Download citation
Download citation
link to html
The crystal structure of the title compound, [CuNi2(C17H16N2O2)2(C2H3O2)2(C3H7NO)2], contains a linear hetero-trinu­clear complex with a central CuII ion located on an inversion center. The central copper(II) ion as well as the terminal nickel(II) ions have distorted octahedral coordination. Four O atoms from two bis­(salicyl­idene)-1,3-propane­diaminate (SALPD2−, C17H16N2O22−) ligands and one O atom from each bridging acetate group constitute the octahedral coordination sphere around the CuII atom. The six nearest neigbors around the NiII atom are the two O and two N atoms of a SALPD2− ligand and one O atom each from an acetate and a di­methyl­form­amide group. The Cu—Ni pairs are triply bridged via O atoms from SALPD2− ligands and acetate groups. The Cu...Ni distance is 3.0556 (5) Å. The structure is isomorphous with that of [CdNi2(C17H16N2O2)2(C2H3O2)2(C3H7NO)2].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100753X/ob6038sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100753X/ob6038Isup2.hkl
Contains datablock I

CCDC reference: 170736

Key indicators

  • Single-crystal X-ray study
  • T = 301 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.032
  • wR factor = 0.085
  • Data-to-parameter ratio = 15.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Trinuclear linear homo- or heteronuclear complexes based on Schiff base ligands are of interest because of their magnetic super-exchange interactions between bridged metal ions (Fukuhara et al., 1990). In these complexes, various combinations of metal ions in the central and terminal locations, as well as the µ-bridges, such as acetate or nitrite anions, are possible. Among the trinuclear complexes with similar formula reported from this laboratory previously (Ülkü et al., 1997; Tahir et al., 1998; Atakol et al., 1999, and references therein), the title complex, (I), resembles [CdNi2(C17H16N2O2)2(C2H3O2)2(C3H7NO)2] (Ülkü et al., 1997), (II), more than any other trinuclear complex. The crystal data indicate that (I) and (II) are isomorphous.

The central metal ions, i.e. Cu2+ in (I) and Cd2+ in (II), have irregular octahedral environments consisting of four bridging O atoms from two SALPD2- ligands [O1, O2, O1i, O2i; symmetry code: (i) -x, -y, -z; Fig. 1] and two O atoms from two bridging acetate groups (O3 and O3i). The terminal metal ion, which is Ni2+ in both (I) and (II), has a distorted octahedral coordination also, involving two N and two O atoms from a SALPD2- ligand and one O atom each from an acetate and a dimethylformamide group. The Cu—O distances in (I) are all shorter than the corresponding Cd—O distances in (II). The corresponding Ni—O and Ni—N distances have almost the same values in these two complexes. As can be seen from Fig. 2, there is an intramolecular close contact between C20—H20 and O3 [H20···O3 2.54 Å, C20···O3 3.389 (4) Å and C20—H20···O3 148.7°].

Experimental top

To a solution of N, N'-bis(salicylidene)-1,3-propanediamine (2.82 g, 0.1 mol) in hot ethanol (50 ml), 20% ammonia solution (10 ml) was added and the mixture was heated to boiling point. Then a solution of NiCl2·6H2O (2.38 g, 0.1 mol) in hot water (30 ml) was added and the resulting mixture set aside. After 2 h, the light-green Ni complex was filtered and dried at 423 K for 3 h. 0.339 g (1 mmol) of this complex was dissolved in 60 ml hot dimethylformamide and the temperature of the solution was increased to 383 K. Dropwise addition of Cu(CH3COO)2·H2O (0.100 g, 0.5 mmol) dissolved in 20 ml hot ethanol resulted in the formation of crystals of (I) after 24 h.

Refinement top

H atoms were placed geometrically from their parent atoms and a riding model was used with Ueq(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: SHELXL97 (Sheldrick, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. PLATON (Spek, 2000) drawing of the title compound with the-atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecules in the unit cell of (I). The broken lines are the C—H···O close contacts.
(I) top
Crystal data top
[CuNi2(C17H16N2O2)2(C2H3O2)2(C3H7NO)2]V = 1131.5 (2) Å3
Mr = 1005.88Z = 1
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5802 (12) ÅCell parameters from 25 reflections
b = 10.6920 (13) Åθ = 2.5–25.7°
c = 12.2069 (11) ŵ = 1.35 mm1
α = 112.203 (3)°T = 301 K
β = 101.145 (5)°Parallelpiped, blue green
γ = 90.376 (3)°0.25 × 0.20 × 0.15 mm
Data collection top
CAD-4 EXPRESS
diffractometer
Rint = 0.013
ω/2θ scansθmax = 25.7°
Absorption correction: ψ scan
(Fair, 1990)
h = 1111
Tmin = 0.729, Tmax = 0.823k = 013
4526 measured reflectionsl = 1413
4282 independent reflections3 standard reflections every 120 min
3386 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0725P)2 + 2.0204P]
where P = (Fo2 + 2Fc2)/3
4282 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[CuNi2(C17H16N2O2)2(C2H3O2)2(C3H7NO)2]γ = 90.376 (3)°
Mr = 1005.88V = 1131.5 (2) Å3
Triclinic, P1Z = 1
a = 9.5802 (12) ÅMo Kα radiation
b = 10.6920 (13) ŵ = 1.35 mm1
c = 12.2069 (11) ÅT = 301 K
α = 112.203 (3)°0.25 × 0.20 × 0.15 mm
β = 101.145 (5)°
Data collection top
CAD-4 EXPRESS
diffractometer
3386 reflections with I > 2σ(I)
Absorption correction: ψ scan
(Fair, 1990)
Rint = 0.013
Tmin = 0.729, Tmax = 0.8233 standard reflections every 120 min
4526 measured reflections intensity decay: 0.1%
4282 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.93Δρmax = 0.43 e Å3
4282 reflectionsΔρmin = 0.34 e Å3
286 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.00000.50000.02907 (13)
Ni0.70801 (4)0.09668 (4)0.66884 (3)0.02955 (12)
N10.8975 (3)0.0060 (3)0.7809 (2)0.0351 (5)
N20.7223 (3)0.2796 (2)0.6795 (2)0.0348 (5)
N30.5103 (3)0.1376 (3)0.9489 (2)0.0469 (7)
O10.6637 (2)0.08068 (19)0.65178 (18)0.0339 (4)
O20.5113 (2)0.1553 (2)0.56369 (18)0.0342 (4)
O30.3439 (2)0.0838 (2)0.59676 (18)0.0385 (5)
O40.1925 (2)0.1570 (2)0.47378 (19)0.0407 (5)
O50.6266 (2)0.0279 (2)0.8354 (2)0.0445 (5)
C10.6988 (3)0.1994 (3)0.7411 (3)0.0327 (6)
C20.6134 (4)0.3075 (3)0.7480 (3)0.0439 (7)
C30.6473 (4)0.4324 (3)0.8426 (3)0.0536 (9)
C40.7689 (4)0.4561 (3)0.9323 (3)0.0569 (9)
C50.8564 (4)0.3537 (3)0.9264 (3)0.0485 (8)
C60.8231 (3)0.2239 (3)0.8340 (3)0.0368 (7)
C70.9199 (3)0.1222 (3)0.8398 (3)0.0386 (7)
C81.0111 (3)0.0911 (4)0.7999 (3)0.0473 (8)
C90.9556 (4)0.2107 (4)0.8226 (3)0.0510 (9)
C100.8632 (3)0.3219 (3)0.7130 (3)0.0460 (8)
C110.6132 (3)0.3627 (3)0.6549 (3)0.0385 (7)
C120.4650 (3)0.3429 (3)0.6168 (3)0.0361 (6)
C130.3612 (4)0.4343 (3)0.6204 (3)0.0475 (8)
C140.2176 (4)0.4261 (4)0.5857 (3)0.0529 (9)
C150.1736 (4)0.3280 (4)0.5413 (3)0.0498 (8)
C160.2714 (3)0.2385 (3)0.5330 (3)0.0408 (7)
C170.4191 (3)0.2416 (3)0.5717 (3)0.0332 (6)
C180.2319 (3)0.1337 (3)0.5678 (3)0.0404 (7)
C190.1309 (5)0.1673 (7)0.6537 (4)0.0966 (19)
C200.5242 (3)0.0411 (3)0.8461 (3)0.0421 (7)
C210.6226 (4)0.1801 (4)1.0550 (3)0.0638 (11)
C220.3870 (6)0.2149 (6)0.9553 (5)0.1008 (19)
H20.53060.29440.68630.053*
H30.58640.50290.84620.064*
H40.79150.54220.99730.068*
H50.94180.37100.98630.058*
H71.01030.15430.89340.046*
H8A1.08670.03560.87000.057*
H8B1.05420.12520.72760.057*
H9A1.03840.25130.85440.061*
H9B0.89930.17630.88640.061*
H10A0.91130.34610.64380.055*
H10B0.85230.40370.73130.055*
H110.63140.44660.66250.046*
H130.39140.50390.64780.057*
H140.14960.48670.59190.064*
H150.07440.32220.51630.060*
H160.23840.17350.50060.049*
H19A0.17130.14520.72360.145*
H19B0.03880.11430.61200.145*
H19C0.11700.26420.68110.145*
H200.45080.02420.77630.050*
H21A0.59200.25241.12140.096*
H21B0.70790.21411.03810.096*
H21C0.64480.10301.07820.096*
H22A0.39550.28161.03810.151*
H22B0.30040.15360.93250.151*
H22C0.38150.26180.89970.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0288 (2)0.0302 (3)0.0287 (2)0.0140 (2)0.00190 (18)0.00402 (19)
Ni0.0290 (2)0.0301 (2)0.0306 (2)0.01298 (15)0.00597 (14)0.00510 (14)
N10.0303 (12)0.0404 (14)0.0333 (12)0.0138 (11)0.0044 (10)0.0064 (10)
N20.0376 (13)0.0356 (13)0.0351 (13)0.0173 (11)0.0088 (10)0.0106 (11)
N30.0506 (16)0.0448 (16)0.0419 (15)0.0109 (13)0.0139 (13)0.0125 (13)
O10.0350 (10)0.0290 (10)0.0332 (10)0.0104 (8)0.0001 (8)0.0026 (8)
O20.0296 (10)0.0324 (10)0.0423 (11)0.0192 (9)0.0016 (8)0.0003 (8)
O30.0377 (11)0.0446 (12)0.0349 (11)0.0171 (9)0.0078 (9)0.0075 (9)
O40.0400 (11)0.0501 (13)0.0383 (11)0.0211 (10)0.0140 (9)0.0139 (10)
O50.0464 (12)0.0489 (13)0.0442 (12)0.0199 (10)0.0194 (10)0.0152 (10)
C10.0372 (15)0.0290 (14)0.0329 (14)0.0129 (12)0.0079 (12)0.0019 (12)
C20.0494 (18)0.0352 (17)0.0446 (18)0.0162 (14)0.0025 (14)0.0045 (14)
C30.068 (2)0.0323 (17)0.054 (2)0.0122 (15)0.0078 (18)0.0118 (16)
C40.075 (3)0.0314 (17)0.050 (2)0.0039 (15)0.0040 (18)0.0019 (17)
C50.053 (2)0.0428 (19)0.0417 (18)0.0119 (15)0.0002 (15)0.0069 (15)
C60.0404 (16)0.0343 (16)0.0350 (16)0.0131 (13)0.0070 (13)0.0005 (13)
C70.0329 (15)0.0474 (18)0.0316 (15)0.0139 (13)0.0015 (12)0.0021 (13)
C80.0344 (16)0.052 (2)0.0489 (19)0.0158 (16)0.0024 (14)0.0101 (14)
C90.0475 (19)0.059 (2)0.0489 (19)0.0282 (17)0.0012 (15)0.0161 (16)
C100.0426 (17)0.0436 (18)0.058 (2)0.0262 (16)0.0101 (15)0.0149 (14)
C110.0494 (18)0.0332 (15)0.0399 (16)0.0195 (13)0.0141 (14)0.0098 (13)
C120.0408 (16)0.0332 (15)0.0357 (15)0.0125 (12)0.0134 (12)0.0019 (12)
C130.059 (2)0.0390 (18)0.0504 (19)0.0212 (15)0.0179 (16)0.0002 (15)
C140.051 (2)0.049 (2)0.058 (2)0.0172 (17)0.0174 (17)0.0130 (16)
C150.0385 (17)0.052 (2)0.055 (2)0.0147 (17)0.0128 (15)0.0039 (15)
C160.0359 (16)0.0384 (17)0.0470 (18)0.0159 (14)0.0076 (13)0.0002 (13)
C170.0366 (15)0.0301 (14)0.0312 (14)0.0088 (12)0.0100 (12)0.0003 (12)
C180.0410 (17)0.0494 (18)0.0345 (16)0.0181 (14)0.0124 (13)0.0083 (14)
C190.076 (3)0.182 (6)0.072 (3)0.077 (4)0.045 (3)0.067 (4)
C200.0444 (18)0.0463 (18)0.0356 (16)0.0144 (14)0.0116 (14)0.0074 (15)
C210.069 (3)0.070 (3)0.0406 (19)0.0088 (18)0.0090 (18)0.009 (2)
C220.089 (4)0.100 (4)0.089 (4)0.006 (3)0.025 (3)0.054 (3)
Geometric parameters (Å, º) top
Cu—Ni3.0556 (5)C10—N21.459 (4)
Cui—O12.0705 (19)C10—H10A0.99
Cu—O12.0705 (19)C10—H10B0.99
Cu—O22.0782 (19)C11—N21.280 (4)
Cui—O22.0782 (19)C11—C121.449 (4)
Cui—O32.082 (2)C11—H110.95
Cu—O32.082 (2)C12—C131.408 (4)
Ni—N12.030 (2)C12—C171.426 (4)
Ni—N22.012 (2)C13—C141.372 (5)
Ni—O22.0082 (19)C13—H130.95
Ni—O12.024 (2)C14—C151.384 (5)
Nii—O42.039 (2)C14—H140.95
Ni—O52.186 (2)C15—C161.379 (4)
O4—Nii2.039 (2)C15—H150.95
C1—O11.311 (3)C16—C171.408 (4)
C1—C21.407 (4)C16—H160.95
C1—C61.422 (4)C17—O21.316 (3)
C2—C31.380 (5)C18—O31.250 (4)
C2—H20.95C18—O41.253 (4)
C3—C41.384 (5)C18—C191.509 (5)
C3—H30.95C19—H19A0.98
C4—C51.372 (5)C19—H19B0.98
C4—H40.95C19—H19C0.98
C5—C61.404 (4)C20—O51.229 (4)
C5—H50.95C20—N31.321 (4)
C6—C71.447 (4)C20—H200.95
C7—N11.278 (4)C21—N31.433 (5)
C7—H70.95C21—H21A0.98
C8—N11.463 (4)C21—H21B0.98
C8—C91.521 (5)C21—H21C0.98
C8—H8A0.99C22—N31.444 (5)
C8—H8B0.99C22—H22A0.98
C9—C101.521 (5)C22—H22B0.98
C9—H9A0.99C22—H22C0.98
C9—H9B0.99
O1—Cu—O278.89 (8)C10—C9—C8115.5 (3)
O1—Cu—O392.92 (8)C10—C9—H9A108.4
O2—Cu—O390.94 (8)C8—C9—H9A108.4
C7—N1—C8118.4 (3)C10—C9—H9B108.4
C7—N1—Ni122.7 (2)C8—C9—H9B108.4
C8—N1—Ni118.8 (2)H9A—C9—H9B107.5
C11—N2—C10118.1 (3)N2—C10—C9111.7 (3)
C11—N2—Ni122.9 (2)N2—C10—H10A109.3
C10—N2—Ni118.9 (2)C9—C10—H10A109.3
C20—N3—C21121.8 (3)N2—C10—H10B109.3
C20—N3—C22121.0 (3)C9—C10—H10B109.3
C21—N3—C22116.8 (3)H10A—C10—H10B107.9
O2—Ni—N290.85 (9)N2—C11—C12127.2 (3)
O2—Ni—O181.65 (8)N2—C11—H11116.4
N2—Ni—O1171.98 (9)C12—C11—H11116.4
O2—Ni—N1170.60 (9)C13—C12—C17118.7 (3)
N2—Ni—N197.95 (10)C13—C12—C11117.0 (3)
O1—Ni—N189.38 (9)C17—C12—C11124.2 (3)
O2—Ni—O592.73 (9)C14—C13—C12122.1 (3)
N2—Ni—O588.15 (9)C14—C13—H13119.0
O1—Ni—O589.36 (8)C12—C13—H13119.0
N1—Ni—O584.29 (9)C13—C14—C15119.0 (3)
C1—O1—Ni123.34 (18)C13—C14—H14120.5
C1—O1—Cu135.37 (18)C15—C14—H14120.5
Ni—O1—Cu96.55 (8)C16—C15—C14121.0 (3)
C17—O2—Ni124.41 (18)C16—C15—H15119.5
C17—O2—Cu136.00 (18)C14—C15—H15119.5
Ni—O2—Cu96.78 (8)C15—C16—C17121.3 (3)
C18—O3—Cu130.8 (2)C15—C16—H16119.3
C20—O5—Ni121.0 (2)C17—C16—H16119.3
O1—C1—C2120.6 (3)O2—C17—C16120.7 (3)
O1—C1—C6121.8 (3)O2—C17—C12121.5 (3)
C2—C1—C6117.6 (3)C16—C17—C12117.8 (3)
C3—C2—C1121.3 (3)O3—C18—O4127.2 (3)
C3—C2—H2119.3O3—C18—C19116.9 (3)
C1—C2—H2119.3O4—C18—C19115.9 (3)
C2—C3—C4120.8 (3)C18—C19—H19A109.5
C2—C3—H3119.6C18—C19—H19B109.5
C4—C3—H3119.6H19A—C19—H19B109.5
C5—C4—C3119.2 (3)C18—C19—H19C109.5
C5—C4—H4120.4H19A—C19—H19C109.5
C3—C4—H4120.4H19B—C19—H19C109.5
C4—C5—C6121.7 (3)O5—C20—N3123.8 (3)
C4—C5—H5119.1O5—C20—H20118.1
C6—C5—H5119.1N3—C20—H20118.1
C5—C6—C1119.3 (3)N3—C21—H21A109.5
C5—C6—C7116.9 (3)N3—C21—H21B109.5
C1—C6—C7123.8 (3)H21A—C21—H21B109.5
N1—C7—C6127.3 (3)N3—C21—H21C109.5
N1—C7—H7116.4H21A—C21—H21C109.5
C6—C7—H7116.4H21B—C21—H21C109.5
N1—C8—C9111.8 (3)N3—C22—H22A109.5
N1—C8—H8A109.3N3—C22—H22B109.5
C9—C8—H8A109.3H22A—C22—H22B109.5
N1—C8—H8B109.3N3—C22—H22C109.5
C9—C8—H8B109.3H22A—C22—H22C109.5
H8A—C8—H8B107.9H22B—C22—H22C109.5
N2—Ni—O2—C1732.3 (2)C9—C8—N1—Ni45.6 (3)
O1—Ni—O2—C17144.8 (2)C12—C11—N2—C10178.3 (3)
O5—Ni—O2—C1755.8 (2)C9—C10—N2—C11134.8 (3)
N2—Ni—O2—Cu164.02 (9)C9—C10—N2—Ni47.0 (3)
O1—Ni—O2—Cu18.84 (8)O5—C20—N3—C217.0 (5)
O5—Ni—O2—Cu107.79 (9)O5—C20—N3—C22179.8 (4)
O1—Cu—O2—C17141.9 (3)C11—N2—Ni—O218.4 (2)
O3—Cu—O2—C1749.1 (3)C10—N2—Ni—O2159.6 (2)
O1—Cu—O2—Ni18.56 (8)C11—N2—Ni—N1158.2 (2)
O3—Cu—O2—Ni111.35 (9)C10—N2—Ni—N123.7 (2)
O4—C18—O3—Cu7.4 (5)C11—N2—Ni—O574.3 (2)
C19—C18—O3—Cu171.3 (3)C10—N2—Ni—O5107.7 (2)
O1—Cu—O3—C18142.7 (3)C7—N1—Ni—N2153.9 (2)
O2—Cu—O3—C18138.4 (3)C8—N1—Ni—N223.0 (2)
N3—C20—O5—Ni145.5 (3)C7—N1—Ni—O122.8 (2)
O2—Ni—O5—C2045.7 (3)C8—N1—Ni—O1160.2 (2)
N2—Ni—O5—C20136.4 (3)C7—N1—Ni—O566.6 (2)
O1—Ni—O5—C2035.9 (3)C8—N1—Ni—O5110.3 (2)
N1—Ni—O5—C20125.4 (3)C2—C1—O1—Ni148.4 (2)
O1—C1—C2—C3178.8 (3)C6—C1—O1—Ni31.5 (4)
C4—C5—C6—C7177.3 (3)C6—C1—O1—Cu179.2 (2)
O1—C1—C6—C5179.0 (3)O2—Ni—O1—C1140.0 (2)
C2—C1—C6—C7179.1 (3)N1—Ni—O1—C137.2 (2)
C5—C6—C7—N1165.4 (3)O5—Ni—O1—C147.1 (2)
C1—C6—C7—N114.8 (5)O2—Ni—O1—Cu18.90 (8)
N1—C8—C9—C1071.9 (4)N1—Ni—O1—Cu163.95 (9)
C8—C9—C10—N272.7 (4)O5—Ni—O1—Cu111.76 (9)
N2—C11—C12—C13166.4 (3)O2—Cu—O1—C1136.2 (3)
N2—C11—C12—C1716.4 (5)O3—Cu—O1—C145.9 (3)
C11—C12—C13—C14179.5 (3)O2—Cu—O1—Ni18.40 (8)
C15—C16—C17—O2179.7 (3)O3—Cu—O1—Ni108.78 (9)
C13—C12—C17—O2178.5 (3)C16—C17—O2—Ni154.7 (2)
C11—C12—C17—C16177.2 (3)C12—C17—O2—Ni26.8 (4)
C6—C7—N1—C8179.6 (3)C12—C17—O2—Cu176.9 (2)
C9—C8—N1—C7131.5 (3)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CuNi2(C17H16N2O2)2(C2H3O2)2(C3H7NO)2]
Mr1005.88
Crystal system, space groupTriclinic, P1
Temperature (K)301
a, b, c (Å)9.5802 (12), 10.6920 (13), 12.2069 (11)
α, β, γ (°)112.203 (3), 101.145 (5), 90.376 (3)
V3)1131.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerCAD-4 EXPRESS
diffractometer
Absorption correctionψ scan
(Fair, 1990)
Tmin, Tmax0.729, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
4526, 4282, 3386
Rint0.013
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 0.93
No. of reflections4282
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), SHELXL97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97, PLATON (Spek, 2000).

Selected geometric parameters (Å, º) top
Cu—Ni3.0556 (5)Ni—N22.012 (2)
Cu—O12.0705 (19)Ni—O22.0082 (19)
Cu—O22.0782 (19)Ni—O12.024 (2)
Cu—O32.082 (2)Nii—O42.039 (2)
Ni—N12.030 (2)Ni—O52.186 (2)
O1—Cu—O278.89 (8)O1—Ni—N189.38 (9)
O1—Cu—O392.92 (8)O2—Ni—O592.73 (9)
O2—Cu—O390.94 (8)N2—Ni—O588.15 (9)
O2—Ni—N290.85 (9)O1—Ni—O589.36 (8)
O2—Ni—O181.65 (8)N1—Ni—O584.29 (9)
N2—Ni—O1171.98 (9)Ni—O1—Cu96.55 (8)
O2—Ni—N1170.60 (9)Ni—O2—Cu96.78 (8)
N2—Ni—N197.95 (10)
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds