Download citation
Download citation
link to html
The sandwich dimeric structure of di-μ-iodo-bis[(1,4,7,10,13,16-hexaoxa­cyclo­octa­decane)­caesium(I)] p-xyl­ene solvate, [Cs2I2(C12H24O6)2]·C8H10, has been characterized by X-ray crystallography. The complex adopts an encapsulate of a molecular dimeric array [Cs(18-crown-6)(μ-I)]2·C8H10. Two Cs(18-crown-6)+ moieties are doubly linked by two iodide ions. The mol­ecule has crystallographic 2/m (C2h) symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011916/cf6095sup1.cif
Contains datablocks th, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011916/cf6095Isup2.hkl
Contains datablock I

CCDC reference: 170870

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.028
  • wR factor = 0.075
  • Data-to-parameter ratio = 23.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
ABSTM_02 Alert A Test not performed as the _exptl_absorpt_correction_type has not been identified. See test ABSTY_01. ABSTY_01 Alert A The absorption correction should be one of the following * none * analytical * integration * numerical * gaussian * empirical * psi-scan * multi-scan * refdelf * sphere * cylinder
2 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

The chemistry of macrocyclic complexes of alkali metal cations has developed intensively since the end of the 1960's because of the strong complexing properties of crown ethers. In this case, the complementarity of the macrocyclic cavity and the cation substrate determines the type of complex (Dietrich et al., 1993). A caesium ion is too large for the 18-crown-6 cavity, thus giving a sandwich dimer complex bridged by SCN- anions (Dobler & Phizackerley, 1974) or water molecules (Rusanova et al., 1999). We report here the sandwich dimer structure of the title compound (I) with bridging iodide ions.

The title compound adopts a molecular dimeric array consisting of two [Cs(18-crown-6)]+ units linked via two iodide ions as shown in Figure 1. Two caesium cations are positioned on a mirror plane and two iodide ions are located on a twofold symmetry axis perpendicular to the mirror plane. The asymmetric unit, therefore, consists of a quarter of Cs2(18-crown-6)2I2.

Important bond distances and angles are presented in Table 1. The caesium ion adopts eightfold coordination. The bond distances between Cs and O atoms in the crown ether span a range of 3.050 (3)–3.320 (3) Å and the average distance is 3.198 Å. The caesium ion is located 1.520 (2) Å above the mean O plane of the crown ring, which has a mean deviation of 0.22 Å. This value is slightly larger than those reported previously for the related complexes, 1.44 Å in [Cs2(18-crown-6)2(SCN)2] (Dobler & Phizackerley, 1974) and 1.48 Å in [Cs2(18-crown-6)2(H2O)2] (Rusanova et al., 1999). The dihedral angle between the plane consisting of two caesium and two iodide ions and the mean O plane of the crown ether is 76.75 (4)°.

The p-xylene molecules are packed in the voids between the dimer complexes. The centre of p-xylene is located on a position of 2/m symmetry. We also determined the crystal structure of Cs2(18-crown-6)2I2.toluene. The structure is nearly identical to that of the title compound. The toluene molecule is also located at a special position of 2/m symmetry in the C2/m unit cell, so that the non-centrosymmetric toluene molecules are disordered over the inversion centre to give an image like the p-xylene molecule.

Experimental top

Equimolar amounts of caesium iodide and 18-crown-6 were dissolved in anhydrous methanol followed by addition of p-xylene. Slow evaporation in a calcium chloride desiccator yielded crystals suitable for X-ray analysis.

Refinement top

The C—H atoms were added at their calculated positions (U = 1.2 times that of the corresponding C atom) and refined using a riding model.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Siemens, 1996); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (i) x, -y, z; (ii) -x, y, 1 - z; (iii) -x, -y, 1 - z; (iv) -x, y, -z; (v) x, 1 - y, z; (vi) -x, 1 - y, -z]
di-µ-iodo-bis(1,4,7,10,13,16-hexaoxacyclooctadecanecaesium(I)) p-xylene solvate top
Crystal data top
C24H48Cs2I2O12·C8H10F(000) = 1124
Mr = 1154.40Dx = 1.743 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 15.436 (1) ÅCell parameters from 7131 reflections
b = 17.4317 (11) Åθ = 1.8–28.3°
c = 8.1756 (5) ŵ = 3.11 mm1
β = 91.195 (1)°T = 298 K
V = 2199.4 (2) Å3Plate, colourless
Z = 20.50 × 0.25 × 0.15 mm
Data collection top
CCD area-detector
diffractometer
2742 independent reflections
Radiation source: fine-focus sealed tube2385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(XPREP, Siemens, 1996)
h = 1819
Tmin = 0.386, Tmax = 0.627k = 2316
7131 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0345P)2 + 2.918P]
where P = (Fo2 + 2Fc2)/3
2742 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
C24H48Cs2I2O12·C8H10V = 2199.4 (2) Å3
Mr = 1154.40Z = 2
Monoclinic, C2/mMo Kα radiation
a = 15.436 (1) ŵ = 3.11 mm1
b = 17.4317 (11) ÅT = 298 K
c = 8.1756 (5) Å0.50 × 0.25 × 0.15 mm
β = 91.195 (1)°
Data collection top
CCD area-detector
diffractometer
2742 independent reflections
Absorption correction: multi-scan
(XPREP, Siemens, 1996)
2385 reflections with I > 2σ(I)
Tmin = 0.386, Tmax = 0.627Rint = 0.037
7131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.09Δρmax = 1.20 e Å3
2742 reflectionsΔρmin = 1.08 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.170972 (16)0.00000.36783 (3)0.04777 (9)
I10.00000.150813 (17)0.50000.05492 (10)
O10.3636 (3)0.00000.5128 (6)0.0904 (13)
O20.29407 (16)0.14338 (15)0.4161 (4)0.0693 (7)
O30.20804 (17)0.14078 (15)0.1049 (3)0.0672 (6)
O40.1305 (2)0.00000.0011 (4)0.0645 (9)
C10.3762 (3)0.0690 (3)0.6022 (6)0.0924 (15)
H1A0.43090.06670.66260.111*
H1B0.33020.07500.68010.111*
C20.3764 (3)0.1343 (3)0.4910 (6)0.0806 (12)
H2A0.39180.18050.55110.097*
H2B0.41940.12630.40780.097*
C30.2924 (3)0.2057 (2)0.3048 (5)0.0711 (10)
H3A0.34050.20140.23080.085*
H3B0.29860.25360.36450.085*
C40.2104 (3)0.2058 (2)0.2110 (5)0.0711 (10)
H4A0.16210.20370.28500.085*
H4B0.20540.25250.14710.085*
C50.1301 (3)0.1360 (2)0.0124 (5)0.0774 (11)
H5A0.12250.18210.05300.093*
H5B0.08140.13180.08500.093*
C60.1333 (3)0.0680 (3)0.0955 (5)0.0792 (12)
H6A0.08450.06880.17210.095*
H6B0.18620.06880.15750.095*
C70.00000.3329 (4)0.00000.096 (2)
H7A0.05560.31450.03300.115*0.50
H7B0.04400.31450.07500.115*0.50
H7C0.01160.31450.10800.115*0.50
C80.00000.4192 (3)0.00000.0596 (11)
C90.0726 (2)0.4604 (2)0.0427 (4)0.0598 (8)
H90.12250.43420.07200.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.04634 (15)0.04223 (14)0.05461 (16)0.0000.00198 (10)0.000
I10.04822 (16)0.04972 (17)0.0672 (2)0.0000.00949 (13)0.000
O10.100 (3)0.073 (3)0.097 (3)0.0000.046 (3)0.000
O20.0538 (13)0.0588 (14)0.0953 (19)0.0105 (11)0.0046 (13)0.0034 (13)
O30.0611 (14)0.0547 (13)0.0859 (18)0.0076 (11)0.0078 (13)0.0026 (12)
O40.079 (2)0.066 (2)0.0484 (17)0.0000.0109 (16)0.000
C10.077 (3)0.122 (4)0.077 (3)0.026 (3)0.025 (2)0.004 (3)
C20.062 (2)0.071 (2)0.108 (3)0.015 (2)0.006 (2)0.025 (2)
C30.072 (2)0.0459 (18)0.097 (3)0.0115 (16)0.027 (2)0.0073 (18)
C40.077 (2)0.0413 (16)0.096 (3)0.0063 (16)0.029 (2)0.0049 (17)
C50.081 (3)0.068 (2)0.083 (3)0.017 (2)0.001 (2)0.027 (2)
C60.083 (3)0.094 (3)0.060 (2)0.009 (2)0.0113 (19)0.019 (2)
C70.112 (5)0.059 (3)0.118 (5)0.0000.035 (4)0.000
C80.068 (3)0.060 (3)0.051 (2)0.0000.005 (2)0.000
C90.0523 (17)0.072 (2)0.0554 (17)0.0096 (15)0.0059 (14)0.0001 (15)
Geometric parameters (Å, º) top
Cs1—O43.050 (3)O1—C1i1.418 (5)
Cs1—O23.159 (2)O2—C21.408 (5)
Cs1—O2i3.159 (2)O2—C31.417 (5)
Cs1—O13.178 (4)O3—C51.410 (5)
Cs1—O3i3.320 (3)O3—C41.427 (5)
Cs1—O33.320 (3)O4—C6i1.425 (4)
Cs1—C5i3.793 (4)O4—C61.425 (4)
Cs1—C53.793 (4)C1—C21.457 (7)
Cs1—C13.860 (4)C3—C41.466 (6)
Cs1—C1i3.860 (4)C5—C61.480 (6)
Cs1—C4i3.862 (4)C7—C81.504 (8)
Cs1—C43.862 (4)C8—C91.382 (4)
Cs1—I13.8940 (3)C8—C9ii1.382 (4)
O1—C11.418 (5)C9—C9iii1.381 (8)
O4—Cs1—O2103.47 (7)O1—Cs1—C4i88.35 (8)
O4—Cs1—O2i103.47 (7)O3i—Cs1—C4i21.24 (8)
O2—Cs1—O2i104.57 (10)O3—Cs1—C4i116.18 (8)
O4—Cs1—O1122.51 (12)C5i—Cs1—C4i35.89 (10)
O2—Cs1—O152.97 (5)C5—Cs1—C4i110.55 (10)
O2i—Cs1—O152.97 (5)C1—Cs1—C4i108.71 (11)
O4—Cs1—O3i52.99 (6)C1i—Cs1—C4i75.05 (11)
O2—Cs1—O3i123.66 (7)O4—Cs1—C472.78 (7)
O2i—Cs1—O3i52.03 (7)O2—Cs1—C437.64 (9)
O1—Cs1—O3i93.95 (8)O2i—Cs1—C4132.66 (8)
O4—Cs1—O352.99 (6)O1—Cs1—C488.35 (8)
O2—Cs1—O352.03 (7)O3i—Cs1—C4116.18 (8)
O2i—Cs1—O3123.66 (7)O3—Cs1—C421.24 (8)
O1—Cs1—O393.95 (8)C5i—Cs1—C4110.55 (10)
O3i—Cs1—O395.33 (9)C5—Cs1—C435.89 (10)
O4—Cs1—C5i38.69 (7)C1—Cs1—C475.05 (11)
O2—Cs1—C5i132.85 (9)C1i—Cs1—C4108.71 (11)
O2i—Cs1—C5i72.00 (9)C4i—Cs1—C4136.51 (12)
O1—Cs1—C5i115.15 (10)I1—Cs1—I1i84.929 (10)
O3i—Cs1—C5i21.57 (8)Cs1—I1—Cs1iv95.071 (10)
O3—Cs1—C5i89.67 (9)C1—O1—C1i116.0 (5)
O4—Cs1—C538.69 (7)C1—O1—Cs1108.0 (3)
O2—Cs1—C572.00 (9)C1i—O1—Cs1108.0 (3)
O2i—Cs1—C5132.85 (9)C2—O2—C3111.7 (3)
O1—Cs1—C5115.15 (10)C2—O2—Cs1120.0 (2)
O3i—Cs1—C589.67 (9)C3—O2—Cs1121.6 (2)
O3—Cs1—C521.57 (8)C5—O3—C4112.5 (3)
C5i—Cs1—C577.38 (15)C5—O3—Cs198.5 (2)
O4—Cs1—C1129.57 (10)C4—O3—Cs1101.3 (2)
O2—Cs1—C137.47 (10)C6i—O4—C6112.5 (4)
O2i—Cs1—C172.50 (10)C6i—O4—Cs1122.5 (2)
O1—Cs1—C120.45 (10)C6—O4—Cs1122.5 (2)
O3i—Cs1—C1113.64 (10)O1—C1—C2110.1 (4)
O3—Cs1—C186.58 (9)O1—C1—Cs151.5 (2)
C5i—Cs1—C1134.16 (11)C2—C1—Cs186.9 (2)
C5—Cs1—C1107.89 (11)O2—C2—C1110.2 (3)
O4—Cs1—C1i129.57 (10)O2—C3—C4109.9 (3)
O2—Cs1—C1i72.50 (10)O3—C4—C3109.2 (3)
O2i—Cs1—C1i37.47 (10)O3—C4—Cs157.45 (17)
O1—Cs1—C1i20.45 (10)C3—C4—Cs188.1 (2)
O3i—Cs1—C1i86.58 (9)O3—C5—C6109.1 (3)
O3—Cs1—C1i113.64 (10)O3—C5—Cs159.96 (17)
C5i—Cs1—C1i107.89 (11)C6—C5—Cs187.0 (2)
C5—Cs1—C1i134.16 (11)O4—C6—C5109.6 (3)
C1—Cs1—C1i36.30 (17)C9—C8—C9ii117.4 (5)
O4—Cs1—C4i72.78 (7)C9—C8—C7121.3 (2)
O2—Cs1—C4i132.66 (8)C9ii—C8—C7121.3 (2)
O2i—Cs1—C4i37.64 (9)C9iii—C9—C8121.3 (2)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H48Cs2I2O12·C8H10
Mr1154.40
Crystal system, space groupMonoclinic, C2/m
Temperature (K)298
a, b, c (Å)15.436 (1), 17.4317 (11), 8.1756 (5)
β (°) 91.195 (1)
V3)2199.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.11
Crystal size (mm)0.50 × 0.25 × 0.15
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correctionMulti-scan
(XPREP, Siemens, 1996)
Tmin, Tmax0.386, 0.627
No. of measured, independent and
observed [I > 2σ(I)] reflections
7131, 2742, 2385
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.09
No. of reflections2742
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 1.08

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Cs1—O43.050 (3)Cs1—O33.320 (3)
Cs1—O23.159 (2)Cs1—C53.793 (4)
Cs1—O13.178 (4)Cs1—I13.8940 (3)
I1—Cs1—I1i84.929 (10)Cs1—I1—Cs1ii95.071 (10)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds