Download citation
Download citation
link to html
Crystalline 2-chloro-2-propyl mesityl sulfone (α-chloro­iso­propyl mesityl sulfone), C12H17ClO2S, exhibits much less rotational disorder of its α-chloro­iso­propyl group than that exhibited by the α-bromo­iso­propyl group in the related crystalline 2-bromo-2-propyl mesityl sulfone.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801007528/om6025sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801007528/om6025Isup2.hkl
Contains datablock I

CCDC reference: 170761

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.040
  • wR factor = 0.121
  • Data-to-parameter ratio = 14.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_301 Alert C Main Residue Disorder ........................ 11.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Our recent observations that the 2-bromo-2-propyl (α-bromoisopropyl) group in crystalline 2-bromo-2-propyl mesityl sulfone exhibits significant rotational disorder (Chan-Yu-King et al., 2001), while the same group in crystalline 2-bromo-2-propyl phenyl sulfone is completely ordered (Robinson, et al., 2001) prompted us to examine the X-ray structure of 2-chloro-2-propyl mesityl sulfone, (I).

The structure of (I) (Fig. 1) shows the two sites of the α-chloroisopropyl group that are somewhat rotationally disordered. Restrained site-occupancy refinement of these sites produced the following values: Cl2 = 0.800 (4), C12 = 0.199 (10), Cl3 = 0.198 (4), C13 = 0.801 (4). Thus, ca 80% of the rotamers have their Cl atom near O1 of the sulfonyl group and ca 20% have their Cl atom near O2; the third rotamer does not exist in this structure. This small rotational disorder may be associated with the small intra- and intermolecular non-bonding distances. For example, the intramolecular distances O2···O7 and O1···C8 are, respectively, 0.41 and 0.45 Å less than the sum of their van der Waals radii, while C2···C12, C6···C13, C7···C13 and C8···C12 exceed this sum by, respectively, only 0.07, 0.18, 0.10 and 0.13 Å. Intermolecular distances O2···O7 and O2···C9 are larger than the sum of their van der Waals radii by, respectively, only 0.12 and 0.15 Å. The contact distances for the above interactions are given in Table 2. Free rotation of the α-chloroisopropyl group of (I) in solution is apparent from its 1H NMR (CDCl3) spectrum, which exhibits one sharp singlet (6H) for the isopropyl methyl groups.

Experimental top

2-Chloro-2-propyl mesityl sulfone, (I), was prepared from mesityl 2-propyl sulfone by treatment with CCl4-powdered KOH-tert-BuOH (Hua, 1979). Column chromatography (silica gel, benzene/choroform) afforded colorless crystals (m.p. 360–362 K). Recrystallization from hexanes provided crystals with the same m.p., and were used in this study

Refinement top

The sum of the site occupancy values for C12 and C13 as well as Cl3 and Cl2 were restrained to 1.0. and the site-occupancy sum for each of the two disordered Cl/C sites was also restrained to 1.0. The C10—C and C10—Cl distances of the disordered C and Cl atoms were restrained to chemically reasonable distances of 1.54 and 1.76%A, respectively, and the C10—C12—Cl2 and C10—C13—Cl3 angles were restrained so that the C10—C12 and C10—Cl2 as well as the C10—C13 and C10—Cl3 bond vectors would be collinear. Without this restraint, the disordered Cl and C atoms refined to decidedly non-tetrahedral geometry with unacceptable displacement parameters. The restraint used to accomplish the bond vector collinearity was the SHELXL97 command: DANG 0.22 0.001 C12 Cl2 C13 Cl3. The 0.22 value is the difference between the restrained C10—C and C10—Cl distances given above. The Cl atoms were refined anisotropically. A satisfactory anisotropic refinement of the two disordered C atoms could not be attained so they were refined isotropically with a restraint to force both of their thermal displacements to be equal to that of C13. The rotational orientation of the C7, C8, and C9 methyl groups were refined by the circular Fourier method available in SHELXL97 (Sheldrick, 1997). All H atoms are riding. Although tetrahedral geometry of the α-chloroisopropyl group was not forced during the refinement, Table 1 shows that the group is relatively well behaved.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation,1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR92 (Burla et al., 1989); program(s) used to refine structure: LS in TEXSAN and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1965) in TEXSAN; software used to prepare material for publication: TEXSAN, SHELXL97, and PLATON (Spek, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme for (I) with displacement ellipsoids at the 50% probablilty level. The illusion of concurrent positioning of Cl2/C12 Me and Cl3/C13 Me, respectively, reflects the rotational disorder of the α-chloisopropyl group.
[Figure 2] Fig. 2. The molecular packing in (I). The disorder is not shown and the H atoms are omitted to improve clarity. Color code: green = Cl, red = O, yellow = S.
α-chloroisopropyl mesityl sulfone top
Crystal data top
C12H17ClO2SF(000) = 276
Mr = 260.70Dx = 1.336 Mg m3
Triclinic, P1Melting point = 360–362 K
a = 9.237 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 9.4592 (13) ÅCell parameters from 25 reflections
c = 8.2079 (6) Åθ = 12.5–12.9°
α = 99.333 (9)°µ = 0.44 mm1
β = 93.671 (11)°T = 296 K
γ = 66.342 (14)°Fragment, colorless
V = 648.23 (18) Å30.41 × 0.36 × 0.20 mm
Z = 2
Data collection top
Rigaku AFC-5S
diffractometer
1805 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ω scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1011
Tmin = 0.853, Tmax = 0.916l = 99
2442 measured reflections3 standard reflections every 100 reflections
2286 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.2754P]
where P = (Fo2 + 2Fc2)/3
2286 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.31 e Å3
10 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H17ClO2Sγ = 66.342 (14)°
Mr = 260.70V = 648.23 (18) Å3
Triclinic, P1Z = 2
a = 9.237 (2) ÅMo Kα radiation
b = 9.4592 (13) ŵ = 0.44 mm1
c = 8.2079 (6) ÅT = 296 K
α = 99.333 (9)°0.41 × 0.36 × 0.20 mm
β = 93.671 (11)°
Data collection top
Rigaku AFC-5S
diffractometer
1805 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.012
Tmin = 0.853, Tmax = 0.9163 standard reflections every 100 reflections
2442 measured reflections intensity decay: 0.5%
2286 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04010 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
2286 reflectionsΔρmin = 0.26 e Å3
160 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl(2)0.4552 (3)0.0802 (2)0.3168 (2)0.0771 (4)0.800 (4)
Cl(3)0.6037 (11)0.1583 (13)0.0750 (5)0.103 (4)0.198 (4)
S10.31961 (7)0.39768 (7)0.23486 (7)0.0442 (2)
O10.2416 (2)0.4477 (2)0.3919 (2)0.0616 (5)
O20.3671 (2)0.5059 (2)0.1729 (3)0.0648 (5)
C10.2026 (2)0.3316 (3)0.0846 (3)0.0385 (5)
C20.0913 (3)0.2802 (3)0.1366 (3)0.0420 (5)
C30.0099 (3)0.2220 (3)0.0152 (3)0.0499 (6)
C40.0297 (3)0.2155 (3)0.1512 (3)0.0521 (6)
C50.1340 (3)0.2729 (3)0.1966 (3)0.0522 (6)
C60.2214 (3)0.3323 (3)0.0846 (3)0.0453 (6)
C70.3255 (4)0.3953 (4)0.1576 (4)0.0708 (8)
C80.0474 (4)0.2875 (4)0.3131 (3)0.0630 (8)
C90.0611 (4)0.1495 (4)0.2777 (4)0.0785 (10)
C100.5035 (3)0.2275 (3)0.2586 (3)0.0521 (6)
C110.6007 (3)0.2854 (4)0.3967 (4)0.0692 (9)
C120.463 (5)0.093 (3)0.302 (3)0.0544 (16)*0.199 (4)
C130.6004 (9)0.1585 (8)0.1013 (4)0.0544 (16)*0.801 (4)
H30.06190.18560.04760.060*
H50.14640.27170.30840.063*
H7a0.31780.37930.27590.106*
H7b0.43310.34160.12540.106*
H7c0.29150.50490.11800.106*
H8a0.02510.23810.31440.094*
H8b0.00150.39460.36340.094*
H8c0.14090.23450.37360.094*
H9a0.11890.22580.34770.118*
H9b0.13360.12330.22270.118*
H9c0.01120.05750.34340.118*
H11a0.70060.20160.41040.104*
H11b0.54290.31920.49880.104*
H11c0.61800.37090.36560.104*
H12a0.40690.06030.21230.082*0.199 (4)
H12b0.39930.12960.40000.082*0.199 (4)
H12c0.55950.00680.32130.082*0.199 (4)
H13a0.53970.12390.01710.082*0.801 (4)
H13b0.69520.07140.12200.082*0.801 (4)
H13c0.62740.23640.06520.082*0.801 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl(2)0.0816 (8)0.0680 (7)0.0767 (8)0.0178 (6)0.0056 (6)0.0313 (6)
Cl(3)0.063 (3)0.138 (6)0.062 (3)0.004 (3)0.014 (3)0.001 (3)
S10.0394 (3)0.0435 (3)0.0452 (4)0.0159 (3)0.0008 (2)0.0040 (2)
O10.0544 (10)0.0735 (12)0.0456 (10)0.0229 (9)0.0040 (8)0.0175 (9)
O20.0606 (12)0.0513 (10)0.0883 (15)0.0305 (9)0.0013 (10)0.0047 (10)
C10.0362 (11)0.0397 (11)0.0356 (11)0.0120 (9)0.0014 (9)0.0035 (9)
C20.0398 (12)0.0463 (12)0.0390 (12)0.0170 (10)0.0007 (9)0.0040 (10)
C30.0420 (13)0.0523 (14)0.0560 (15)0.0217 (11)0.0036 (11)0.0037 (12)
C40.0516 (14)0.0425 (13)0.0484 (14)0.0093 (11)0.0148 (11)0.0005 (11)
C50.0593 (16)0.0546 (14)0.0324 (12)0.0121 (12)0.0037 (11)0.0075 (10)
C60.0444 (13)0.0484 (13)0.0386 (12)0.0119 (11)0.0004 (10)0.0110 (10)
C70.074 (2)0.093 (2)0.0568 (17)0.0374 (18)0.0061 (14)0.0286 (16)
C80.0650 (17)0.091 (2)0.0452 (15)0.0442 (16)0.0091 (12)0.0049 (14)
C90.083 (2)0.0664 (19)0.072 (2)0.0254 (17)0.0313 (17)0.0074 (16)
C100.0425 (13)0.0568 (15)0.0479 (14)0.0142 (11)0.0077 (11)0.0010 (11)
C110.0453 (15)0.087 (2)0.0553 (16)0.0161 (14)0.0226 (12)0.0069 (14)
Geometric parameters (Å, º) top
Cl(2)—C101.763 (3)C12—H12b0.9600
Cl(3)—C101.712 (5)C12—H12c0.9600
C12—C101.556 (8)C13—H13a0.9600
C13—C101.517 (5)C13—H13b0.9600
C11—C101.566 (3)C13—H13c0.9600
S1—C101.839 (3)C3—H30.9300
S1—O11.4326 (19)C5—H50.9300
S1—O21.434 (2)C8—H8a0.9600
S1—C11.789 (2)C8—H8b0.9600
C1—C61.412 (3)C8—H8c0.9600
C1—C21.414 (3)C7—H7a0.9600
C2—C31.386 (3)C7—H7b0.9600
C2—C81.513 (3)C7—H7c0.9600
C3—C41.378 (4)C9—H9a0.9600
C4—C51.376 (4)C9—H9b0.9600
C4—C91.507 (4)C9—H9c0.9600
C5—C61.383 (4)C11—H11a0.9600
C6—C71.513 (4)C11—H11b0.9600
C12—H12a0.9600C11—H11c0.9600
O2···C72.805 (4)C7···C133.503 (7)
O1···C82.765 (4)C8···C123.53 (4)
C2···C123.47 (4)O2···C7i3.341 (4)
C6···C133.577 (8)O2···C9ii3.371 (4)
C13—C10—C11110.0 (3)C10—C13—H13c109.5
C11—C10—C12113.0 (13)H12a—C12—H12b109.5
C11—C10—Cl(3)111.8 (4)H12a—C12—H12c109.5
C12—C10—Cl(3)106.5 (9)H12b—C12—H12c109.5
C13—C10—Cl(2)107.3 (3)H13a—C13—H13b109.5
C11—C10—Cl(2)111.3 (2)H13a—C13—H13c109.5
C13—C10—S1113.4 (3)H13b—C13—H13c109.5
C11—C10—S1106.16 (17)C4—C3—H3118.3
C12—C10—S1109.6 (15)C2—C3—H3118.3
O1—S1—O2117.09 (12)C4—C5—H5118.3
O1—S1—C1109.91 (11)C6—C5—H5118.3
O2—S1—C1110.26 (12)C2—C8—H8a109.5
O1—S1—C10106.66 (12)C2—C8—H8b109.5
O2—S1—C10105.45 (12)H8a—C8—H8b109.5
C1—S1—C10106.84 (11)C2—C8—H8c109.5
C6—C1—C2120.6 (2)H8a—C8—H8c109.5
C6—C1—S1119.73 (17)H8b—C8—H8c109.5
C2—C1—S1119.66 (17)C6—C7—H7a109.5
C3—C2—C1117.4 (2)C6—C7—H7b109.5
C3—C2—C8116.2 (2)H7a—C7—H7b109.5
C1—C2—C8126.4 (2)C6—C7—H7c109.5
C4—C3—C2123.4 (2)H7a—C7—H7c109.5
C5—C4—C3117.4 (2)H7b—C7—H7c109.5
C5—C4—C9121.6 (3)C4—C9—H9a109.5
C3—C4—C9121.0 (3)C4—C9—H9b109.5
C4—C5—C6123.5 (2)H9a—C9—H9b109.5
C5—C6—C1117.6 (2)C4—C9—H9c109.5
C5—C6—C7115.8 (2)H9a—C9—H9c109.5
C1—C6—C7126.6 (2)H9b—C9—H9c109.5
Cl(3)—C10—S1109.8 (3)C10—C11—H11a109.5
Cl(2)—C10—S1108.68 (15)C10—C11—H11b109.5
C10—C12—H12a109.5H11a—C11—H11b109.5
C10—C12—H12b109.5C10—C11—H11c109.5
C10—C12—H12c109.5H11a—C11—H11c109.5
C10—C13—H13a109.5H11b—C11—H11c109.5
C10—C13—H13b109.5
O1—S1—C1—C6156.36 (19)S1—C1—C6—C5176.86 (17)
O2—S1—C1—C625.8 (2)C2—C1—C6—C7174.9 (2)
C10—S1—C1—C688.3 (2)S1—C1—C6—C74.7 (4)
O1—S1—C1—C223.2 (2)O1—S1—C10—C13179.4 (3)
O2—S1—C1—C2153.74 (18)O2—S1—C10—C1355.5 (3)
C10—S1—C1—C292.2 (2)C1—S1—C10—C1361.9 (3)
C6—C1—C2—C33.9 (3)O1—S1—C10—C1159.7 (2)
S1—C1—C2—C3176.52 (17)O2—S1—C10—C1165.4 (2)
C6—C1—C2—C8173.7 (2)C1—S1—C10—C11177.23 (18)
S1—C1—C2—C85.9 (3)O1—S1—C10—C1262.7 (10)
C1—C2—C3—C41.4 (4)O2—S1—C10—C12172.2 (10)
C8—C2—C3—C4176.4 (2)C1—S1—C10—C1254.9 (10)
C2—C3—C4—C51.3 (4)O1—S1—C10—Cl(3)179.3 (5)
C2—C3—C4—C9179.4 (2)O2—S1—C10—Cl(3)55.6 (5)
C3—C4—C5—C61.7 (4)C1—S1—C10—Cl(3)61.8 (5)
C9—C4—C5—C6179.0 (2)O1—S1—C10—Cl(2)60.12 (16)
C4—C5—C6—C10.7 (4)O2—S1—C10—Cl(2)174.72 (14)
C4—C5—C6—C7177.9 (2)C1—S1—C10—Cl(2)57.39 (16)
C2—C1—C6—C53.6 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H17ClO2S
Mr260.70
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.237 (2), 9.4592 (13), 8.2079 (6)
α, β, γ (°)99.333 (9), 93.671 (11), 66.342 (14)
V3)648.23 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.41 × 0.36 × 0.20
Data collection
DiffractometerRigaku AFC-5S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.853, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
2442, 2286, 1805
Rint0.012
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.06
No. of reflections2286
No. of parameters160
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation,1996), MSC/AFC Diffractometer Control Software, PROCESS in TEXSAN (Molecular Structure Corporation, 1997), SIR92 (Burla et al., 1989), LS in TEXSAN and SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1965) in TEXSAN, TEXSAN, SHELXL97, and PLATON (Spek, 2000).

Selected geometric parameters (Å, º) top
Cl(2)—C101.763 (3)C13—C101.517 (5)
Cl(3)—C101.712 (5)C11—C101.566 (3)
C12—C101.556 (8)S1—C101.839 (3)
O2···C72.805 (4)C7···C133.503 (7)
O1···C82.765 (4)C8···C123.53 (4)
C2···C123.47 (4)O2···C7i3.341 (4)
C6···C133.577 (8)O2···C9ii3.371 (4)
C13—C10—C11110.0 (3)C11—C10—Cl(2)111.3 (2)
C11—C10—C12113.0 (13)C13—C10—S1113.4 (3)
C11—C10—Cl(3)111.8 (4)C11—C10—S1106.16 (17)
C12—C10—Cl(3)106.5 (9)C12—C10—S1109.6 (15)
C13—C10—Cl(2)107.3 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds