Download citation
Download citation
link to html
In the title compound, 2C4H8NO4+·SO42−, the sulfate anion connects the aspartic acid cations by strong hydrogen bonds. Both independent cations have a gauche II form, and the Cγ is trans to the C′ atom. An intramolecular N—H...O hydrogen bond is observed in one of the cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010054/ob6050sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010054/ob6050Isup2.hkl
Contains datablock I

CCDC reference: 170887

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.107
  • Data-to-parameter ratio = 11.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Aspartic acid is an important compound among naturally occurring α-amino acids. The crystal structures of L-aspartic acid (Derissen et al., 1968), DL-aspartic acid (Rao, 1973), DL-aspartic acid hydrochloride (Dawson, 1977) and DL-aspartic acid nitrate monohydrate (Asath Bahadur & Rajaram, 1994) have been reported earlier. In the present study, DL-aspartic acid with sulfuric acid, (I), was undertaken.

In (I), there are two independent aspartic acid cations, A and B, which have the amino N11 and N21 atoms, respectively (Fig. 1). Their geometries are similar and agree well with those of DL-aspartic acid hydrochloride (Dawson, 1977). The molecule is made up of three four-atom planes consisting of C', Cα, Cβ, Cγ (plane 1), α-carboxyl group (plane 2) and the β-carboxyl group (plane 3). The mean deviations of the carbon skeleton from plane 1 are 0.167 and 0.030 Å for A and B, respectively. The Cγ is trans to the C' atom for both the molecules. The conformation angles ψ1 are 15.4 (3) and -8.0 (3)° for A and B, respectively (Table 1). This tendency of twisting of the C—N bond from the amino carboxyl plane is found in various amino acids (Lakshiminarayanan et al., 1967). The branched chain conformation angle χ1 is in a gauche II form for both molecules; the N11—C12—C13—C14 and N21—C22—C23—C24 torsion angle are -85.3 (2) and -64.7 (2)°, respectively.

The sulfate anion plays a vital role in forming hydrogen bonds with both the cations and stabilizing the structure (Fig. 2). The sulfate anion, as acceptor, links the O1B, O1D, N11, O2B, O2D and N21 atoms. The Oγ atom of each molecule links the amino N atom of the other molecule (Table 2). A bifurcated hydrogen bond is observed in the case of N21 with O1Cv and O2C, the latter being an intramolecular hydrogen bond. But an intramolecular hydrogen bond is not favoured in molecule A, since the χ22 for A and B are -33.4 (3) and 3.9 (3)°, respectively. A chelated three-centre hydrogen bond is observed in the case of the amino N21 atom of molecule B with the sulfate O1 and O2 atoms (Jeffrey & Saenger, 1991). An infinite chain of hydrogen bonds runs along the b axis, linking the sulfate anion and the N21 atom.

Experimental top

The title compound was crystallized from aqueous solution of DL-aspartic acid and sulfuric acid in a stoichiometric ratio of 2:1.

Refinement top

All H atoms were fixed by geometric restraints using HFIX and were allowed to ride on the preceding atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent cations of (I) showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis
Bis(DL-aspartic acid) sulfate top
Crystal data top
2C4H8NO4+·SO42F(000) = 760
Mr = 364.29Dx = 1.683 Mg m3
Dm = 1.674 Mg m3
Dm measured by flotation in a mixture of bromoform and xylene
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 16.774 (4) ÅCell parameters from 25 reflections
b = 5.9697 (9) Åθ = 8.9–14.5°
c = 14.5276 (18) ŵ = 0.30 mm1
β = 98.66 (2)°T = 293 K
V = 1438.1 (4) Å3Needles, colorless
Z = 40.5 × 0.4 × 0.2 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
2113 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω–2θ scansh = 1919
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.868, Tmax = 0.943l = 017
2616 measured reflections25 standard reflections every 3 reflections
2502 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0827P)2 + 1.6327P]
where P = (Fo2 + 2Fc2)/3
2502 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
2C4H8NO4+·SO42V = 1438.1 (4) Å3
Mr = 364.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.774 (4) ŵ = 0.30 mm1
b = 5.9697 (9) ÅT = 293 K
c = 14.5276 (18) Å0.5 × 0.4 × 0.2 mm
β = 98.66 (2)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
2113 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.868, Tmax = 0.94325 standard reflections every 3 reflections
2616 measured reflections intensity decay: none
2502 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.81Δρmax = 0.38 e Å3
2502 reflectionsΔρmin = 0.38 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.73852 (3)0.11327 (8)0.26890 (3)0.02349 (17)
O10.71791 (9)0.1535 (3)0.36215 (10)0.0353 (4)
O20.72809 (11)0.3215 (3)0.21513 (11)0.0459 (4)
O30.68580 (9)0.0628 (3)0.22228 (10)0.0328 (4)
O40.82218 (9)0.0354 (3)0.27733 (13)0.0476 (5)
O1A0.98758 (9)0.4639 (3)0.21248 (12)0.0412 (4)
O1B1.04825 (9)0.6711 (3)0.11540 (12)0.0475 (5)
H1B1.08980.62290.14600.071*
C110.98595 (12)0.6028 (4)0.15248 (15)0.0302 (5)
C120.90784 (11)0.7087 (4)0.10616 (14)0.0288 (4)
H120.89220.63310.04630.035*
N110.84489 (10)0.6584 (3)0.16526 (14)0.0360 (5)
H11A0.79820.71870.13970.054*
H11B0.85960.71570.22180.054*
H11C0.83920.51070.16960.054*
C130.91137 (13)0.9605 (4)0.08663 (15)0.0340 (5)
H13A0.90111.04270.14120.041*
H13B0.96510.99910.07500.041*
C140.85100 (12)1.0295 (4)0.00446 (15)0.0294 (5)
O1C0.83116 (10)0.9103 (3)0.06259 (12)0.0432 (4)
O1D0.82279 (10)1.2349 (3)0.01231 (11)0.0398 (4)
H1D0.79221.26750.03530.060*
O2A0.52138 (10)0.5126 (3)0.25354 (12)0.0492 (5)
O2B0.45700 (9)0.4946 (3)0.37783 (11)0.0410 (4)
H2B0.41640.47850.33920.061*
C210.51934 (13)0.5317 (3)0.33496 (14)0.0298 (5)
C220.59179 (12)0.6065 (3)0.40399 (14)0.0265 (4)
H220.60180.49640.45450.032*
N210.66305 (10)0.6158 (3)0.35483 (13)0.0312 (4)
H21A0.70600.65930.39440.047*
H21B0.65390.71300.30800.047*
H21C0.67200.48070.33270.047*
C230.57612 (12)0.8343 (4)0.44503 (15)0.0303 (5)
H23A0.56950.94500.39560.036*
H23B0.52620.82770.47100.036*
C240.64290 (12)0.9077 (4)0.51963 (14)0.0276 (4)
O2C0.70441 (9)0.8008 (3)0.54036 (10)0.0367 (4)
O2D0.62699 (10)1.0965 (3)0.55860 (13)0.0488 (5)
H2D0.65831.11350.60720.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0146 (3)0.0262 (3)0.0281 (3)0.00044 (18)0.00200 (18)0.00032 (19)
O10.0320 (8)0.0412 (9)0.0320 (8)0.0044 (7)0.0022 (6)0.0036 (7)
O20.0594 (11)0.0364 (9)0.0379 (9)0.0061 (8)0.0059 (8)0.0080 (7)
O30.0243 (8)0.0321 (8)0.0386 (8)0.0021 (6)0.0065 (6)0.0058 (6)
O40.0149 (8)0.0656 (12)0.0600 (11)0.0047 (7)0.0016 (7)0.0144 (9)
O1A0.0283 (8)0.0393 (9)0.0524 (10)0.0002 (7)0.0053 (7)0.0155 (8)
O1B0.0202 (8)0.0658 (12)0.0564 (10)0.0056 (8)0.0049 (7)0.0179 (9)
C110.0205 (10)0.0316 (11)0.0357 (11)0.0004 (8)0.0044 (8)0.0011 (9)
C120.0181 (9)0.0322 (11)0.0335 (10)0.0024 (8)0.0042 (8)0.0002 (9)
N110.0164 (8)0.0380 (11)0.0514 (11)0.0016 (7)0.0015 (8)0.0085 (9)
C130.0264 (10)0.0325 (12)0.0404 (12)0.0037 (9)0.0043 (9)0.0032 (9)
C140.0229 (10)0.0306 (11)0.0339 (11)0.0032 (8)0.0018 (8)0.0049 (9)
O1C0.0426 (10)0.0412 (10)0.0414 (9)0.0004 (8)0.0079 (7)0.0035 (8)
O1D0.0404 (9)0.0375 (9)0.0380 (8)0.0078 (7)0.0050 (7)0.0008 (7)
O2A0.0439 (10)0.0662 (12)0.0348 (9)0.0095 (9)0.0029 (8)0.0100 (8)
O2B0.0246 (8)0.0567 (11)0.0387 (8)0.0073 (8)0.0045 (6)0.0031 (8)
C210.0292 (11)0.0232 (10)0.0342 (11)0.0001 (8)0.0040 (8)0.0015 (8)
C220.0221 (10)0.0271 (11)0.0286 (10)0.0003 (8)0.0020 (8)0.0004 (8)
N210.0251 (9)0.0310 (10)0.0371 (10)0.0024 (7)0.0033 (7)0.0065 (7)
C230.0214 (10)0.0333 (12)0.0337 (11)0.0040 (8)0.0036 (8)0.0061 (9)
C240.0207 (10)0.0335 (11)0.0279 (10)0.0022 (9)0.0016 (8)0.0016 (8)
O2C0.0256 (8)0.0434 (9)0.0373 (8)0.0078 (7)0.0078 (6)0.0060 (7)
O2D0.0349 (9)0.0530 (11)0.0529 (11)0.0136 (8)0.0116 (8)0.0287 (9)
Geometric parameters (Å, º) top
S—O21.4646 (17)C14—O1D1.325 (3)
S—O41.4658 (16)O1D—H1D0.8200
S—O11.4673 (16)O2A—C211.194 (3)
S—O31.4713 (15)O2B—C211.314 (3)
O1A—C111.200 (3)O2B—H2B0.8200
O1B—C111.311 (3)C21—C221.522 (3)
O1B—H1B0.8200C22—N211.483 (3)
C11—C121.518 (3)C22—C231.524 (3)
C12—N111.488 (3)C22—H220.9800
C12—C131.532 (3)N21—H21A0.8900
C12—H120.9800N21—H21B0.8900
N11—H11A0.8900N21—H21C0.8900
N11—H11B0.8900C23—C241.502 (3)
N11—H11C0.8900C23—H23A0.9700
C13—C141.502 (3)C23—H23B0.9700
C13—H13A0.9700C24—O2C1.212 (3)
C13—H13B0.9700C24—O2D1.307 (3)
C14—O1C1.212 (3)O2D—H2D0.8200
O2—S—O4110.46 (12)O1C—C14—C13123.2 (2)
O2—S—O1109.13 (10)O1D—C14—C13113.09 (19)
O4—S—O1109.29 (10)C14—O1D—H1D109.5
O2—S—O3110.21 (9)C21—O2B—H2B109.5
O4—S—O3108.27 (10)O2A—C21—O2B126.7 (2)
O1—S—O3109.45 (9)O2A—C21—C22122.8 (2)
C11—O1B—H1B109.5O2B—C21—C22110.53 (18)
O1A—C11—O1B125.5 (2)N21—C22—C21108.38 (17)
O1A—C11—C12122.25 (19)N21—C22—C23110.74 (17)
O1B—C11—C12112.11 (18)C21—C22—C23110.62 (17)
N11—C12—C11107.46 (17)N21—C22—H22109.0
N11—C12—C13110.81 (18)C21—C22—H22109.0
C11—C12—C13115.85 (17)C23—C22—H22109.0
N11—C12—H12107.5C22—N21—H21A109.5
C11—C12—H12107.5C22—N21—H21B109.5
C13—C12—H12107.5H21A—N21—H21B109.5
C12—N11—H11A109.5C22—N21—H21C109.5
C12—N11—H11B109.5H21A—N21—H21C109.5
H11A—N11—H11B109.5H21B—N21—H21C109.5
C12—N11—H11C109.5C24—C23—C22112.88 (17)
H11A—N11—H11C109.5C24—C23—H23A109.0
H11B—N11—H11C109.5C22—C23—H23A109.0
C14—C13—C12112.10 (18)C24—C23—H23B109.0
C14—C13—H13A109.2C22—C23—H23B109.0
C12—C13—H13A109.2H23A—C23—H23B107.8
C14—C13—H13B109.2O2C—C24—O2D124.65 (19)
C12—C13—H13B109.2O2C—C24—C23122.68 (19)
H13A—C13—H13B107.9O2D—C24—C23112.67 (18)
O1C—C14—O1D123.66 (19)C24—O2D—H2D109.5
O1A—C11—C12—N1115.4 (3)O2A—C21—C22—N218.0 (3)
O1B—C11—C12—N11168.38 (19)O2B—C21—C22—N21172.34 (17)
O1A—C11—C12—C13139.9 (2)O2A—C21—C22—C23113.6 (2)
O1B—C11—C12—C1343.9 (3)O2B—C21—C22—C2366.1 (2)
N11—C12—C13—C1485.3 (2)N21—C22—C23—C2464.7 (2)
C11—C12—C13—C14152.00 (19)C21—C22—C23—C24175.16 (18)
C12—C13—C14—O1C33.4 (3)C22—C23—C24—O2C3.9 (3)
C12—C13—C14—O1D147.60 (19)C22—C23—C24—O2D176.05 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O4i0.821.792.605 (2)174
N11—H11A···O2Cii0.891.972.760 (2)147
N11—H11B···O4iii0.892.202.837 (3)128
N11—H11C···O20.892.362.972 (3)126
O1D—H1D···O1ii0.821.852.673 (2)176
O2B—H2B···O3iv0.821.832.631 (2)166
N21—H21A···O1Cv0.892.142.898 (3)143
N21—H21A···O2C0.892.292.899 (2)126
N21—H21B···O3iii0.891.962.785 (3)154
N21—H21C···O10.892.122.906 (2)147
N21—H21C···O20.892.283.010 (3)140
O2D—H2D···O2v0.821.852.669 (2)175
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C4H8NO4+·SO42
Mr364.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.774 (4), 5.9697 (9), 14.5276 (18)
β (°) 98.66 (2)
V3)1438.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.868, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
2616, 2502, 2113
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.107, 0.81
No. of reflections2502
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1A—C111.200 (3)O2A—C211.194 (3)
O1B—C111.311 (3)O2B—C211.314 (3)
C14—O1C1.212 (3)C24—O2C1.212 (3)
C14—O1D1.325 (3)C24—O2D1.307 (3)
O1A—C11—C12—N1115.4 (3)O2A—C21—C22—N218.0 (3)
N11—C12—C13—C1485.3 (2)N21—C22—C23—C2464.7 (2)
C11—C12—C13—C14152.00 (19)C21—C22—C23—C24175.16 (18)
C12—C13—C14—O1C33.4 (3)C22—C23—C24—O2C3.9 (3)
C12—C13—C14—O1D147.60 (19)C22—C23—C24—O2D176.05 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O4i0.821.792.605 (2)173.9
N11—H11A···O2Cii0.891.972.760 (2)146.7
N11—H11B···O4iii0.892.202.837 (3)128.1
N11—H11C···O20.892.362.972 (3)126.3
O1D—H1D···O1ii0.821.852.673 (2)176.1
O2B—H2B···O3iv0.821.832.631 (2)166.3
N21—H21A···O1Cv0.892.142.898 (3)142.7
N21—H21A···O2C0.892.292.899 (2)125.8
N21—H21B···O3iii0.891.962.785 (3)154.1
N21—H21C···O10.892.122.906 (2)147.0
N21—H21C···O20.892.283.010 (3)139.6
O2D—H2D···O2v0.821.852.669 (2)175.0
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds