Download citation
Download citation
link to html
The crystal structure of the title compound, C17H18O3, contains mol­ecules that are separated by normal van der Waals distances. The cyclo­hexyl ring adopts a classical chair conformation, while the furan and phenyl rings are individually planar. The molecular dimensions are as expected.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680101251X/cv6046sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680101251X/cv6046Isup2.hkl
Contains datablock I

CCDC reference: 170937

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.050
  • wR factor = 0.221
  • Data-to-parameter ratio = 13.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 0.086 Value of mu given = 0.090
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The intramolecular Diels–Alder reaction with a furandiene (IMDAF reaction) is a useful reaction for the creation of three rings with up to five stereogenic centers in one reaction (Keay & Hunt, 1999). To date, no-one has reported an asymmetric version of this reaction. trans-2-Arylcyclohexanol esters of 3-furoic acid were prepared as potential chiral auxiliaries for studying the asymmetric IMDAF reaction. AM1 calculations indicated that the large aryl ring would preferentially block one face of the furandiene thereby leading to high diastereoselectivity in the IMDAF reaction. The structure of 2-phenylcyclohexyl 3-furancarboxylate, (I), was obtained to determine if in the solid state, the large aryl ring would block one face of the furan ring.

The molecular dimensions are normal and lie within expected values for corresponding bond distances and angles (Orpen et al., 1994). The C1–C6 cyclohexyl ring adopts a classical chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.568 (5) Å, θ = 177.3 (5)° and ω = 55 (9)°. The phenyl ring is essentially planar with the maximum deviation of any atom from the mean plane being 0.007 (3) Å. The five-membered furan ring is also planar. The structure is devoid of any unwanted interactions.

Experimental top

To a mixture of 3-furoic acid (111 mg, 0.99 mmol) in dry methylene chloride (2 ml) and dry DMF (5 µl) at 273 K under a nitrogen atmosphere, oxalyl chloride (86 µl, 1.1 equivalents) was added. The solution was stirred at 273 K for 15 min, then at room temperature for 3 h. after which the solvent was removed in vacuo. After redissolving the residue in dry methylene chloride (2 ml), a solution of trans-2-phenylcyclohexanol (164 mg, 0.93 mmol) in dry methylene chloride (2 ml) was added followed by dry pyridine (80 µl). The reaction mixture was stirred at room temperature overnight. After adding CH2Cl2 (20 ml), the solution was washed with 5% HCl (25 ml). Et2O (20 ml) was added, then the organic phase was washed with water (25 ml), dried over MgSO4, then filtered and evaporated in vacuo to give the crude product as an oil. Purification via a short column (silica gel, EtOAc) followed by radial chromatography (EtOAc/hexanes, 7:1) gave the desired ester, (I).

Refinement top

The space group, P21/n, was uniquely determined from the systematic absences. Most of the H atoms were located from difference maps. The H atoms were included at geometrically idealized positions with C–H = 0.95–1.00 Å, in a riding mode with isotropic displacement parameters 1.2 times the displacement parameters of the atoms to which they were attached.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I). Displacement ellipsoids have been plotted at the 50% probability level.
2-Phenyl-cyclohexyl-3-furan carboxylate top
Crystal data top
C17H18O3F(000) = 576
Mr = 270.31Dx = 1.266 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 5.5332 (11) ÅCell parameters from 25 reflections
b = 12.841 (2) Åθ = 10.0–15.0°
c = 20.088 (3) ŵ = 0.09 mm1
β = 96.52 (2)°T = 200 K
V = 1418.1 (4) Å3Block, colourless
Z = 40.50 × 0.40 × 0.22 mm
Data collection top
Rigaku AFC-6S
diffractometer
Rint = 0.06
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 06
ω/2θ scansk = 015
2796 measured reflectionsl = 2323
2520 independent reflections3 standard reflections every 200 reflections
1156 reflections with I > 2σ(I) intensity decay: <1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.12P)2 + 0.066P]
where P = (Fo2 + 2Fc2)/3
2520 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H18O3V = 1418.1 (4) Å3
Mr = 270.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.5332 (11) ŵ = 0.09 mm1
b = 12.841 (2) ÅT = 200 K
c = 20.088 (3) Å0.50 × 0.40 × 0.22 mm
β = 96.52 (2)°
Data collection top
Rigaku AFC-6S
diffractometer
Rint = 0.06
2796 measured reflections3 standard reflections every 200 reflections
2520 independent reflections intensity decay: <1.0%
1156 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2520 reflectionsΔρmin = 0.23 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0682 (5)0.06778 (19)0.83568 (13)0.0382 (7)
O20.3129 (5)0.0041 (3)0.83018 (16)0.0593 (9)
O30.2568 (6)0.1239 (2)0.99418 (14)0.0481 (8)
C10.0150 (7)0.1301 (3)0.77534 (18)0.0332 (9)
H10.14550.16580.77550.040*
C20.2193 (7)0.2100 (3)0.77882 (19)0.0333 (9)
H20.37640.17080.78410.040*
C30.2088 (9)0.2716 (3)0.7130 (2)0.0442 (11)
H3A0.06140.31590.70820.053*
H3B0.35250.31790.71460.053*
C40.2040 (9)0.1998 (3)0.6523 (2)0.0494 (12)
H4A0.18820.24200.61080.059*
H4B0.35910.16080.65460.059*
C50.0062 (9)0.1235 (4)0.6498 (2)0.0489 (12)
H5A0.00230.07620.61110.059*
H5B0.16220.16200.64410.059*
C60.0118 (9)0.0602 (3)0.7144 (2)0.0449 (11)
H6A0.12860.01210.71290.054*
H6B0.16210.01770.71810.054*
C70.1048 (7)0.0057 (3)0.8557 (2)0.0354 (9)
C80.0029 (7)0.0590 (3)0.91227 (19)0.0326 (9)
C90.1248 (8)0.1363 (3)0.9471 (2)0.0397 (10)
H90.28980.15720.93770.048*
C100.0374 (9)0.1733 (3)0.9952 (2)0.0458 (11)
H100.00580.22651.02600.055*
C110.2246 (8)0.0548 (3)0.9426 (2)0.0402 (10)
H110.34730.00970.92990.048*
C120.2197 (7)0.2814 (3)0.83913 (18)0.0317 (9)
C130.0344 (8)0.3531 (3)0.8442 (2)0.0419 (10)
H130.09740.35690.80960.050*
C140.0389 (9)0.4192 (3)0.8990 (2)0.0498 (12)
H140.08840.46830.90110.060*
C150.2262 (8)0.4144 (3)0.9505 (2)0.0480 (11)
H150.22850.45940.98810.058*
C160.4103 (9)0.3429 (3)0.9462 (2)0.0491 (12)
H160.54120.33900.98100.059*
C170.4059 (8)0.2769 (3)0.8917 (2)0.0408 (10)
H170.53280.22750.89010.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0383 (16)0.0351 (15)0.0405 (17)0.0050 (13)0.0013 (12)0.0112 (13)
O20.0345 (17)0.070 (2)0.071 (2)0.0095 (16)0.0020 (15)0.0271 (19)
O30.0524 (19)0.0453 (17)0.0461 (18)0.0052 (15)0.0037 (14)0.0131 (14)
C10.034 (2)0.033 (2)0.033 (2)0.0014 (17)0.0058 (17)0.0055 (18)
C20.035 (2)0.031 (2)0.034 (2)0.0028 (17)0.0066 (17)0.0039 (18)
C30.059 (3)0.037 (2)0.039 (2)0.007 (2)0.011 (2)0.003 (2)
C40.064 (3)0.047 (3)0.040 (3)0.004 (2)0.014 (2)0.003 (2)
C50.064 (3)0.051 (3)0.033 (2)0.004 (2)0.010 (2)0.004 (2)
C60.060 (3)0.032 (2)0.043 (3)0.006 (2)0.008 (2)0.0003 (19)
C70.031 (2)0.033 (2)0.044 (2)0.0026 (18)0.0084 (18)0.0005 (19)
C80.037 (2)0.029 (2)0.033 (2)0.0020 (18)0.0085 (17)0.0001 (17)
C90.042 (2)0.033 (2)0.046 (2)0.002 (2)0.013 (2)0.0053 (19)
C100.057 (3)0.039 (2)0.044 (3)0.003 (2)0.019 (2)0.009 (2)
C110.047 (3)0.034 (2)0.040 (2)0.0020 (19)0.0061 (19)0.0080 (19)
C120.038 (2)0.0247 (19)0.034 (2)0.0023 (17)0.0092 (18)0.0052 (17)
C130.045 (2)0.040 (2)0.039 (2)0.005 (2)0.0000 (19)0.001 (2)
C140.058 (3)0.041 (3)0.053 (3)0.011 (2)0.015 (2)0.003 (2)
C150.060 (3)0.044 (2)0.041 (3)0.004 (2)0.011 (2)0.004 (2)
C160.052 (3)0.054 (3)0.039 (3)0.005 (2)0.003 (2)0.005 (2)
C170.037 (2)0.041 (2)0.044 (2)0.000 (2)0.0040 (19)0.005 (2)
Geometric parameters (Å, º) top
O1—C71.342 (5)C6—H6A0.9900
O1—C11.454 (4)C6—H6B0.9900
O2—C71.207 (5)C7—C81.467 (5)
O3—C111.360 (5)C8—C111.336 (6)
O3—C101.372 (5)C8—C91.428 (5)
C1—C61.517 (6)C9—C101.330 (6)
C1—C21.523 (6)C9—H90.9500
C1—H11.0000C10—H100.9500
C2—C121.519 (5)C11—H110.9500
C2—C31.537 (5)C12—C171.390 (5)
C2—H21.0000C12—C131.390 (5)
C3—C41.527 (6)C13—C141.389 (6)
C3—H3A0.9900C13—H130.9500
C3—H3B0.9900C14—C151.380 (6)
C4—C51.517 (6)C14—H140.9500
C4—H4A0.9900C15—C161.382 (6)
C4—H4B0.9900C15—H150.9500
C5—C61.524 (6)C16—C171.382 (6)
C5—H5A0.9900C16—H160.9500
C5—H5B0.9900C17—H170.9500
C7—O1—C1119.5 (3)C5—C6—H6B109.4
C11—O3—C10105.9 (3)H6A—C6—H6B108.0
O1—C1—C6109.3 (3)O2—C7—O1124.2 (4)
O1—C1—C2104.7 (3)O2—C7—C8125.7 (4)
C6—C1—C2112.1 (3)O1—C7—C8110.1 (3)
O1—C1—H1110.2C11—C8—C9106.1 (4)
C6—C1—H1110.2C11—C8—C7126.1 (4)
C2—C1—H1110.2C9—C8—C7127.7 (4)
C12—C2—C1112.2 (3)C10—C9—C8106.7 (4)
C12—C2—C3111.8 (3)C10—C9—H9126.6
C1—C2—C3110.6 (3)C8—C9—H9126.6
C12—C2—H2107.3C9—C10—O3110.4 (4)
C1—C2—H2107.3C9—C10—H10124.8
C3—C2—H2107.3O3—C10—H10124.8
C4—C3—C2111.8 (3)C8—C11—O3110.9 (4)
C4—C3—H3A109.3C8—C11—H11124.5
C2—C3—H3A109.3O3—C11—H11124.5
C4—C3—H3B109.3C17—C12—C13117.5 (4)
C2—C3—H3B109.3C17—C12—C2121.0 (4)
H3A—C3—H3B107.9C13—C12—C2121.6 (4)
C5—C4—C3111.1 (4)C12—C13—C14121.1 (4)
C5—C4—H4A109.4C12—C13—H13119.5
C3—C4—H4A109.4C14—C13—H13119.5
C5—C4—H4B109.4C15—C14—C13120.8 (4)
C3—C4—H4B109.4C15—C14—H14119.6
H4A—C4—H4B108.0C13—C14—H14119.6
C4—C5—C6110.0 (4)C14—C15—C16118.6 (4)
C4—C5—H5A109.7C14—C15—H15120.7
C6—C5—H5A109.7C16—C15—H15120.7
C4—C5—H5B109.7C15—C16—C17120.7 (4)
C6—C5—H5B109.7C15—C16—H16119.7
H5A—C5—H5B108.2C17—C16—H16119.7
C1—C6—C5111.4 (3)C16—C17—C12121.4 (4)
C1—C6—H6A109.4C16—C17—H17119.3
C5—C6—H6A109.4C12—C17—H17119.3
C1—C6—H6B109.4
C7—O1—C1—C674.8 (4)C11—C8—C9—C100.4 (5)
C7—O1—C1—C2164.9 (3)C7—C8—C9—C10178.9 (4)
O1—C1—C2—C1262.7 (4)C8—C9—C10—O30.6 (5)
C6—C1—C2—C12178.9 (3)C11—O3—C10—C90.6 (5)
O1—C1—C2—C3171.6 (3)C9—C8—C11—O30.1 (5)
C6—C1—C2—C353.3 (4)C7—C8—C11—O3178.6 (4)
C12—C2—C3—C4179.0 (4)C10—O3—C11—C80.3 (5)
C1—C2—C3—C453.2 (5)C1—C2—C12—C17111.8 (4)
C2—C3—C4—C556.0 (5)C3—C2—C12—C17123.2 (4)
C3—C4—C5—C657.4 (5)C1—C2—C12—C1367.8 (4)
O1—C1—C6—C5171.7 (3)C3—C2—C12—C1357.2 (5)
C2—C1—C6—C556.1 (5)C17—C12—C13—C141.5 (6)
C4—C5—C6—C157.4 (5)C2—C12—C13—C14178.9 (4)
C1—O1—C7—O26.8 (6)C12—C13—C14—C151.0 (6)
C1—O1—C7—C8172.9 (3)C13—C14—C15—C160.5 (7)
O2—C7—C8—C11177.2 (4)C14—C15—C16—C170.5 (7)
O1—C7—C8—C113.1 (6)C15—C16—C17—C121.1 (7)
O2—C7—C8—C91.0 (7)C13—C12—C17—C161.6 (6)
O1—C7—C8—C9178.6 (3)C2—C12—C17—C16178.8 (4)

Experimental details

Crystal data
Chemical formulaC17H18O3
Mr270.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)5.5332 (11), 12.841 (2), 20.088 (3)
β (°) 96.52 (2)
V3)1418.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.40 × 0.22
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2796, 2520, 1156
Rint0.06
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.221, 1.02
No. of reflections2520
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), TEXSAN.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds