (12)Si7xix—Rh5—Rh5vii114.71 (14)
Rh5vii—Ce2—Rh4xvii128.359 (12)Si7—Rh5—Rh5vii114.71 (14)
Rh5xiv—Ce2—Rh4xvii51.641 (12)Si6v—Rh5—Rh5vii51.50 (8)
Rh5xv—Ce2—Rh4xvii51.641 (12)Si6xxvii—Rh5—Rh5vii51.50 (8)
Rh5—Ce2—Rh4xvii128.359 (12)Rh4ii—Rh5—Rh5vii56.73 (3)
Rh5xvi—Ce2—Rh4xvii51.641 (12)Rh4v—Rh5—Rh5vii100.97 (4)
Rh5xii—Ce2—Rh4xvii51.641 (12)Rh4xxviii—Rh5—Rh5vii56.73 (3)
Rh5v—Ce2—Rh4xvii128.359 (12)Rh4xiv—Rh5—Rh5vii100.97 (4)
Rh3xii—Ce2—Rh4ii90.0Rh3—Rh5—Rh5vii107.07 (5)
Rh3—Ce2—Rh4ii90.0Rh3xxii—Rh5—Rh5vii162.93 (5)
Rh5xiii—Ce2—Rh4ii51.641 (12)Rh5xxix—Rh5—Rh5vii90.0
Rh5vii—Ce2—Rh4ii51.641 (12)Si6xxx—Si6—Rh4x118.2 (2)
Rh5xiv—Ce2—Rh4ii128.359 (12)Si6xxx—Si6—Rh4xi118.2 (2)
Rh5xv—Ce2—Rh4ii128.359 (12)Rh4x—Si6—Rh4xi77.09 (17)
Rh5—Ce2—Rh4ii51.641 (12)Si6xxx—Si6—Rh4v118.2 (2)
Rh5xvi—Ce2—Rh4ii128.359 (12)Rh4x—Si6—Rh4v123.6 (4)
Rh5xii—Ce2—Rh4ii128.359 (12)Rh4xi—Si6—Rh4v77.09 (17)
Rh5v—Ce2—Rh4ii51.641 (12)Si6xxx—Si6—Rh4118.2 (2)
Rh4xvii—Ce2—Rh4ii180.00 (3)Rh4x—Si6—Rh477.09 (17)
Ce2—Rh3—Si7xv92.11 (13)Rh4xi—Si6—Rh4123.6 (4)
Ce2—Rh3—Si792.11 (13)Rh4v—Si6—Rh477.09 (17)
Si7xv—Rh3—Si7175.8 (3)Si6xxx—Si6—Rh5xxv61.70 (19)
Ce2—Rh3—Si7xviii92.11 (13)Rh4x—Si6—Rh5xxv140.601 (9)
Si7xv—Rh3—Si7xviii89.923 (10)Rh4xi—Si6—Rh5xxv140.601 (9)
Si7—Rh3—Si7xviii89.923 (10)Rh4v—Si6—Rh5xxv71.06 (3)
Ce2—Rh3—Si7xix92.11 (13)Rh4—Si6—Rh5xxv71.06 (3)
Si7xv—Rh3—Si7xix89.923 (10)Si6xxx—Si6—Rh5i61.70 (19)
Si7—Rh3—Si7xix89.923 (10)Rh4x—Si6—Rh5i71.06 (3)
Si7xviii—Rh3—Si7xix175.8 (3)Rh4xi—Si6—Rh5i71.06 (3)
Ce2—Rh3—Rh3xx135.0Rh4v—Si6—Rh5i140.601 (9)
Si7xv—Rh3—Rh3xx58.29 (11)Rh4—Si6—Rh5i140.601 (9)
Si7—Rh3—Rh3xx118.27 (11)Rh5xxv—Si6—Rh5i123.4 (4)
Si7xviii—Rh3—Rh3xx58.29 (11)Si6xxx—Si6—Rh5xxvi61.70 (19)
Si7xix—Rh3—Rh3xx118.27 (11)Rh4x—Si6—Rh5xxvi71.06 (3)
Ce2—Rh3—Rh3xxi135.0Rh4xi—Si6—Rh5xxvi140.602 (9)
Si7xv—Rh3—Rh3xxi58.29 (11)Rh4v—Si6—Rh5xxvi140.601 (9)
Si7—Rh3—Rh3xxi118.27 (11)Rh4—Si6—Rh5xxvi71.06 (3)
Si7xviii—Rh3—Rh3xxi118.27 (11)Rh5xxv—Si6—Rh5xxvi77.01 (16)
Si7xix—Rh3—Rh3xxi58.29 (11)Rh5i—Si6—Rh5xxvi77.01 (16)
Rh3xx—Rh3—Rh3xxi60.0Si6xxx—Si6—Rh5ix61.70 (19)
Ce2—Rh3—Rh3xxii135.0Rh4x—Si6—Rh5ix140.602 (9)
Si7xv—Rh3—Rh3xxii118.27 (11)Rh4xi—Si6—Rh5ix71.06 (3)
Si7—Rh3—Rh3xxii58.29 (11)Rh4v—Si6—Rh5ix71.06 (3)
Si7xviii—Rh3—Rh3xxii118.27 (11)Rh4—Si6—Rh5ix140.601 (9)
Si7xix—Rh3—Rh3xxii58.29 (11)Rh5xxv—Si6—Rh5ix77.01 (16)
Rh3xx—Rh3—Rh3xxii90.0Rh5i—Si6—Rh5ix77.01 (16)
Rh3xxi—Rh3—Rh3xxii60.0Rh5xxvi—Si6—Rh5ix123.4 (4)
Ce2—Rh3—Rh3v135.0Si6xxx—Si6—Ce1180.0
Si7xv—Rh3—Rh3v118.27 (11)Rh4x—Si6—Ce161.8 (2)
Si7—Rh3—Rh3v58.29 (11)Rh4xi—Si6—Ce161.8 (2)
Si7xviii—Rh3—Rh3v58.29 (11)Rh4v—Si6—Ce161.8 (2)
Si7xix—Rh3—Rh3v118.27 (11)Rh4—Si6—Ce161.8 (2)
Rh3xx—Rh3—Rh3v60.0Rh5xxv—Si6—Ce1118.30 (19)
Rh3xxi—Rh3—Rh3v90.0Rh5i—Si6—Ce1118.30 (19)
Rh3xxii—Rh3—Rh3v60.0Rh5xxvi—Si6—Ce1118.30 (19)
Ce2—Rh3—Rh5v72.93 (5)Rh5ix—Si6—Ce1118.30 (19)
Si7xv—Rh3—Rh5v133.34 (6)Rh5v—Si7—Rh5xxv119.971 (12)
Si7—Rh3—Rh5v48.34 (5)Rh5v—Si7—Rh5119.971 (12)
Si7xviii—Rh3—Rh5v48.34 (5)Rh5xxv—Si7—Rh5119.971 (12)
Si7xix—Rh3—Rh5v133.34 (6)Rh5v—Si7—Rh4ii70.02 (12)
Rh3xx—Rh3—Rh5v101.98 (4)Rh5xxv—Si7—Rh4ii130.2 (3)
Rh3xxi—Rh3—Rh5v152.07 (5)Rh5—Si7—Rh4ii70.02 (12)
Rh3xxii—Rh3—Rh5v101.98 (4)Rh5v—Si7—Rh4v130.2 (3)
Rh3v—Rh3—Rh5v62.07 (5)Rh5xxv—Si7—Rh4v70.02 (12)
Ce2—Rh3—Rh572.93 (5)Rh5—Si7—Rh4v70.02 (12)
Si7xv—Rh3—Rh5133.34 (6)Rh4ii—Si7—Rh4v69.5 (2)
Si7—Rh3—Rh548.34 (5)Rh5v—Si7—Rh470.02 (12)
Si7xviii—Rh3—Rh5133.34 (6)Rh5xxv—Si7—Rh470.02 (12)
Si7xix—Rh3—Rh548.34 (5)Rh5—Si7—Rh4130.2 (3)
Rh3xx—Rh3—Rh5152.07 (5)Rh4ii—Si7—Rh469.5 (2)
Rh3xxi—Rh3—Rh5101.98 (4)Rh4v—Si7—Rh469.5 (2)
Rh3xxii—Rh3—Rh562.07 (5)Rh5v—Si7—Rh3v73.15 (13)
Rh3v—Rh3—Rh5101.98 (4)Rh5xxv—Si7—Rh3v73.15 (13)
Rh5v—Rh3—Rh585.06 (3)Rh5—Si7—Rh3v128.3 (3)
Ce2—Rh3—Rh5xv72.93 (5)Rh4ii—Si7—Rh3v142.96 (3)
Si7xv—Rh3—Rh5xv48.34 (5)Rh4v—Si7—Rh3v142.96 (3)
Si7—Rh3—Rh5xv133.34 (6)Rh4—Si7—Rh3v101.50 (7)
Si7xviii—Rh3—Rh5xv48.34 (5)Rh5v—Si7—Rh3xxii128.3 (3)
Si7xix—Rh3—Rh5xv133.34 (6)Rh5xxv—Si7—Rh3xxii73.15 (13)
Rh3xx—Rh3—Rh5xv62.07 (5)Rh5—Si7—Rh3xxii73.15 (13)
Rh3xxi—Rh3—Rh5xv101.98 (4)Rh4ii—Si7—Rh3xxii142.96 (3)
Rh3xxii—Rh3—Rh5xv152.07 (5)Rh4v—Si7—Rh3xxii101.50 (7)
Rh3v—Rh3—Rh5xv101.98 (4)Rh4—Si7—Rh3xxii142.96 (3)
Rh5v—Rh3—Rh5xv85.06 (3)Rh3v—Si7—Rh3xxii63.4 (2)
Rh5—Rh3—Rh5xv145.86 (10)Rh5v—Si7—Rh373.15 (13)
Si6xxiii—Rh4—Si6146.4 (4)Rh5xxv—Si7—Rh3128.3 (3)
Si6xxiii—Rh4—Si793.90 (6)Rh5—Si7—Rh373.15 (13)
Si6—Rh4—Si793.90 (6)Rh4ii—Si7—Rh3101.50 (7)
Si6xxiii—Rh4—Si7xxiv93.90 (6)Rh4v—Si7—Rh3142.96 (3)
Si6—Rh4—Si7xxiv93.90 (6)Rh4—Si7—Rh3142.96 (3)
Si7—Rh4—Si7xxiv152.8 (3)Rh3v—Si7—Rh363.4 (2)
Si6xxiii—Rh4—Rh5v56.46 (15)Rh3xxii—Si7—Rh363.4 (2)
Si6—Rh4—Rh5v143.84 (8)
Symmetry codes: (i) z, y+1, x+1; (ii) z+1, y, x; (iii) x+1, y+1, z+1; (iv) y+1, z+1, x+1; (v) y, z, x; (vi) z+1, y, x+1; (vii) x+1, y, z; (viii) y+1, z+1, x; (ix) z, y+1, x; (x) y, z, x+1; (xi) x, y+1, z+1; (xii) x+1, y, z; (xiii) y+1, z, x; (xiv) y, z, x; (xv) x, y, z; (xvi) y+1, z, x; (xvii) z, y, x; (xviii) x, y, z; (xix) x, y, z; (xx) y, x, z; (xxi) y, z, x; (xxii) y, x, z; (xxiii) y+1, x, z; (xxiv) x, y, z+1; (xxv) z, y, x; (xxvi) z, y, x+1; (xxvii) y+1, z+1, x; (xxviii) z+1, y, x; (xxix) x, y+1, z; (xxx) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaCe2Rh15Si7
Mr2020.52
Crystal system, space groupCubic, Pm3m
Temperature (K)293
a (Å)8.818 (1)
V3)685.66 (13)
Z2
Radiation typeMo Kα
µ (mm1)24.57
Crystal size (mm)0.17 × 0.15 × 0.13
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.034, 0.098
No. of measured, independent and
observed [I > 2σ(I)] reflections
1756, 358, 251
Rint0.131
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 0.86
No. of reflections358
No. of parameters22
Δρmax, Δρmin (e Å3)4.22, 4.12

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds