Download citation
Download citation
link to html
The crystal structure of the isoindoline nitro­xide amide 5-acet­amido-1,1,3,3-tetra­methyl­isoindolin-2-yl­oxyl, C14H19N2O2, which has utility as an EPR label, shows a characteristically stable tetra­methyl-substituted nitro­xide ring system which is essentially coplanar with the amide side-chain substituent. A single intermolecular hydrogen bond between the amide H atom and the nitro­xide O atom links the mol­ecules head-to-tail into an infinite polymeric chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010716/tk6031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010716/tk6031Isup2.hkl
Contains datablock I

CCDC reference: 170929

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.039
  • wR factor = 0.125
  • Data-to-parameter ratio = 7.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 1286 Count of symmetry unique reflns 1235 Completeness (_total/calc) 104.13% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 51 Fraction of Friedel pairs measured 0.041 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.

Comment top

Nitroxides are often utilized as reporter molecules and, as such, are commonly referred to as spin labels or spin probes depending upon whether they are covalently linked (labels), or not (probes), to the system being studied. Precise knowledge of the bonding structure of spin labels is essential to obtain information on complex systems such as enzymes and other macromolecules (Farrens et al., 1996; Steinhoff et al., 1997; Rink et al., 1997; Mchaourab et al., 1997). Another crucial issue in the utilization of stable nitroxide probes in biological systems is the partitioning behaviour which governs membrane transfer. Charged nitroxides generally do not cross cell membranes, although there are exceptions (Kocherginsky & Swartz, 1995) and amphiphilic nitroxides may orient themselves with the non-polar portion of the molecule embedded in the lipid bilayer. Lipophilic nitroxides have also been associated with enhanced cytotoxicity, albeit in high concentrations (>1 mM). We have synthesized (Reid et al., 1998) amino substituted isoindoline nitroxides as potential new EPR spin labels/probes and in order to contrast the toxicity and partitioning preferences, have now synthesized the novel 5-acetamido-1,1,3,3-tetramethylisoindolin-2-yloxyl, (I). reported here.

Single-crystal X-ray analysis of the structure of this amide (Fig. 1) provides insight into the bonding characteristics resulting when this type of EPR label is bound to an amino acid sequence. This reveals a basic tetramethylisoindoline core which is relatively inflexible and therefore similar to the previously reported compounds of the same type (Micallef et al., 1999). The N8—O8 bond distance [1.279 (5) Å] compares closely with these examples. The amide side chain adopts a conformation such that it is almost coplanar with the parent aromatic ring system [torsion angles C4–C3–N31–C31 172.9 (5)° and C3–N31–C31–O31 - 5.5 (9)°]. This is stabilized by the presence of an intramolecular hydrogen bond between the amide-O and a ring-H atom [O31···H2—O2 2.880 (7) Å]. A single head-to-tail hydrogen bond between the amide group and the nitroxide O atom [N31—H31···O8i 2.884 (7) Å and N—H···O, 171 (3)°] [symmetry code: (i) -1/2 + x, 3/2 - y, -1/2 + z] links the molecules into an infinite poymericchain.

Experimental top

The title compound was prepared according to the method of Reid et al. (1998), by reacting 5-amino-1,1,3,3-tetramethylisoindolin-2-yloxyl in tetrahydrafuran containing 1.5 equivalents of sodium bicarbonate, with 10 equivalents of acetyl chloride. Extraction into diethyl ether and recrystallization from acetonitrile gave data quality crystals.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN for Windows (Molecular Structure Corporation, 1999b) and PLATON for Windows (Spek, 1999).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-naming scheme with the atoms shown as 30% probability ellipsoids (Spek, 1999).
5-acetamido-1,1,3,3-tetramethylisoindolin-2-yloxyl top
Crystal data top
C14H19N2O2F(000) = 532
Mr = 247.32Dx = 1.167 Mg m3
Monoclinic, CcMelting point: 467–471 K K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71069 Å
a = 14.325 (4) ÅCell parameters from 25 reflections
b = 8.536 (8) Åθ = 10.4–16.3°
c = 11.513 (4) ŵ = 0.08 mm1
β = 91.56 (2)°T = 295 K
V = 1407 (1) Å3Block, yellow
Z = 40.38 × 0.28 × 0.15 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.020
Radiation source: Rigaku rotating anodeθmax = 25.0°, θmin = 2.8°
Graphite monochromatorh = 016
ω–2θ scansk = 010
1384 measured reflectionsl = 1313
1286 independent reflections3 standard reflections every 150 reflections
716 reflections with I > 2σ(I) intensity decay: 2.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.1927P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.007
1286 reflectionsΔρmax = 0.20 e Å3
164 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (2)
Crystal data top
C14H19N2O2V = 1407 (1) Å3
Mr = 247.32Z = 4
Monoclinic, CcMo Kα radiation
a = 14.325 (4) ŵ = 0.08 mm1
b = 8.536 (8) ÅT = 295 K
c = 11.513 (4) Å0.38 × 0.28 × 0.15 mm
β = 91.56 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.020
1384 measured reflections3 standard reflections every 150 reflections
1286 independent reflections intensity decay: 2.6%
716 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
1286 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Experimental. The scan width was (1.78 + 0.35tanθ)° with an ω scan speed of 16° per minute (up to 5 scans to achieve I/σ(I) > 15). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The absolute configuration could not be determined with any certainty, using the method of Flack (1983).

The lower-than-desirable reflection-to-parameter ratio (7.84) could not be improved upon since all hydrogen atoms were constrained and no chance of data re-collection is possible. It is noted that the space group is non-centrosymmetric.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O81.0616 (3)0.6239 (5)0.8706 (4)0.0831 (16)
O310.7736 (3)1.2419 (4)0.5737 (4)0.0715 (13)
N80.9920 (3)0.6661 (5)0.8060 (4)0.0560 (13)
N310.7083 (3)1.0132 (4)0.5138 (3)0.0456 (12)
C10.8856 (3)0.8167 (6)0.7049 (4)0.0391 (13)
C20.8374 (4)0.9389 (6)0.6520 (4)0.0443 (14)
C30.7596 (4)0.9011 (6)0.5801 (4)0.0435 (13)
C40.7326 (3)0.7449 (6)0.5685 (4)0.0435 (14)
C50.7817 (3)0.6249 (6)0.6225 (4)0.0461 (14)
C60.8601 (3)0.6634 (6)0.6907 (4)0.0387 (13)
C70.9263 (4)0.5504 (5)0.7516 (5)0.0436 (12)
C90.9731 (4)0.8346 (6)0.7814 (4)0.0452 (14)
C310.7188 (4)1.1701 (6)0.5101 (5)0.0494 (13)
C320.6599 (4)1.2509 (7)0.4193 (5)0.0620 (15)
C710.9793 (4)0.4484 (7)0.6681 (5)0.0621 (17)
C720.8809 (5)0.4528 (7)0.8452 (5)0.0666 (17)
C910.9564 (4)0.9208 (7)0.8951 (5)0.0617 (16)
C921.0550 (4)0.9052 (7)0.7178 (5)0.0687 (18)
H20.85451.04490.66450.050*
H40.67820.72120.52180.054*
H50.76260.51830.61160.050*
H310.66350.95830.46250.086*
H3210.69771.30210.36490.070*
H3220.62011.32670.45460.070*
H3230.62091.17600.37940.070*
H7110.93820.37060.63560.072*
H7121.02920.39790.70900.072*
H7131.00280.51070.60770.072*
H7210.92710.40350.89230.075*
H7220.84200.37310.80900.075*
H7230.84260.51740.89100.075*
H9110.95041.03050.87940.074*
H9121.00700.90370.94730.074*
H9130.90010.88400.92700.074*
H9211.05780.85880.64230.082*
H9221.11090.88690.75980.082*
H9231.04521.01540.70850.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.072 (3)0.077 (3)0.097 (3)0.014 (3)0.055 (3)0.009 (3)
O310.069 (2)0.041 (2)0.102 (3)0.001 (2)0.040 (2)0.012 (2)
N80.056 (3)0.055 (3)0.056 (3)0.004 (3)0.030 (2)0.002 (3)
N310.045 (3)0.036 (2)0.054 (3)0.001 (2)0.022 (2)0.003 (2)
C10.031 (3)0.042 (3)0.044 (3)0.003 (2)0.010 (2)0.002 (2)
C20.049 (3)0.030 (3)0.053 (3)0.010 (3)0.016 (3)0.001 (2)
C30.035 (3)0.048 (3)0.046 (3)0.003 (3)0.009 (2)0.001 (3)
C40.039 (2)0.041 (3)0.050 (4)0.001 (2)0.017 (3)0.001 (2)
C50.043 (3)0.045 (3)0.049 (3)0.003 (3)0.010 (3)0.002 (3)
C60.034 (3)0.045 (4)0.036 (3)0.000 (3)0.010 (2)0.003 (3)
C70.041 (3)0.045 (3)0.044 (3)0.003 (3)0.012 (2)0.003 (3)
C90.033 (3)0.060 (3)0.042 (3)0.001 (3)0.011 (2)0.000 (3)
C310.040 (3)0.044 (3)0.063 (4)0.009 (3)0.008 (3)0.002 (3)
C320.063 (3)0.052 (3)0.070 (4)0.006 (3)0.014 (3)0.010 (3)
C710.054 (3)0.068 (4)0.064 (4)0.019 (3)0.015 (3)0.012 (3)
C720.074 (4)0.057 (4)0.068 (4)0.000 (3)0.011 (3)0.016 (3)
C910.064 (4)0.066 (4)0.054 (3)0.003 (3)0.022 (3)0.014 (3)
C920.044 (3)0.087 (4)0.074 (4)0.013 (3)0.016 (3)0.013 (3)
Geometric parameters (Å, º) top
O8—N81.279 (5)C7—C721.521 (8)
O31—C311.224 (6)C9—C921.523 (8)
N8—C91.490 (7)C9—C911.527 (7)
N8—C71.491 (7)C31—C321.494 (7)
N31—C311.348 (6)C32—H3210.95
N31—C31.417 (6)C32—H3220.96
N31—H310.98C32—H3230.96
C1—C61.367 (7)C71—H7110.96
C1—C21.383 (7)C71—H7120.95
C1—C91.520 (5)C71—H7130.95
C2—C31.407 (7)C72—H7210.94
C2—H20.95C72—H7220.97
C3—C41.394 (7)C72—H7230.95
C4—C51.381 (7)C91—H9110.96
C4—H40.96C91—H9120.94
C5—C61.392 (6)C91—H9130.95
C5—H50.96C92—H9210.96
C6—C71.511 (7)C92—H9220.94
C7—C711.516 (8)C92—H9230.96
O8—N8—C9121.1 (5)C92—C9—C91111.2 (5)
O8—N8—C7122.1 (4)O31—C31—N31123.2 (5)
C9—N8—C7116.7 (4)O31—C31—C32121.9 (5)
C31—N31—C3129.2 (4)N31—C31—C32114.9 (5)
C31—N31—H31122C31—C32—H321111
C3—N31—H31109C31—C32—H322110
C6—C1—C2122.7 (4)H321—C32—H322109
C6—C1—C9112.3 (5)C31—C32—H323110
C2—C1—C9125.0 (5)H321—C32—H323109
C1—C2—C3117.7 (4)H322—C32—H323108
C1—C2—H2122C7—C71—H711110
C3—C2—H2120C7—C71—H712109
C4—C3—C2119.3 (4)H711—C71—H712109
C4—C3—N31117.1 (4)C7—C71—H713110
C2—C3—N31123.6 (4)H711—C71—H713109
C5—C4—C3121.9 (5)H712—C71—H713110
C5—C4—H4120C7—C72—H721110
C3—C4—H4118C7—C72—H722110
C4—C5—C6118.2 (5)H721—C72—H722109
C4—C5—H5120C7—C72—H723110
C6—C5—H5121H721—C72—H723110
C1—C6—C5120.1 (4)H722—C72—H723108
C1—C6—C7113.2 (4)C9—C91—H911109
C5—C6—C7126.7 (5)C9—C91—H912110
N8—C7—C698.8 (3)H911—C91—H912110
N8—C7—C71109.0 (5)C9—C91—H913109
C6—C7—C71113.0 (4)H911—C91—H913109
N8—C7—C72110.0 (4)H912—C91—H913110
C6—C7—C72113.8 (5)C9—C92—H921109
C71—C7—C72111.4 (4)C9—C92—H922110
N8—C9—C199.0 (5)H921—C92—H922110
N8—C9—C92109.6 (5)C9—C92—H923109
C1—C9—C92113.3 (4)H921—C92—H923108
N8—C9—C91109.5 (4)H922—C92—H923110
C1—C9—C91113.5 (4)
C6—C1—C2—C30.6 (8)C1—C6—C7—N81.7 (6)
C9—C1—C2—C3177.6 (5)C5—C6—C7—N8179.7 (5)
C1—C2—C3—C42.3 (8)C1—C6—C7—C71113.3 (5)
C1—C2—C3—N31175.0 (5)C5—C6—C7—C7164.7 (7)
C31—N31—C3—C4178.9 (5)C1—C6—C7—C72118.3 (5)
C31—N31—C3—C23.7 (8)C5—C6—C7—C7263.7 (7)
C2—C3—C4—C52.2 (8)O8—N8—C9—C1179.4 (5)
N31—C3—C4—C5175.3 (5)C7—N8—C9—C10.7 (6)
C3—C4—C5—C60.3 (7)O8—N8—C9—C9261.8 (7)
C2—C1—C6—C51.2 (7)C7—N8—C9—C92118.0 (5)
C9—C1—C6—C5179.6 (5)O8—N8—C9—C9160.5 (7)
C2—C1—C6—C7176.9 (5)C7—N8—C9—C91119.7 (5)
C9—C1—C6—C71.5 (6)C6—C1—C9—N80.5 (5)
C4—C5—C6—C11.3 (7)C2—C1—C9—N8177.8 (5)
C4—C5—C6—C7176.5 (5)C6—C1—C9—C92116.5 (6)
O8—N8—C7—C6178.7 (5)C2—C1—C9—C9261.9 (7)
C9—N8—C7—C61.5 (7)C6—C1—C9—C91115.4 (5)
O8—N8—C7—C7163.2 (7)C2—C1—C9—C9166.2 (7)
C9—N8—C7—C71116.7 (5)C3—N31—C31—O315.5 (9)
O8—N8—C7—C7259.2 (7)C3—N31—C31—C32172.9 (5)
C9—N8—C7—C72120.9 (5)

Experimental details

Crystal data
Chemical formulaC14H19N2O2
Mr247.32
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)14.325 (4), 8.536 (8), 11.513 (4)
β (°) 91.56 (2)
V3)1407 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.28 × 0.15
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1384, 1286, 716
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.125, 1.03
No. of reflections1286
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999a), MSC/AFC Diffractometer Control Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), TEXSAN for Windows (Molecular Structure Corporation, 1999b) and PLATON for Windows (Spek, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds