Download citation
Download citation
link to html
The structure of the title compound, C14H14N2O4S, has been determined as part of an investigation into the structure and substitution patterns in benzene­sulfonyl-protected pyrroles.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680101131X/cv6038sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680101131X/cv6038Isup2.hkl
Contains datablock I

CCDC reference: 170926

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.059
  • wR factor = 0.182
  • Data-to-parameter ratio = 22.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Pyrrole readily undergoes electrophilic substitution in solution, leading to α-substitution. Because pyrrole is a π-electron-rich molecule, in many cases, the reaction does not stop with mono-substitution, but continues, to give higher substitutions. One means of controlling the reactivity of pyrrole is to add a blocking group to the pyrrole ring. While it is possible to attach the blocking group to the α-carbon, it is easier to utilize the N atom. Attachment of an electron-withdrawing group to the N atom attenuates the reactivity and provides a degree of regioselective control. When using benzenesulfonyl as the protecting group, the regiospecificity is found to be controlled by hardness of the Lewis acid reaction promoter.

The title compound, (I), was prepared in several steps from 1-benzenesulfonylpyrrole by an initial regioselective acylation to afford 3-acetyl-1-benzenesulfonylpyrrole (Xu et al., 1981; Rokach et al., 1981; Kakushima et al., 1983). Subsequent formation of the corresponding oxime of this ketone followed by Beckmann rearrangement in polyphosphoric acid at 358 K afforded the 3-pyrrolylacetamide (m.p. 443–445 K) as the predominant rearrangement product. Friedel–Crafts acylation using acetic anhydride in the presence of aluminium chloride at 273 K was found to occur regioselectively at the adjacent β site to afford the title 3,4-disubstituted pyrrole (m.p. 424–425 K). Although substitution at the C-4 position of a 3-substituted pyrrole is quite unusual in the absence of a bulky N-substituent, Huckel MO calculations upon 1-benzenesulfonylpyrrole-3-ylacetamide indicate that the C-4 position in this C-3 amino-substituted pyrrole is the most electron-rich site of the pyrrole ring (Dewar et al., 1985; Stewart, 1985), suggesting that electrophilic attack should therefore take place at this site. At present, however, it is not clear if the 3,4-disubstitution pattern obtained in this instance is the result of direct acylation at the C-4 site, or the result of an acyl group migration from a kinetically formed isomer. Numerous examples of rearrangement processes of pyrroles have been reported by Kakushima & Frenette (1984), Carmona et al. (1980), Carson & Davis (1981) and Xiao et al. (1996).

The pyrrole and phenyl ring systems found in the title compound are themselves planar, but none of the rings are observed as being coplanar. Considering the pyrrole and phenyl rings of the benzenesulfonylpyrrole and the tetrahedral geometry of the S atom, this is not unexpected.

Experimental top

See above for synthesis details.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). The ellipsoids represent displacement parameters at the 40% probability level.
N-(1-Benzenesulfonyl-4-acetylpyrrol-3-yl)acetamide top
Crystal data top
C14H14N2O4SF(000) = 640
Mr = 306.34Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.683 (3) Åθ = 4.7–13.9°
b = 15.159 (6) ŵ = 0.24 mm1
c = 11.151 (3) ÅT = 298 K
β = 91.06 (3)°Rectangular, colorless
V = 1467.5 (9) Å30.50 × 0.50 × 0.40 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.3°
Graphite monochromatorh = 1212
ω/2θ scansk = 121
4709 measured reflectionsl = 415
4277 independent reflections2 standard reflections every 120 min
3261 reflections with I > 2σ(I) intensity decay: 2.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1082P)2 + 0.1541P]
where P = (Fo2 + 2Fc2)/3
4277 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C14H14N2O4SV = 1467.5 (9) Å3
Mr = 306.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.683 (3) ŵ = 0.24 mm1
b = 15.159 (6) ÅT = 298 K
c = 11.151 (3) Å0.50 × 0.50 × 0.40 mm
β = 91.06 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.014
4709 measured reflections2 standard reflections every 120 min
4277 independent reflections intensity decay: 2.1%
3261 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.08Δρmax = 0.31 e Å3
4277 reflectionsΔρmin = 0.60 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98517 (5)0.17629 (3)0.83792 (5)0.05889 (18)
O10.93276 (19)0.15396 (12)0.95467 (17)0.0774 (5)
O20.8872 (2)0.21917 (12)0.7521 (2)0.0944 (7)
N11.13260 (17)0.24692 (10)0.86122 (15)0.0516 (4)
O311.53711 (17)0.39693 (9)1.02189 (13)0.0617 (4)
N41.36706 (17)0.43674 (9)0.80433 (12)0.0471 (3)
H41.42670.46290.85550.071*
O411.2689 (2)0.43983 (10)0.61630 (13)0.0684 (4)
C21.24228 (19)0.23761 (11)0.95045 (16)0.0475 (4)
H21.24720.19261.00700.071*
C31.34327 (18)0.30666 (10)0.94124 (14)0.0415 (3)
C41.29258 (18)0.35993 (10)0.84127 (14)0.0411 (3)
C51.1646 (2)0.32135 (10)0.79181 (16)0.0478 (4)
H51.10920.34080.72470.072*
C111.0713 (2)0.08373 (12)0.77344 (16)0.0509 (4)
C121.1168 (2)0.01502 (13)0.84714 (17)0.0536 (4)
H121.10330.01840.92960.080*
C131.1832 (3)0.05925 (15)0.7964 (3)0.0698 (6)
H131.21280.10630.84500.105*
C141.2051 (3)0.06354 (19)0.6755 (3)0.0852 (8)
H141.24940.11340.64210.128*
C151.1615 (4)0.0060 (2)0.6033 (2)0.0933 (9)
H151.17810.00290.52130.140*
C161.0932 (4)0.08033 (18)0.6506 (2)0.0791 (7)
H161.06280.12690.60130.119*
C311.4745 (2)0.32504 (10)1.02240 (15)0.0457 (3)
C321.5292 (3)0.25336 (15)1.1056 (2)0.0770 (7)
H32A1.61480.27451.15310.115*
H32B1.56080.20321.05950.115*
H32C1.44710.23651.15730.115*
C411.3519 (2)0.47287 (10)0.69357 (14)0.0459 (3)
C421.4438 (3)0.55559 (12)0.67236 (18)0.0582 (4)
H42A1.50100.57050.74400.087*
H42B1.37510.60300.65160.087*
H42C1.51370.54590.60800.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0404 (2)0.0484 (3)0.0876 (4)0.00822 (16)0.0081 (2)0.0034 (2)
O10.0641 (9)0.0681 (9)0.1009 (12)0.0138 (7)0.0290 (9)0.0085 (9)
O20.0587 (9)0.0641 (10)0.1586 (19)0.0089 (7)0.0487 (10)0.0181 (11)
N10.0455 (7)0.0425 (7)0.0663 (9)0.0081 (6)0.0117 (6)0.0068 (6)
O310.0707 (8)0.0562 (7)0.0575 (8)0.0222 (6)0.0152 (6)0.0084 (6)
N40.0550 (8)0.0444 (7)0.0414 (7)0.0107 (6)0.0079 (5)0.0041 (5)
O410.0996 (11)0.0545 (8)0.0500 (7)0.0083 (7)0.0254 (7)0.0048 (6)
C20.0497 (8)0.0392 (7)0.0534 (9)0.0039 (6)0.0067 (7)0.0044 (6)
C30.0434 (7)0.0401 (7)0.0408 (7)0.0018 (6)0.0038 (6)0.0000 (5)
C40.0437 (7)0.0377 (7)0.0416 (7)0.0013 (5)0.0020 (6)0.0010 (5)
C50.0456 (8)0.0419 (8)0.0555 (9)0.0019 (6)0.0100 (7)0.0048 (6)
C110.0473 (8)0.0502 (9)0.0550 (9)0.0160 (7)0.0036 (7)0.0017 (7)
C120.0517 (9)0.0533 (9)0.0557 (10)0.0067 (7)0.0007 (7)0.0029 (8)
C130.0623 (12)0.0574 (11)0.0900 (16)0.0041 (9)0.0109 (11)0.0011 (10)
C140.0835 (16)0.0715 (15)0.102 (2)0.0215 (12)0.0363 (15)0.0222 (14)
C150.121 (2)0.098 (2)0.0620 (13)0.0392 (18)0.0301 (14)0.0196 (14)
C160.1033 (18)0.0766 (14)0.0574 (12)0.0287 (14)0.0003 (11)0.0126 (10)
C310.0485 (8)0.0464 (8)0.0419 (7)0.0063 (6)0.0067 (6)0.0022 (6)
C320.0825 (14)0.0585 (11)0.0884 (16)0.0132 (10)0.0423 (13)0.0202 (11)
C410.0559 (9)0.0393 (7)0.0422 (8)0.0036 (6)0.0031 (6)0.0023 (6)
C420.0724 (12)0.0471 (9)0.0551 (10)0.0046 (8)0.0001 (8)0.0110 (7)
Geometric parameters (Å, º) top
S1—O21.4255 (18)C11—C161.387 (3)
S1—O11.4277 (19)C12—C131.390 (3)
S1—N11.6854 (15)C12—H120.93
S1—C111.751 (2)C13—C141.366 (4)
N1—C21.372 (2)C13—H130.93
N1—C51.399 (2)C14—C151.375 (5)
O31—C311.218 (2)C14—H140.93
N4—C411.355 (2)C15—C161.383 (4)
N4—C41.398 (2)C15—H150.93
N4—H40.86C16—H160.93
O41—C411.221 (2)C31—C321.500 (3)
C2—C31.371 (2)C32—H32A0.96
C2—H20.93C32—H32B0.96
C3—C41.439 (2)C32—H32C0.96
C3—C311.468 (2)C41—C421.507 (2)
C4—C51.363 (2)C42—H42A0.96
C5—H50.93C42—H42B0.96
C11—C121.380 (3)C42—H42C0.96
O2—S1—O1121.58 (13)C14—C13—C12120.4 (2)
O2—S1—N1104.84 (9)C14—C13—H13119.8
O1—S1—N1105.31 (10)C12—C13—H13119.8
O2—S1—C11110.12 (13)C13—C14—C15120.0 (3)
O1—S1—C11109.29 (10)C13—C14—H14120.0
N1—S1—C11104.10 (8)C15—C14—H14120.0
C2—N1—C5109.99 (14)C14—C15—C16121.1 (2)
C2—N1—S1124.17 (12)C14—C15—H15119.5
C5—N1—S1125.82 (13)C16—C15—H15119.5
C41—N4—C4124.58 (14)C15—C16—C11118.3 (2)
C41—N4—H4117.7C15—C16—H16120.8
C4—N4—H4117.7C11—C16—H16120.8
C3—C2—N1107.68 (15)O31—C31—C3120.55 (15)
C3—C2—H2126.2O31—C31—C32120.97 (16)
N1—C2—H2126.2C3—C31—C32118.48 (15)
C2—C3—C4107.44 (14)C31—C32—H32A109.5
C2—C3—C31126.07 (15)C31—C32—H32B109.5
C4—C3—C31126.42 (14)H32A—C32—H32B109.5
C5—C4—N4128.05 (15)C31—C32—H32C109.5
C5—C4—C3107.94 (14)H32A—C32—H32C109.5
N4—C4—C3124.00 (14)H32B—C32—H32C109.5
C4—C5—N1106.92 (14)O41—C41—N4121.58 (16)
C4—C5—H5126.5O41—C41—C42122.54 (16)
N1—C5—H5126.5N4—C41—C42115.89 (15)
C12—C11—C16121.1 (2)C41—C42—H42A109.5
C12—C11—S1118.70 (15)C41—C42—H42B109.5
C16—C11—S1120.19 (18)H42A—C42—H42B109.5
C11—C12—C13119.0 (2)C41—C42—H42C109.5
C11—C12—H12120.5H42A—C42—H42C109.5
C13—C12—H12120.5H42B—C42—H42C109.5
O2—S1—N1—C2170.03 (18)O2—S1—C11—C12153.89 (15)
O1—S1—N1—C240.67 (19)O1—S1—C11—C1217.91 (17)
C11—S1—N1—C274.28 (18)N1—S1—C11—C1294.19 (15)
O2—S1—N1—C512.0 (2)O2—S1—C11—C1626.3 (2)
O1—S1—N1—C5141.39 (17)O1—S1—C11—C16162.31 (18)
C11—S1—N1—C5103.66 (17)N1—S1—C11—C1685.59 (18)
C5—N1—C2—C31.4 (2)C16—C11—C12—C131.2 (3)
S1—N1—C2—C3179.65 (13)S1—C11—C12—C13179.04 (14)
N1—C2—C3—C40.3 (2)C11—C12—C13—C141.0 (3)
N1—C2—C3—C31176.91 (16)C12—C13—C14—C150.0 (4)
C41—N4—C4—C519.9 (3)C13—C14—C15—C160.9 (4)
C41—N4—C4—C3159.32 (17)C14—C15—C16—C110.8 (4)
C2—C3—C4—C50.90 (19)C12—C11—C16—C150.3 (3)
C31—C3—C4—C5178.12 (16)S1—C11—C16—C15179.91 (19)
C2—C3—C4—N4179.77 (15)C2—C3—C31—O31164.50 (18)
C31—C3—C4—N42.6 (3)C4—C3—C31—O3112.2 (3)
N4—C4—C5—N1178.99 (16)C2—C3—C31—C3215.5 (3)
C3—C4—C5—N11.73 (19)C4—C3—C31—C32167.8 (2)
C2—N1—C5—C42.0 (2)C4—N4—C41—O410.3 (3)
S1—N1—C5—C4179.82 (13)C4—N4—C41—C42179.52 (16)

Experimental details

Crystal data
Chemical formulaC14H14N2O4S
Mr306.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.683 (3), 15.159 (6), 11.151 (3)
β (°) 91.06 (3)
V3)1467.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4709, 4277, 3261
Rint0.014
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.182, 1.08
No. of reflections4277
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.60

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD (McArdle, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), OSCAIL (McArdle, 1995).

Selected geometric parameters (Å, º) top
S1—O21.4255 (18)C3—C41.439 (2)
S1—O11.4277 (19)C3—C311.468 (2)
S1—N11.6854 (15)C4—C51.363 (2)
S1—C111.751 (2)C11—C121.380 (3)
N1—C21.372 (2)C11—C161.387 (3)
N1—C51.399 (2)C12—C131.390 (3)
O31—C311.218 (2)C13—C141.366 (4)
N4—C411.355 (2)C14—C151.375 (5)
N4—C41.398 (2)C15—C161.383 (4)
O41—C411.221 (2)C31—C321.500 (3)
C2—C31.371 (2)C41—C421.507 (2)
O2—S1—O1121.58 (13)N4—C4—C3124.00 (14)
O2—S1—N1104.84 (9)C4—C5—N1106.92 (14)
O1—S1—N1105.31 (10)C12—C11—C16121.1 (2)
O2—S1—C11110.12 (13)C12—C11—S1118.70 (15)
O1—S1—C11109.29 (10)C16—C11—S1120.19 (18)
N1—S1—C11104.10 (8)C11—C12—C13119.0 (2)
C2—N1—C5109.99 (14)C14—C13—C12120.4 (2)
C2—N1—S1124.17 (12)C13—C14—C15120.0 (3)
C5—N1—S1125.82 (13)C14—C15—C16121.1 (2)
C41—N4—C4124.58 (14)C15—C16—C11118.3 (2)
C3—C2—N1107.68 (15)O31—C31—C3120.55 (15)
C2—C3—C4107.44 (14)O31—C31—C32120.97 (16)
C2—C3—C31126.07 (15)C3—C31—C32118.48 (15)
C4—C3—C31126.42 (14)O41—C41—N4121.58 (16)
C5—C4—N4128.05 (15)O41—C41—C42122.54 (16)
C5—C4—C3107.94 (14)N4—C41—C42115.89 (15)
O2—S1—N1—C2170.03 (18)O2—S1—C11—C12153.89 (15)
O1—S1—N1—C240.67 (19)O1—S1—C11—C1217.91 (17)
C11—S1—N1—C274.28 (18)N1—S1—C11—C1294.19 (15)
O2—S1—N1—C512.0 (2)O2—S1—C11—C1626.3 (2)
O1—S1—N1—C5141.39 (17)O1—S1—C11—C16162.31 (18)
C11—S1—N1—C5103.66 (17)N1—S1—C11—C1685.59 (18)
C5—N1—C2—C31.4 (2)C16—C11—C12—C131.2 (3)
S1—N1—C2—C3179.65 (13)S1—C11—C12—C13179.04 (14)
N1—C2—C3—C40.3 (2)C11—C12—C13—C141.0 (3)
N1—C2—C3—C31176.91 (16)C12—C13—C14—C150.0 (4)
C41—N4—C4—C519.9 (3)C13—C14—C15—C160.9 (4)
C41—N4—C4—C3159.32 (17)C14—C15—C16—C110.8 (4)
C2—C3—C4—C50.90 (19)C12—C11—C16—C150.3 (3)
C31—C3—C4—C5178.12 (16)S1—C11—C16—C15179.91 (19)
C2—C3—C4—N4179.77 (15)C2—C3—C31—O31164.50 (18)
C31—C3—C4—N42.6 (3)C4—C3—C31—O3112.2 (3)
N4—C4—C5—N1178.99 (16)C2—C3—C31—C3215.5 (3)
C3—C4—C5—N11.73 (19)C4—C3—C31—C32167.8 (2)
C2—N1—C5—C42.0 (2)C4—N4—C41—O410.3 (3)
S1—N1—C5—C4179.82 (13)C4—N4—C41—C42179.52 (16)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds