Download citation
Download citation
link to html
The Cu atom in the title compound, [Cu2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2], adopts an octahedral geometry that is distorted tetragonally, as seen in the copper–water [Cu—O 2.657 (4) Å] and copper–nitrate [Cu—O 2.525 (4) Å] bonds. The water mol­ecule bridges adjacent mol­ecules into a linear chain, and neighboring chains are linked by hydrogen bonds into a layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010571/tk6033sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010571/tk6033Isup2.hkl
Contains datablock I

CCDC reference: 170859

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.053
  • wR factor = 0.124
  • Data-to-parameter ratio = 11.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.663 0.728 Tmin and Tmax expected: 0.501 0.728 RR = 1.325 Please check that your absorption correction is appropriate.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Copper succinate is a Lewis acid that is capable of forming complexes with nitrogen-donor ligands. For example, it has been characterized as the bis[N-(2-hydroxyethyl)ethylenediamine)] (Pajunen & Pajunen, 1978) and diethyleletriamine (Pajunen et al., 1966) adducts, and as a decahydrated 1,10-phenanthroline adduct that cocrystallizes with copper dihydroxide (Zheng et al., 2000).

Molecules of µ-succinato-bis[aquanitrato(1,10-phenanthroline)copper(II)], (I), are packed such that the water-coordinated Cu atom [Cu—Owater = 1.984 (3) Å] at either end of the centrosymmetric molecule is water-bridged to adjacent Cu atoms [Cu—Owater = 2.657 (4) Å] to furnish a jagged chain that runs along the b axis. The donor water molecule uses one of its H atoms to form an intramolecular hydrogen bond to the double-bond carbonyl O atom [O···O = 2.551 (4) Å]. The other is used to bind to the copper-bonded O atom [Cu—O = 2.525 (4) Å] of the nitrate group [O···Oi = 2.739 (5) Å; symmetry code: (i) 2 - x, -y, 1 - z] to link neighboring chains into a layer structure (Fig. 1). The geometry of the Cu atom is an octahedron that is tetragonally distorted as seen in the rather long copper–water and copper–nitrate bonds.

Experimental top

A solution of copper nitrate hexahydrate (0.24 g, 1 mmol) in water (5 ml) was added to a mxiture of 1,10-phenanthroline (0.18 g, 1 mmol) and succinic acid (0.12 g, 0.5 mmol) in a methanol–water mixture (50:5O, 10 ml) to give an immediate blue solution. Blue crystals deposited from this solution after it was set aside for a week. Calculated for C28H24Cu2N6O12: C 44.01, H 3.67, N 11.01%; found: C 43.71, H 3.95, N 10.87%.

Computing details top

Data collection: CAD-4 VAX/PC Fortran System (Enraf-Nonius, 1988); cell refinement: CAD-4 VAX/PC Fortran System; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-II (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the polymeric title compound at the 50% probability level. H atoms are not shown.
µ-Succinato-bis[aquanitrato(1,10-phenanthroline)copper(II)] top
Crystal data top
[Cu2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2]Z = 1
Mr = 763.61F(000) = 388
Triclinic, P1Dx = 1.793 Mg m3
a = 6.940 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.351 (2) ÅCell parameters from 22 reflections
c = 10.857 (2) Åθ = 9–15°
α = 69.72 (3)°µ = 1.58 mm1
β = 81.28 (3)°T = 293 K
γ = 75.75 (3)°Block, blue
V = 707.1 (2) Å30.45 × 0.40 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1966 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 80
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 1211
Tmin = 0.663, Tmax = 0.728l = 1212
2711 measured reflections2 standard reflections every 60 min
2486 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.027P]
where P = (Fo2 + 2Fc2)/3
2486 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2]γ = 75.75 (3)°
Mr = 763.61V = 707.1 (2) Å3
Triclinic, P1Z = 1
a = 6.940 (1) ÅMo Kα radiation
b = 10.351 (2) ŵ = 1.58 mm1
c = 10.857 (2) ÅT = 293 K
α = 69.72 (3)°0.45 × 0.40 × 0.20 mm
β = 81.28 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1966 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.028
Tmin = 0.663, Tmax = 0.7282 standard reflections every 60 min
2711 measured reflections intensity decay: <1%
2486 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2486 reflectionsΔρmin = 0.53 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.6502 (1)0.08976 (6)0.36415 (6)0.0297 (2)
O10.5357 (6)0.2694 (3)0.3883 (3)0.038 (1)
O20.6231 (6)0.2392 (3)0.5867 (3)0.045 (1)
O30.9797 (6)0.1662 (3)0.3173 (4)0.045 (1)
O40.8967 (7)0.3609 (4)0.1595 (4)0.065 (1)
O51.0398 (9)0.3593 (5)0.3205 (5)0.081 (2)
O1w0.6898 (5)0.0011 (3)0.5547 (3)0.031 (1)
N10.5800 (6)0.1714 (4)0.1755 (4)0.030 (1)
N20.7751 (6)0.0800 (4)0.3097 (4)0.030 (1)
N30.9717 (7)0.2993 (4)0.2643 (4)0.038 (1)
C10.4775 (8)0.2977 (5)0.1135 (5)0.035 (1)
C20.4601 (9)0.3422 (5)0.0231 (5)0.042 (1)
C30.5521 (8)0.2574 (5)0.0938 (5)0.040 (1)
C40.6587 (7)0.1208 (5)0.0300 (5)0.033 (1)
C50.7555 (8)0.0196 (6)0.0939 (5)0.040 (1)
C60.8453 (8)0.1113 (6)0.0239 (5)0.043 (1)
C70.8522 (7)0.1534 (5)0.1147 (5)0.033 (1)
C80.9410 (8)0.2886 (5)0.1945 (6)0.041 (1)
C90.9458 (8)0.3146 (5)0.3253 (5)0.041 (1)
C100.8657 (8)0.2099 (5)0.3808 (5)0.038 (1)
C110.7683 (7)0.0551 (5)0.1796 (5)0.028 (1)
C120.6650 (7)0.0838 (5)0.1063 (4)0.026 (1)
C130.5588 (8)0.3146 (5)0.4784 (5)0.032 (1)
C140.5011 (9)0.4724 (5)0.4451 (5)0.040 (1)
H1w10.70310.06570.59560.037*
H1w20.80460.07880.57050.037*
H10.41580.35810.16090.041*
H20.38470.43060.06460.051*
H30.54550.28890.18460.048*
H50.75640.04440.18490.048*
H60.90440.17590.06760.051*
H80.99610.35950.15760.049*
H91.00360.40400.37810.049*
H100.87460.22980.47030.045*
H14a0.59310.51380.37410.048*
H14b0.36940.50410.41220.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0427 (4)0.0208 (3)0.0245 (3)0.0004 (3)0.0074 (3)0.0087 (2)
O10.056 (2)0.024 (2)0.033 (2)0.003 (2)0.013 (2)0.013 (2)
O20.073 (3)0.026 (2)0.035 (2)0.003 (2)0.021 (2)0.012 (2)
O30.047 (2)0.023 (2)0.060 (2)0.003 (2)0.016 (2)0.008 (2)
O40.086 (4)0.045 (2)0.050 (3)0.003 (2)0.029 (2)0.002 (2)
O50.142 (5)0.045 (3)0.065 (3)0.031 (3)0.044 (3)0.008 (2)
O1w0.042 (2)0.022 (2)0.027 (2)0.001 (2)0.005 (2)0.009 (1)
N10.033 (2)0.024 (2)0.031 (2)0.006 (2)0.008 (2)0.006 (2)
N20.037 (2)0.026 (2)0.029 (2)0.005 (2)0.003 (2)0.010 (2)
N30.041 (3)0.032 (2)0.037 (3)0.001 (2)0.005 (2)0.010 (2)
C10.042 (3)0.022 (2)0.038 (3)0.001 (2)0.014 (2)0.007 (2)
C20.051 (4)0.029 (3)0.043 (3)0.011 (3)0.017 (3)0.001 (2)
C30.054 (4)0.040 (3)0.028 (3)0.019 (3)0.015 (3)0.001 (2)
C40.028 (3)0.042 (3)0.030 (3)0.018 (2)0.001 (2)0.006 (2)
C50.047 (3)0.057 (4)0.026 (3)0.026 (3)0.002 (2)0.019 (3)
C60.040 (3)0.057 (4)0.044 (3)0.016 (3)0.006 (3)0.032 (3)
C70.025 (3)0.039 (3)0.044 (3)0.011 (2)0.006 (2)0.024 (2)
C80.040 (3)0.033 (3)0.059 (4)0.002 (2)0.001 (3)0.030 (3)
C90.042 (3)0.025 (3)0.052 (3)0.002 (2)0.010 (3)0.012 (2)
C100.045 (3)0.024 (3)0.040 (3)0.004 (2)0.015 (3)0.009 (2)
C110.029 (3)0.030 (3)0.030 (3)0.010 (2)0.003 (2)0.012 (2)
C120.025 (3)0.030 (3)0.028 (2)0.010 (2)0.003 (2)0.010 (2)
C130.042 (3)0.027 (3)0.027 (3)0.001 (2)0.003 (2)0.011 (2)
C140.061 (4)0.018 (2)0.036 (3)0.005 (2)0.014 (3)0.006 (2)
Geometric parameters (Å, º) top
Cu1—O11.925 (3)C6—C71.419 (7)
Cu1—O32.525 (4)C7—C111.397 (6)
Cu1—O1w1.984 (3)C7—C81.410 (7)
Cu1—O1wi2.657 (4)C8—C91.354 (7)
Cu1—N12.012 (4)C9—C101.379 (7)
Cu1—N22.001 (4)C11—C121.445 (7)
O1—C131.267 (5)C13—C141.507 (6)
O2—C131.242 (6)C14—C14ii1.487 (9)
O3—N31.287 (5)O1w—H1w10.9700
O4—N31.219 (5)O1w—H1w20.9700
O5—N31.215 (6)C1—H10.9300
N1—C11.320 (6)C2—H20.9300
N1—C121.346 (6)C3—H30.9300
N2—C101.346 (6)C5—H50.9300
N2—C111.352 (6)C6—H60.9300
C1—C21.406 (7)C8—H80.9300
C2—C31.345 (8)C9—H90.9300
C3—C41.410 (7)C10—H100.9300
C4—C121.398 (6)C14—H14a0.9700
C4—C51.431 (7)C14—H14b0.9700
C5—C61.348 (8)
O1—Cu1—O386.4 (1)C9—C8—C7119.6 (5)
O1—Cu1—O1w91.6 (1)C8—C9—C10120.6 (5)
O1—Cu1—O1wi92.4 (1)N2—C10—C9122.2 (5)
O1—Cu1—N189.8 (2)N2—C11—C7124.5 (5)
O1—Cu1—N2171.2 (2)N2—C11—C12115.8 (4)
O3—Cu1—O1w92.5 (1)C7—C11—C12119.6 (4)
O3—Cu1—O1wi172.8 (1)N1—C12—C4123.6 (4)
O3—Cu1—N194.6 (2)N1—C12—C11116.7 (4)
O3—Cu1—N290.6 (2)C4—C12—C11119.7 (4)
O1w—Cu1—N1172.9 (2)O2—C13—O1124.8 (4)
O1w—Cu1—N296.8 (2)O2—C13—C14120.7 (4)
O1w—Cu1—O1wi80.5 (1)O1—C13—C14114.5 (4)
O1wi—Cu1—N192.5 (1)C14ii—C14—C13115.8 (5)
O1wi—Cu1—N291.6 (1)Cu1—O1w—H1w1111.9
N1—Cu1—N282.3 (2)Cu1—O1w—H1w2111.9
C13—O1—Cu1129.3 (3)H1w1—O1w—H1w2109.6
N3—O3—Cu1116.0 (3)N1—C1—H1119.4
Cu1—O1w—Cu1i99.6 (1)C2—C1—H1119.4
C1—N1—C12118.9 (4)C3—C2—H2119.9
C1—N1—Cu1129.0 (3)C1—C2—H2119.9
C12—N1—Cu1112.0 (3)C2—C3—H3120.1
C10—N2—C11116.9 (4)C4—C3—H3120.1
C10—N2—Cu1130.4 (3)C6—C5—H5119.6
C11—N2—Cu1112.7 (3)C4—C5—H5119.6
O5—N3—O4122.2 (5)C5—C6—H6119.1
O5—N3—O3118.7 (4)C7—C6—H6119.1
O4—N3—O3119.1 (4)C9—C8—H8120.2
N1—C1—C2121.1 (5)C7—C8—H8120.2
C3—C2—C1120.3 (5)C8—C9—H9119.7
C2—C3—C4119.9 (5)C10—C9—H9119.7
C12—C4—C3116.1 (5)N2—C10—H10118.9
C12—C4—C5119.0 (5)C9—C10—H10118.9
C3—C4—C5124.9 (5)C14ii—C14—H14a108.3
C6—C5—C4120.8 (5)C13—C14—H14a108.3
C5—C6—C7121.8 (5)C14ii—C14—H14b108.3
C11—C7—C8116.0 (5)C13—C14—H14b108.3
C11—C7—C6119.0 (5)H14a—C14—H14b107.4
C8—C7—C6125.0 (5)
O1w—Cu1—O1—C1324.2 (5)C12—C4—C5—C62.4 (8)
N1—Cu1—O1—C13162.8 (5)C3—C4—C5—C6176.5 (5)
O3—Cu1—O1—C1368.2 (5)C4—C5—C6—C71.5 (8)
O1wi—Cu1—O1—C13104.7 (4)C5—C6—C7—C111.8 (8)
O1—Cu1—O3—N330.5 (3)C5—C6—C7—C8179.2 (5)
O1w—Cu1—O3—N3122.0 (3)C11—C7—C8—C91.9 (8)
N2—Cu1—O3—N3141.2 (3)C6—C7—C8—C9177.2 (5)
N1—Cu1—O3—N358.9 (3)C7—C8—C9—C100.4 (8)
O1—Cu1—O1w—Cu1i92.2 (1)C11—N2—C10—C91.0 (8)
N2—Cu1—O1w—Cu1i90.5 (2)Cu1—N2—C10—C9179.3 (4)
O3—Cu1—O1w—Cu1i178.6 (1)C8—C9—C10—N22.0 (9)
O1wi—Cu1—O1w—Cu1i0.0 (1)C10—N2—C11—C71.5 (7)
O1—Cu1—N1—C15.4 (5)Cu1—N2—C11—C7177.1 (4)
N2—Cu1—N1—C1178.3 (5)C10—N2—C11—C12178.2 (4)
O3—Cu1—N1—C191.8 (4)Cu1—N2—C11—C123.2 (5)
O1wi—Cu1—N1—C187.0 (4)C8—C7—C11—N22.9 (8)
O1—Cu1—N1—C12169.6 (3)C6—C7—C11—N2176.2 (5)
N2—Cu1—N1—C126.7 (3)C8—C7—C11—C12176.7 (4)
O3—Cu1—N1—C1283.3 (3)C6—C7—C11—C124.1 (7)
O1wi—Cu1—N1—C1298.0 (3)C1—N1—C12—C42.9 (7)
O1w—Cu1—N2—C103.4 (5)Cu1—N1—C12—C4172.7 (4)
N1—Cu1—N2—C10176.3 (5)C1—N1—C12—C11177.5 (4)
O3—Cu1—N2—C1089.2 (5)Cu1—N1—C12—C116.9 (5)
O1wi—Cu1—N2—C1084.0 (5)C3—C4—C12—N11.4 (7)
O1w—Cu1—N2—C11178.3 (3)C5—C4—C12—N1179.6 (5)
N1—Cu1—N2—C115.4 (3)C3—C4—C12—C11179.0 (4)
O3—Cu1—N2—C1189.2 (3)C5—C4—C12—C110.0 (7)
O1wi—Cu1—N2—C1197.7 (3)N2—C11—C12—N12.5 (6)
Cu1—O3—N3—O5122.3 (5)C7—C11—C12—N1177.2 (4)
Cu1—O3—N3—O457.9 (5)N2—C11—C12—C4177.0 (4)
C12—N1—C1—C21.4 (7)C7—C11—C12—C43.3 (7)
Cu1—N1—C1—C2173.3 (4)Cu1—O1—C13—O218.4 (8)
N1—C1—C2—C31.6 (8)Cu1—O1—C13—C14161.6 (4)
C1—C2—C3—C43.0 (8)O2—C13—C14—C14ii8 (1)
C2—C3—C4—C121.6 (7)O1—C13—C14—C14ii171.6 (6)
C2—C3—C4—C5177.4 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O20.971.722.551 (4)142
O1w—H1w2···O3iii0.971.912.739 (5)141
Symmetry code: (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2]
Mr763.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.940 (1), 10.351 (2), 10.857 (2)
α, β, γ (°)69.72 (3), 81.28 (3), 75.75 (3)
V3)707.1 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.45 × 0.40 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.663, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
2711, 2486, 1966
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.124, 1.02
No. of reflections2486
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.53

Computer programs: CAD-4 VAX/PC Fortran System (Enraf-Nonius, 1988), CAD-4 VAX/PC Fortran System, NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-II (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O11.925 (3)Cu1—O1wi2.657 (4)
Cu1—O32.525 (4)Cu1—N12.012 (4)
Cu1—O1w1.984 (3)Cu1—N22.001 (4)
O1—Cu1—O386.4 (1)O3—Cu1—N290.6 (2)
O1—Cu1—O1w91.6 (1)O1w—Cu1—N1172.9 (2)
O1—Cu1—O1wi92.4 (1)O1w—Cu1—N296.8 (2)
O1—Cu1—N189.8 (2)O1w—Cu1—O1wi80.5 (1)
O1—Cu1—N2171.2 (2)O1wi—Cu1—N192.5 (1)
O3—Cu1—O1w92.5 (1)O1wi—Cu1—N291.6 (1)
O3—Cu1—O1wi172.8 (1)N1—Cu1—N282.3 (2)
O3—Cu1—N194.6 (2)
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds