Download citation
Download citation
link to html
In the title compound, C24H17Cl2NO2, the succin­imide ring adopts a half-chair conformation, and the attached phenyl ring is twisted by an angle of 55.0 (1)° with respect to the succin­imide mean plane. The cyclo­butane ring is non-planar and is substituted by two phenyl rings oriented at angles of 38.3 (1) and 75.7 (1)° to the cyclo­butane mean plane. The dihedral angle between the succin­imide and cyclo­butane rings is 64.8 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801012673/ci6049sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801012673/ci6049Isup2.hkl
Contains datablock I

CCDC reference: 170932

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.102
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The photoinduced reactions of 1H-indole-2,3-dione (isatin) derivatives have been intensively investigated (Ling et al., 1998; Xue et al., 2000; Xue et al., 2001) as these derivatives display biological activity (Bieck et al., 1993) and have been widely used as synthetic precursors of many natural and unnatural products (Popp, 1975; Shvekhgeimer, 1996). The title compound, (I), was isolated in order to extend the scope of the photoinduced reactivity of the maleimide derivative and an X-ray crystal structure analysis was undertaken to establish its conformation.

In the succinimide-cyclobutane ring system (Fig. 1), the succinimide ring adopts a half-chair conformation [Q2 = 0.141 (2) Å and ϕ2 = 89.2 (6)°] twisted about the C3—C6 axis. The cyclobutane ring is non-planar with a dihedral angle between the C3/C4/C6 and C4/C5/C6 planes of 156.1 (2)° and a puckering parameter Q2 = -0.231 (2) Å (Cremer & Pople, 1975). The dihedral angle between the least-square planes through the succinimide and cyclobutane ring is 64.8 (1)°. The bond lengths and angles in (I) have normal values and those within the succinimide comparable with a related structure (Igonin et al., 1993). In the cyclobutane ring, the C5—C6 bond length of 1.624 (2) Å is longer than typical Csp3—Csp3 bonds and is considered to be of spiro-atom character. The phenyl ring substituent attached to the succinimide ring moiety at N1 is twisted by an angle of 55.0 (1)° to the five-membered ring, corresponding to a bisectional orientation to the succinimide. Atoms O1 and O2 deviate slightly by -0.172 (1) and 0.183 (1) Å, respectively, from the mean plane of this ring. The phenyl rings attached to the cyclobutane ring at C5 are in nearly axial and equatorial positions and they subtend angles of 38.3 (1) and 75.7 (1)°, respectively, to the cyclobutane ring. Both Cl1 and Cl2 atoms attached to the succinimide–cyclobutane ring system form an average Cl—C—C angle of 114.8°, while the Cl1—C6—C3—Cl2 torsion angle is -18.47 (17)°.

Experimental top

The title compound, (I), was prepared by a photoinduced (Peterno-Büchi) reaction (Arnold, 1968). A solution of 1-phenyl-2,3-dichloromaleimide (0.05 M) and 1,1-diphenylethylene (0.2 M) in benzene (40 ml) was photolysed by irradiation of light using a medium-pressure mercury lamp (500 W, λ > 400 nm) through a Pyrex filter and under constant nitrogen purging. After irradiation the solvent was removed in vacuo and residue was separated by column chromatography. The title compound was obtained as the sole product and was recrystallized from a petroleum ether–ethyl acetate solution.

Refinement top

The H atoms were located in difference maps and were subsequently geometrically fixed and allowed to ride on the parent C atoms, with aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(1R/1S,5S/5R)-Dichloro-3,6,6-triphenyl-3-azabicyclo[3.2.0]hepta-2,4-dione top
Crystal data top
C24H17Cl2NO2Dx = 1.412 Mg m3
Mr = 422.29Melting point: 433K K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1302 (2) ÅCell parameters from 8192 reflections
b = 7.3731 (1) Åθ = 1.7–28.3°
c = 24.3816 (4) ŵ = 0.35 mm1
β = 96.950 (1)°T = 293 K
V = 1986.15 (6) Å3Slab, colourless
Z = 40.36 × 0.28 × 0.16 mm
F(000) = 872
Data collection top
Siemens SMART CCD
diffractometer
4726 independent reflections
Radiation source: fine-focus sealed tube3204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 1.7°
ω scansh = 1414
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.885, Tmax = 0.946l = 1632
13108 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.102 w = 1/σ2(Fo2)
S = 0.83(Δ/σ)max < 0.001
4726 reflectionsΔρmax = 0.29 e Å3
263 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0133 (11)
Crystal data top
C24H17Cl2NO2V = 1986.15 (6) Å3
Mr = 422.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1302 (2) ŵ = 0.35 mm1
b = 7.3731 (1) ÅT = 293 K
c = 24.3816 (4) Å0.36 × 0.28 × 0.16 mm
β = 96.950 (1)°
Data collection top
Siemens SMART CCD
diffractometer
4726 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3204 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.946Rint = 0.078
13108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.83Δρmax = 0.29 e Å3
4726 reflectionsΔρmin = 0.25 e Å3
263 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20786 (4)0.54966 (6)0.016663 (18)0.04380 (14)
Cl20.45373 (5)0.73964 (7)0.015339 (19)0.05394 (17)
O10.32037 (11)0.36615 (16)0.12421 (5)0.0395 (3)
O20.61966 (11)0.77172 (19)0.09973 (6)0.0551 (4)
N10.48879 (11)0.54616 (18)0.12036 (5)0.0291 (3)
C10.36735 (13)0.4986 (2)0.10735 (6)0.0275 (3)
C20.52179 (15)0.7009 (2)0.09244 (7)0.0345 (4)
C30.41292 (15)0.7604 (2)0.05213 (7)0.0319 (4)
C40.34743 (15)0.9351 (2)0.06463 (7)0.0326 (4)
H4A0.30330.99090.03220.039*
H4B0.39911.02290.08560.039*
C50.26526 (13)0.8254 (2)0.10034 (6)0.0267 (3)
C60.30869 (13)0.6447 (2)0.07008 (6)0.0280 (3)
C70.56754 (14)0.4540 (2)0.16251 (7)0.0332 (4)
C80.67592 (17)0.3810 (3)0.15002 (9)0.0482 (5)
H8A0.69870.39140.11470.058*
C90.7496 (2)0.2919 (3)0.19171 (11)0.0618 (6)
H9A0.82160.23920.18400.074*
C100.7173 (2)0.2810 (3)0.24394 (10)0.0615 (6)
H10A0.76840.22410.27170.074*
C110.60967 (19)0.3540 (3)0.25563 (9)0.0528 (5)
H11A0.58790.34470.29120.063*
C120.53323 (17)0.4414 (2)0.21474 (7)0.0397 (4)
H12A0.46020.49050.22250.048*
C130.13130 (14)0.8714 (2)0.09069 (7)0.0321 (4)
C140.04081 (16)0.7447 (3)0.09422 (8)0.0427 (4)
H14A0.06150.62380.10070.051*
C150.08057 (17)0.7948 (4)0.08825 (8)0.0556 (6)
H15A0.14020.70780.09080.067*
C160.11235 (17)0.9738 (4)0.07857 (9)0.0603 (6)
H16A0.19331.00820.07470.072*
C170.02391 (19)1.1004 (3)0.07472 (9)0.0585 (6)
H17A0.04551.22100.06800.070*
C180.09792 (16)1.0520 (3)0.08063 (8)0.0410 (4)
H18A0.15691.13980.07790.049*
C190.31106 (13)0.8271 (2)0.16239 (6)0.0260 (3)
C200.24626 (15)0.7387 (2)0.19998 (7)0.0344 (4)
H20A0.17470.67930.18700.041*
C210.28545 (17)0.7370 (2)0.25584 (7)0.0408 (4)
H21A0.24050.67610.27990.049*
C220.39043 (17)0.8247 (2)0.27630 (7)0.0413 (4)
H22A0.41700.82330.31400.050*
C230.45572 (16)0.9147 (2)0.24018 (8)0.0407 (4)
H23A0.52680.97440.25360.049*
C240.41647 (14)0.9171 (2)0.18421 (7)0.0334 (4)
H24A0.46120.98000.16060.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0482 (2)0.0486 (3)0.0314 (3)0.0008 (2)0.00846 (18)0.00820 (19)
Cl20.0758 (3)0.0559 (3)0.0362 (3)0.0031 (3)0.0316 (2)0.0033 (2)
O10.0415 (6)0.0322 (7)0.0435 (8)0.0095 (6)0.0002 (5)0.0062 (5)
O20.0293 (6)0.0544 (9)0.0832 (11)0.0083 (6)0.0130 (6)0.0112 (7)
N10.0276 (6)0.0311 (7)0.0289 (7)0.0006 (6)0.0047 (5)0.0001 (5)
C10.0309 (7)0.0269 (8)0.0247 (8)0.0014 (7)0.0039 (6)0.0033 (6)
C20.0320 (8)0.0341 (9)0.0396 (10)0.0003 (7)0.0134 (7)0.0000 (7)
C30.0378 (8)0.0345 (9)0.0260 (9)0.0002 (7)0.0143 (7)0.0035 (7)
C40.0379 (8)0.0300 (9)0.0314 (9)0.0001 (7)0.0101 (7)0.0066 (7)
C50.0270 (7)0.0271 (8)0.0266 (8)0.0011 (6)0.0053 (6)0.0015 (6)
C60.0292 (7)0.0302 (8)0.0243 (8)0.0026 (7)0.0020 (6)0.0011 (6)
C70.0316 (8)0.0299 (9)0.0367 (10)0.0013 (7)0.0017 (7)0.0024 (7)
C80.0392 (9)0.0569 (13)0.0468 (12)0.0093 (9)0.0017 (8)0.0082 (9)
C90.0448 (11)0.0638 (15)0.0728 (17)0.0181 (11)0.0093 (10)0.0054 (12)
C100.0598 (13)0.0494 (13)0.0672 (17)0.0063 (11)0.0258 (11)0.0068 (11)
C110.0651 (13)0.0469 (12)0.0432 (12)0.0054 (11)0.0067 (10)0.0082 (9)
C120.0434 (9)0.0374 (10)0.0377 (10)0.0005 (8)0.0024 (8)0.0019 (8)
C130.0292 (8)0.0414 (10)0.0254 (9)0.0022 (7)0.0025 (6)0.0018 (7)
C140.0344 (9)0.0524 (12)0.0413 (11)0.0053 (8)0.0048 (7)0.0030 (8)
C150.0309 (9)0.0903 (18)0.0454 (13)0.0102 (11)0.0036 (8)0.0128 (11)
C160.0310 (9)0.098 (2)0.0495 (13)0.0145 (12)0.0039 (8)0.0077 (12)
C170.0543 (12)0.0658 (15)0.0524 (14)0.0275 (11)0.0057 (10)0.0019 (10)
C180.0394 (9)0.0422 (10)0.0402 (11)0.0069 (9)0.0003 (7)0.0026 (8)
C190.0269 (7)0.0246 (8)0.0270 (8)0.0019 (6)0.0058 (6)0.0010 (6)
C200.0360 (8)0.0389 (10)0.0287 (9)0.0075 (7)0.0060 (7)0.0013 (7)
C210.0504 (10)0.0429 (11)0.0304 (10)0.0038 (9)0.0100 (8)0.0044 (8)
C220.0553 (11)0.0403 (10)0.0268 (9)0.0054 (9)0.0014 (8)0.0049 (7)
C230.0374 (9)0.0424 (11)0.0399 (11)0.0015 (8)0.0053 (8)0.0079 (8)
C240.0306 (8)0.0356 (9)0.0346 (10)0.0053 (7)0.0066 (7)0.0018 (7)
Geometric parameters (Å, º) top
Cl1—C61.7587 (16)C16—C171.368 (3)
Cl2—C31.7655 (16)C17—C181.393 (3)
O1—C11.2033 (19)C19—C201.395 (2)
O2—C21.202 (2)C19—C241.396 (2)
N1—C11.3952 (19)C20—C211.379 (3)
N1—C21.400 (2)C21—C221.375 (3)
N1—C71.438 (2)C22—C231.378 (3)
C1—C61.507 (2)C23—C241.382 (3)
C2—C31.529 (2)C4—H4A0.97
C3—C41.529 (2)C4—H4B0.97
C3—C61.545 (2)C8—H8A0.93
C4—C51.563 (2)C9—H9A0.93
C5—C61.624 (2)C10—H10A0.93
C5—C131.519 (2)C11—H11A0.93
C5—C191.537 (2)C12—H12A0.93
C7—C81.388 (2)C14—H14A0.93
C7—C121.376 (2)C15—H15A0.93
C8—C91.392 (3)C16—H16A0.93
C9—C101.367 (3)C17—H17A0.93
C10—C111.374 (3)C18—H18A0.93
C11—C121.388 (3)C20—H20A0.93
C13—C141.384 (2)C21—H21A0.93
C13—C181.396 (2)C22—H22A0.93
C14—C151.391 (3)C23—H23A0.93
C15—C161.379 (3)C24—H24A0.93
C1—N1—C2113.47 (13)C11—C10—H10A119.8
C1—N1—C7122.26 (13)C10—C11—C12120.4 (2)
C2—N1—C7124.00 (13)C10—C11—H11A119.8
O1—C1—N1125.13 (14)C12—C11—H11A119.8
O1—C1—C6127.73 (14)C7—C12—C11118.77 (18)
N1—C1—C6107.13 (13)C7—C12—H12A120.6
O2—C2—N1124.66 (17)C11—C12—H12A120.6
O2—C2—C3127.16 (16)C14—C13—C18118.32 (16)
N1—C2—C3108.18 (13)C14—C13—C5123.21 (16)
C2—C3—C4118.26 (14)C18—C13—C5118.39 (15)
C2—C3—C6102.92 (12)C13—C14—C15121.28 (19)
C4—C3—C690.93 (11)C13—C14—H14A119.4
C3—C4—C590.00 (11)C15—C14—H14A119.4
C4—C5—C686.85 (11)C16—C15—C14119.9 (2)
C3—C6—C587.19 (11)C16—C15—H15A120.1
C1—C6—Cl1110.66 (11)C14—C15—H15A120.1
C2—C3—Cl2107.50 (11)C17—C16—C15119.53 (18)
C4—C3—Cl2116.19 (11)C17—C16—H16A120.2
C6—C3—Cl2120.19 (12)C15—C16—H16A120.2
C3—C4—H4A113.6C16—C17—C18121.2 (2)
C5—C4—H4A113.6C16—C17—H17A119.4
C3—C4—H4B113.6C18—C17—H17A119.4
C5—C4—H4B113.6C17—C18—C13119.85 (18)
H4A—C4—H4B110.9C17—C18—H18A120.1
C13—C5—C4115.32 (13)C13—C18—H18A120.1
C19—C5—C4113.42 (13)C20—C19—C24116.70 (15)
C13—C5—C6116.94 (13)C20—C19—C5120.46 (14)
C19—C5—C6111.85 (12)C24—C19—C5122.84 (13)
C13—C5—C19110.67 (12)C21—C20—C19121.76 (16)
C1—C6—C3106.26 (12)C21—C20—H20A119.1
C1—C6—C5116.33 (13)C19—C20—H20A119.1
C3—C6—Cl1116.36 (11)C22—C21—C20120.49 (16)
C5—C6—Cl1117.71 (10)C22—C21—H21A119.8
C12—C7—C8121.50 (16)C20—C21—H21A119.8
C12—C7—N1118.68 (14)C21—C22—C23119.02 (17)
C8—C7—N1119.82 (16)C21—C22—H22A120.5
C7—C8—C9118.3 (2)C23—C22—H22A120.5
C7—C8—H8A120.8C22—C23—C24120.61 (16)
C9—C8—H8A120.8C22—C23—H23A119.7
C10—C9—C8120.7 (2)C24—C23—H23A119.7
C10—C9—H9A119.7C23—C24—C19121.40 (15)
C8—C9—H9A119.7C23—C24—H24A119.3
C9—C10—C11120.30 (19)C19—C24—H24A119.3
C9—C10—H10A119.8
C2—N1—C1—O1176.20 (16)C19—C5—C6—Cl1144.02 (11)
C7—N1—C1—O19.6 (2)C4—C5—C6—Cl1101.97 (12)
C2—N1—C1—C64.97 (18)C1—N1—C7—C1254.3 (2)
C7—N1—C1—C6169.24 (14)C2—N1—C7—C12119.25 (18)
C1—N1—C2—O2175.54 (16)C1—N1—C7—C8125.96 (18)
C7—N1—C2—O21.4 (3)C2—N1—C7—C860.4 (2)
C1—N1—C2—C34.50 (18)C12—C7—C8—C90.7 (3)
C7—N1—C2—C3178.60 (14)N1—C7—C8—C9179.65 (17)
O2—C2—C3—C470.3 (2)C7—C8—C9—C101.7 (3)
N1—C2—C3—C4109.72 (15)C8—C9—C10—C111.8 (3)
O2—C2—C3—C6168.49 (17)C9—C10—C11—C120.8 (3)
N1—C2—C3—C611.55 (17)C8—C7—C12—C110.3 (3)
O2—C2—C3—Cl263.7 (2)N1—C7—C12—C11179.41 (16)
N1—C2—C3—Cl2116.27 (12)C10—C11—C12—C70.2 (3)
C2—C3—C4—C587.73 (15)C19—C5—C13—C1483.26 (19)
C6—C3—C4—C517.49 (12)C4—C5—C13—C14146.32 (16)
Cl2—C3—C4—C5142.12 (12)C6—C5—C13—C1446.4 (2)
C3—C4—C5—C13135.05 (14)C19—C5—C13—C1893.27 (17)
C3—C4—C5—C1995.86 (14)C4—C5—C13—C1837.2 (2)
C3—C4—C5—C616.63 (12)C6—C5—C13—C18137.08 (15)
O1—C1—C6—C3169.04 (16)C18—C13—C14—C150.3 (3)
N1—C1—C6—C312.17 (16)C5—C13—C14—C15176.20 (17)
O1—C1—C6—C595.95 (19)C13—C14—C15—C160.0 (3)
N1—C1—C6—C582.84 (15)C14—C15—C16—C170.3 (3)
O1—C1—C6—Cl141.9 (2)C15—C16—C17—C180.3 (3)
N1—C1—C6—Cl1139.35 (11)C16—C17—C18—C130.0 (3)
C4—C3—C6—C1133.45 (13)C14—C13—C18—C170.3 (3)
C2—C3—C6—C114.14 (16)C5—C13—C18—C17176.37 (16)
Cl2—C3—C6—C1105.21 (14)C13—C5—C19—C2047.1 (2)
C4—C3—C6—C516.82 (12)C4—C5—C19—C20178.55 (14)
C2—C3—C6—C5102.49 (13)C6—C5—C19—C2085.18 (17)
Cl2—C3—C6—C5138.15 (12)C13—C5—C19—C24131.90 (16)
C4—C3—C6—Cl1102.86 (13)C4—C5—C19—C240.5 (2)
C2—C3—C6—Cl1137.83 (12)C6—C5—C19—C2495.79 (17)
Cl2—C3—C6—Cl118.47 (17)C24—C19—C20—C211.3 (2)
C13—C5—C6—C1119.85 (15)C5—C19—C20—C21179.64 (16)
C19—C5—C6—C19.24 (17)C19—C20—C21—C220.5 (3)
C4—C5—C6—C1123.25 (14)C20—C21—C22—C230.2 (3)
C13—C5—C6—C3133.38 (14)C21—C22—C23—C240.0 (3)
C19—C5—C6—C397.53 (13)C22—C23—C24—C190.9 (3)
C4—C5—C6—C316.47 (11)C20—C19—C24—C231.5 (2)
C13—C5—C6—Cl114.93 (18)C5—C19—C24—C23179.46 (15)

Experimental details

Crystal data
Chemical formulaC24H17Cl2NO2
Mr422.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.1302 (2), 7.3731 (1), 24.3816 (4)
β (°) 96.950 (1)
V3)1986.15 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.36 × 0.28 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
13108, 4726, 3204
Rint0.078
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 0.83
No. of reflections4726
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Cl1—C61.7587 (16)C2—C31.529 (2)
Cl2—C31.7655 (16)C3—C41.529 (2)
O1—C11.2033 (19)C3—C61.545 (2)
O2—C21.202 (2)C4—C51.563 (2)
N1—C11.3952 (19)C5—C61.624 (2)
N1—C21.400 (2)C5—C131.519 (2)
N1—C71.438 (2)C5—C191.537 (2)
C1—C61.507 (2)
C1—N1—C2113.47 (13)C3—C4—C590.00 (11)
C1—N1—C7122.26 (13)C4—C5—C686.85 (11)
C2—N1—C7124.00 (13)C3—C6—C587.19 (11)
C2—C3—C6102.92 (12)C1—C6—Cl1110.66 (11)
C4—C3—C690.93 (11)C2—C3—Cl2107.50 (11)
C3—C4—C5—C616.63 (12)C4—C5—C13—C1837.2 (2)
Cl2—C3—C6—Cl118.47 (17)C6—C5—C19—C2085.18 (17)
C1—N1—C7—C8125.96 (18)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds